

SPT7883

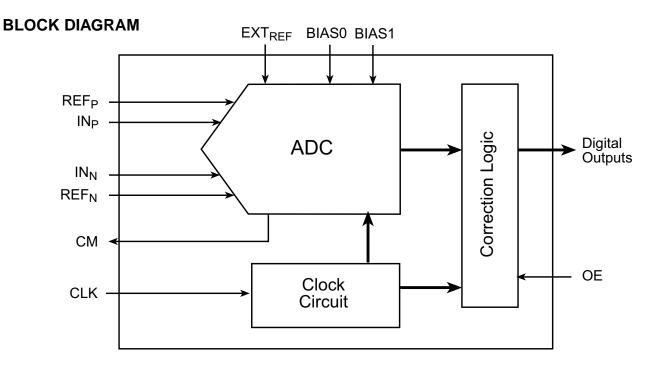
NOVEMBER 21, 2001

10-BIT, 70 MSPS A/D CONVERTER

PRELIMINARY INFORMATION

FEATURES

- 2.5 V power supply
- SNR: 60 dB @f_{IN} = 10 MHz, f_S = 70 MHz; 58 dB @f_{IN} = 30 MHz
- Low power dissipation: 145 mW @2.5 V; Sleep mode: 2.6 mW
- Sample rate: 10-115 MSPS
- Frequency-dependent biasing
- Internal sample-and-hold
- Differential input
- Low input capacitance
- 9.67 ENOBs @ *f*_{IN} = 10 MHz, *f*_S = 70 MHz
- SFDR: 73 dB
- IP core available


GENERAL DESCRIPTION

The SPT7883 is a compact, high-speed, low-power 10-bit monolithic analog-to-digital converter, implemented in a 0.25 μ m CMOS process. It has 10-bit resolution with 9.67 effective bits and spurious-free dynamic range (SFDR) of 73 dB for video frequency signals. The converter includes a high bandwidth sample-and-hold. The full-scale range can be set between ± 0.5 V and ± 1.5 V. It operates from a single 2.5 V supply. Its low distortion and high dynamic range provide the performance needed for demanding imaging, video, and communications applications.

The bias current level for the ADC is automatically adjusted based on the clock input frequency. Hence, the power dissipation of the device is continuously optimized for the operating frequency.

The SPT7883 has a pipelined architecture, resulting in low input capacitance. Digital error correction of the 9 most significant bits ensures good linearity for input frequencies approaching Nyquist.

The SPT7883 is available in a 28-lead SSOP package over the industrial temperature range (-40 to +85 °C).

APPLICATIONS

- Imaging
- Computer scanners
- Communications
- Set top boxes
- Video products
- Battery-operated equipment
- Portable test equipment

ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) 25 °C

Supply Voltages

V _{DD}	–0.3 V to +3 V
OV _{DD}	–0.3 V to V _{DD} + 0.3 V

Input Voltages

Digital Input	–0.3 V to V _{DD} + 0.3 V
REF _P	–0.3 V to V _{DD} + 0.3 V
REF _N	-0.3 V to V _{DD} + 0.3 V
CLOCK	-0.3 V to V _{DD} + 0.3 V

Temperatures

Operating Temperature	–40 to +85 °C
Storage Temperature	–65 to +125 °C

Note: Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

ELECTRICAL SPECIFICATIONS

 $T_A = 25 \text{ °C}$, $V_{DD} = OV_{DD} = 2.5 \text{ V}$, $f_S = 70 \text{ MSPS}$, $f_{IN} = 10 \text{ MHz}$, differential input signal, internal references, 50% clock duty cycle, typical bias, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TEST LEVEL	MIN	SPT7883 TYP	МАХ	UNITS
DC Performance Differential Linearity Error (DLE) Integral Linearity Error (ILE) No Missing Codes Offset Error Gain Error		V V V V		±0.35 ±0.25 Guaranteed ±4.88 0.98		LSB LSB mV %FS
Analog Input Input Voltage Range (differential) Input Common Mode Voltage		V V	±0.5	±1.0 1.2	±1.5	V V
Timing Characteristics Conversion Rate1 Pipeline Delay CLK to Output Delay		V V V	10	70 6 6	115	MSPS Clocks ns
Dynamic Performance Signal to Noise and Distortion Ratio (SINAD)	f _{IN} = 10 MHz	V		60		dBc
Signal to Noise Ratio (SNR)	$f_{IN} = 30 \text{ MHz}$ $f_{IN} = 10 \text{ MHz}$ $f_{IN} = 30 \text{ MHz}$	V V V		58 60 59		dBc dBc dBc
Total Harmonic Distortion (THD)	$f_{\rm IN} = 10 \text{ MHz}$ $f_{\rm IN} = 30 \text{ MHz}$	V V		-71 -68		dBc dBc
Spurious Free Dynamic Range (SFDR)	$f_{\rm IN} = 10 \text{ MHz}$ $f_{\rm IN} = 30 \text{ MHz}$	V V		73 70		dBc dBc
Power Supply Requirements Supply Voltage (V _{DD}) Supply Current (V _{DD}) Supply Current (OV _{DD})		V V V	2.3	2.5 50 8	2.75	V mA mA
Output Driver Supply Voltage (OV _{DD}) Power Dissipation Sleep Mode Power Dissipation	$f_{\rm S}$ =70 MHz; $f_{\rm IN}$ =10 MHz Clock off	V V	2.3	2.5 145 2.6	2.75	V mW mW

