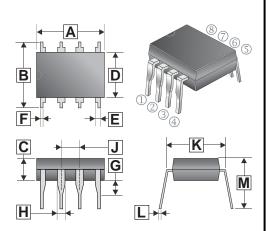


SPNE555 Single Timer

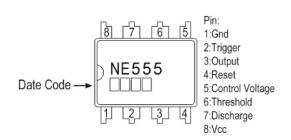
RoHS Compliant Product A suffix of "-C" specifies halogen and lead-free

DESCRIPTION

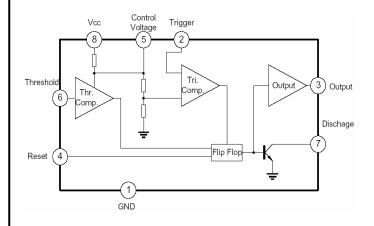
The SPNE555 is a highly stable timer integrated circuit. It can be operated in Astable mode and Monostable mode. With monostable operation the time delay is controlled by one external and one capacitor. With a stable operation, the frequency and duty cycle are accurately controlled with two external resistors and one capacitor.


DIP-8

FEATURES


- High current driver capability (=200mA)
- Adjustable duty cycle
- Timing form µSec to Hours
- Turn off time less than 2µSec

MARKING


Product	DateCode
SPNE555	NE555

REF.	Millimeter		REF.	Millimeter		
KEF.	F. Min. Max. REF.		Min.	Max.		
А	9.017	10.16	G	0.381	-	
В	-	10.92	Н	1.143	1.778	
С	2.921	4.953	J	2.540 TYP.		
D	6.096	7.112	K	7.620	8.255	
Е	0.762	1.143	L	0.203	0.358	
F	0.356	0.559	М	-	9.144	

BLOCK DIAGRAM & PIN CONFIGURATION

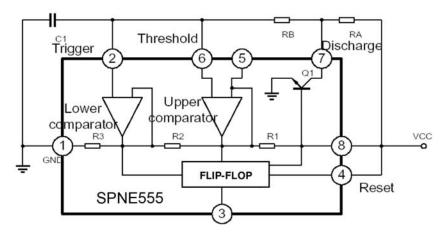
http://www.SeCoSGmbH.com/

ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless other specified)

PARAMETER	SYMBOL	VALUE	UNITS	
Supply Voltage	V _{CC}	16	V	
Output Current	Ι _ο	200	mA	
Power Dissipation	PD	600	mW	
Lead Temperature (10sec)	Tlead	300	°C	
Operating Temperature	Topr	0~70	°C	
Storage Temperature	T _{STG}	-65 ~ 150	°C	

ELECTRICAL CHARACTERISTICS ($T_A=25^{\circ}C$ unless other specified , $V_{CC}=5 \sim 15V$)

PARA	METER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Supply Voltage		Vcc	4.5	-	16	V
Supply Current (Note1)	V_{CC} =5V, R _L = ∞	- I _{cc}	-	3	6	mA
	V_{CC} =15V, R_{L} = ∞		-	10	15	mA
	Timing Er	ror(monostable)				
Initial Accurary (Note 1)		A _{CCUR}	-	1.0	-	%
Drift with Temperature		$\triangle t / \triangle T$	-	50	-	ppm / °C
Drift with Supply Voltage	Drift with Supply Voltage		-	0.1	-	% / V
	Timing	Error(astable)				
Initial Accurary (Note 1)		A _{CCUR}	-	2.25	-	%
Drift with Temperature	Drift with Temperature		-	150	-	ppm / °C
Drift with Supply Voltage		$\triangle t / \triangle V_{CC}$	-	0.3	-	% / V
	V _{cc} =15V		9.0	10.0	11.0	V
Control Voltage	V _{CC} =5V	Vc	2.6	3.33	4.0	V
	V _{CC} =15V	V _{TH}	9.2	10.0	10.8	V
Threshold Voltage	V _{CC} =5V		3.1	3.33	3.55	V
Threshold Current (Note 3)		I _{TH}	-	0.1	0.25	μA
	V _{CC} =5V	V _{TR}	1.1	1.67	2.2	V
Trigger Voltage	V _{CC} =15V		4.5	5	5.6	V
Trigger Current	V _{TR} =0	I _{TR}	-	-	2.0	μA
Reset Voltage		V _{RST}	0.4	0.7	1.0	V
Reset Current	Reset Current		-	0.1	0.4	mA
Low Output Voltage	V _{CC} =15V, I _{SINK} =10mA	V _{OL}	-	0.06	0.25	V
	V _{CC} =15V, I _{SINK} =50mA		-	0.3	0.75	
	V _{CC} =5V, I _{SINK} =5mA		-	0.05	0.35	
High Output Voltage	V _{CC} =15V, I _{SOURCE} =200mA	V _{он}	-	12.5	-	V
	V _{CC} =15V, I _{SOURCE} =100mA		12.75	13.3	15	
	V _{CC} =5V, I _{SOURCE} =100mA		2.75	3.3	5	
Reset Time of Output		T _R	-	100	-	nSec
Fall Time of Output		T _F	-	100	-	nSec
Discharge leakage Current		I _{LKG}	-	20	100	nA


Note 1 : Supply current when output is high typically 1mA less at V_{CC} = 5V.