1See graph on page 4

ELECTRICAL SPECIFICATIONS

 $T_A = 25$ °C, $V_{DD} = OV_{DD} = 2.5$ V, $f_S = 70$ MSPS, $f_{IN} = 10$ MHz, differential input signal, internal references, 50% clock duty cycle, typical bias, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TEST LEVEL	MIN	SPT7883 TYP	МАХ	UNITS
External Reference Voltages Negative Input Voltage Positive Input Voltage ∆Reference Input Voltage Range (REF _P –REF _N)	EXT _{REF} = 1	V V V	0.5 0.5	0.85 1.60 0.75	1.9 1.4	V V V
Internal Reference Voltages Negative Input Voltage Positive Input Voltage Common Mode Voltage	EXT _{REF} = 0	V V V		0.75 1.75 1.20		V V V
Digital Inputs Logic "0" Voltage Logic "1" Voltage Logic "0" Current (V _I =GND) Logic "1" Current (V _I =V _{DD})			2.1		0.4 ±10 ±10	V V μΑ μΑ
Digital Outputs Logic "0" Voltage Logic "1" Voltage	I = 2 mA I = -2 mA	V V	85% OV _{DD}	0.2 90% OV _{DD}	0.4	v v

TEST LEVEL CODES

All electrical characteristics are subject to the following conditions:

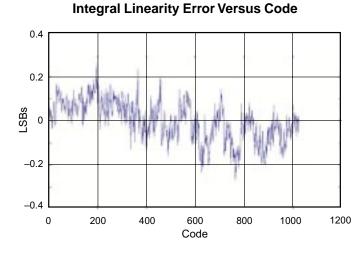
All parameters having min/max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank section in the data column indicates that the specification is not tested at the specified condition.

LEVEL TEST PROCEDURE

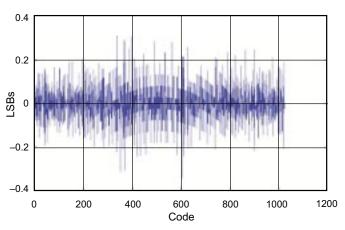
I

П

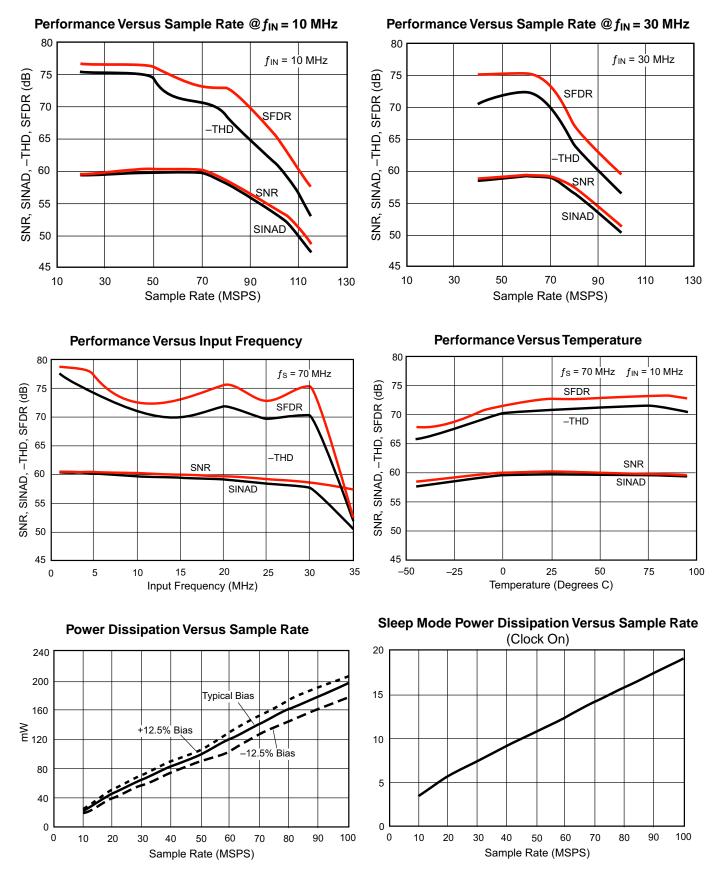
Ш


IV

V


VI

- 100% production tested at the specified temperature.
- 100% production tested at $T_A = +25$ °C, and sample tested at the specified temperatures.
- QA sample tested only at the specified temperatures.
- Parameter is guaranteed (but not tested) by design and characterization data.
- Parameter is a typical value for information purposes only.
 - 100% production tested at $T_A = +25$ °C. Parameter is guaranteed over specified temperature range.