Note 2 : Tested at V_{CC} = 5V and V_{CC} = 15V.

Note 3 : This will determine the maximum value of RA+RB for 15V operation, the maximum total is R =20M Ω , and for 5V operation the maximum total is R=6.7M Ω .

APPLICATION CIRCUIT

APPLICATION NOTES

The application circuit shows astable mode configuration.

Pin 6 (Threshold) is tied to Pin 2 (Trigger) and Pin 4 (Reset) is tied to V_{cc} (Pin 8). The external capacitor C1 of Pin 6 and Pin 2 charges through RA, RB and discharge through RB and discharge through RB only. In the internal circuit of SPNE555, one input of the upper comparator is at voltage of 2/3 V_{cc} (R1=R2=R3), another input is connected to Pin 6. As soon as C1 in charging to higher than 2/3 V_{cc} , transistor Q1 is turned ON and discharge C1 to collector voltage of transistor Q1. Therefore, the flip-flop circuit is reset and output is low. One input of lower comparator is at voltage of 1/3 V_{cc} , discharge transistor Q1 turn off and C1 charges through RA and RB. Therefore, flip-flop circuit is set output high.

That is, when C1 charges through RA and RB, output is high and when C1 discharge through RB, output is low. The charge time (output is high) t1 is 0.693 (RA+RB) C1 and the discharge time (output is low) T2 is 0.693RB*C1.

$$\ln\left[\frac{V_{\rm CC}-1/3V_{\rm CC}}{V_{\rm CC}-2/3V_{\rm CC}}\right] = 0.693$$

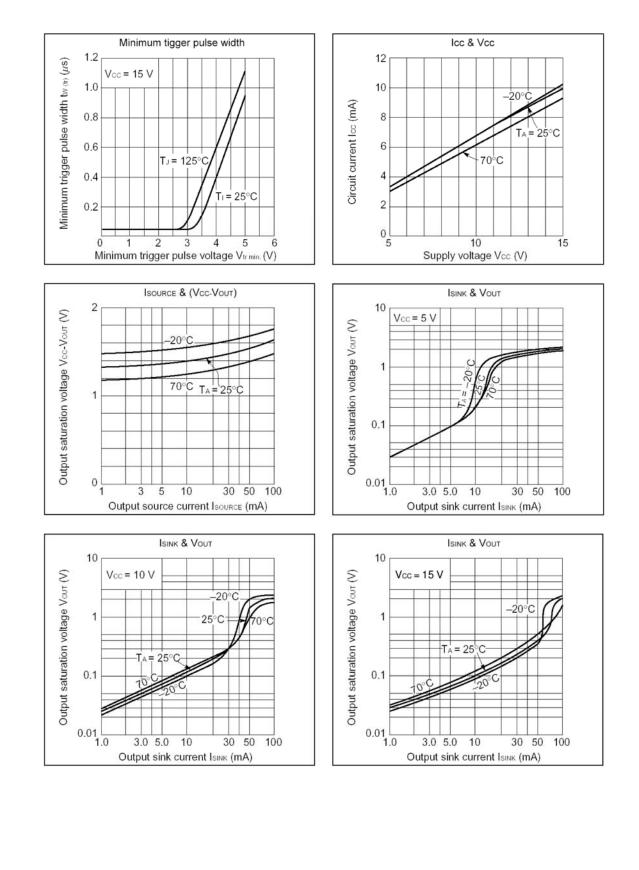
Thus the total period time T is given by

T1=0.693*(RA+RB)*C1 T2=0.693*RB*C1

T=T1+T2=0.693(RA+2RB)*C1.

Then the frequency of astable mode is given by

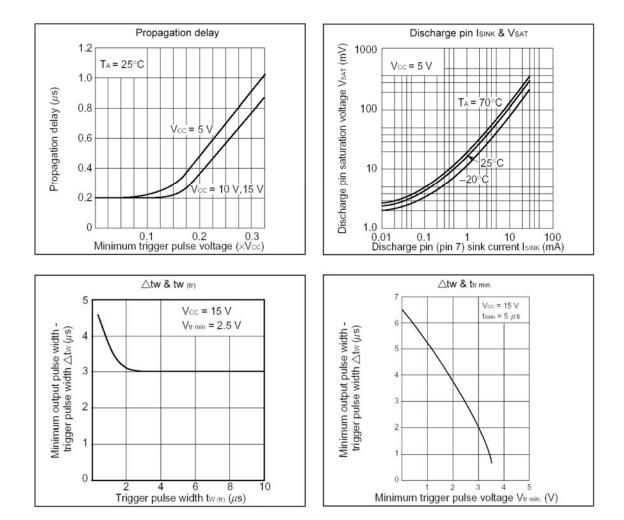
$$f = \frac{1}{T} = \frac{1.44}{(RA+2RB)*C1}$$


The duty cycle is given by

D.C.=
$$\frac{T2}{T} = \frac{RB}{RA+2RB}$$

CHARACTERISTICS CURVE

http://www.SeCoSGmbH.com/


17-Sep-2010 Rev. A

Any changes of specification will not be informed individually.

CHARACTERISTICS CURVE