TYPICAL PERFORMANCE CHARACTERISTICS

Differential Linearity Error Versus Code

TYPICAL PERFORMANCE CHARACTERISTICS

REFERENCES

The SPT7883 can use either an internal or external voltage reference. When the digital input EXT_{REF} is high, the external reference is used. When EXT_{REF} is low, the internal reference is used.

INTERNAL REFERENCE

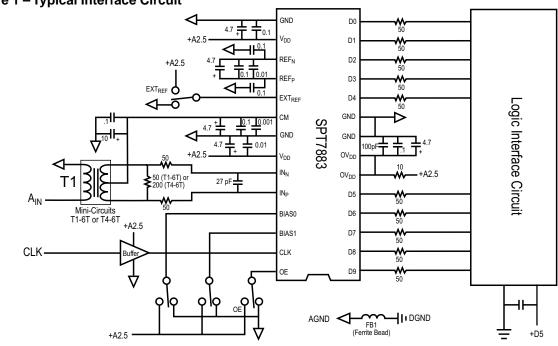
The internal references are set at +0.75 V and +1.75 V. When the internal reference is used, the full-scale range of the analog input is set at ± 1.0 V differential. Do not connect external references when the internal reference is used.

EXTERNAL REFERENCE

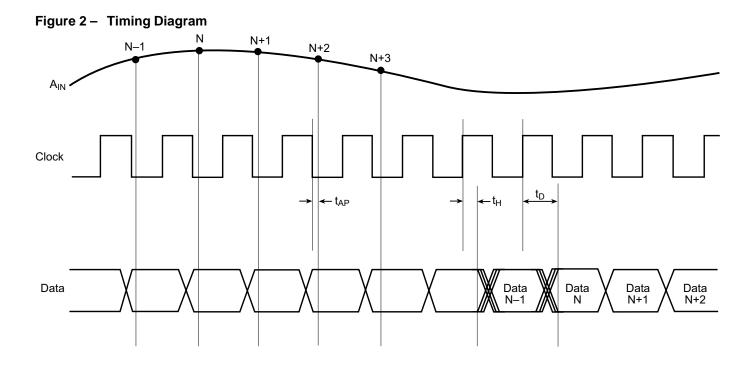
When external references are used, the voltages applied to the V_{REF}+ and V_{REF}- pins determine the input voltage range, which is equal to \pm (V_{REF}+ - V_{REF}-). Externally generated reference voltages must be connected to these pins and should be symmetric about the common mode voltage (1.2 V).

ANALOG INPUT

The SPT7883 has a differential input that should have a common mode voltage of 1.2 V. The input voltage range is determined by the reference voltages, which may be generated internally or applied externally.


The input of the SPT7883 can be configured in various ways depending on whether a single-ended or differential, AC- or DC-coupled input is desired.

AC-coupled input is most conveniently implemented using a transformer with a center-tapped secondary winding. The center tap is connected to the CM node, as shown in figure 1. In order to obtain low distortion, it is important that the selected transformer does not exhibit core saturation at full scale. Excellent results are obtained with the Mini-Circuits T1-6T or T4-6T. Proper termination of the input is important for input signal purity. A 50 Ω resistor in series with each input and a small capacitor (typ 27 pF) across the inputs will attenuate kickback noise from the sampleand-hold.

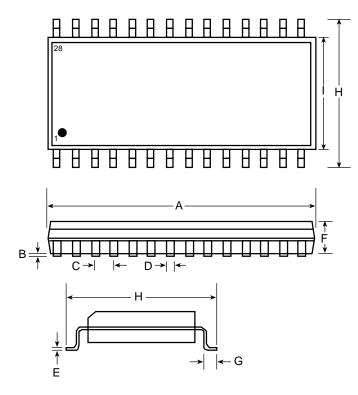

If a DC-coupled single-ended input is wanted, a solution based on operational amplifiers is usually preferred. The AD8138 is an easy-to-use, single-ended-to-differential converter. Its data sheet claims -87 dBc @ 20 MHz. Lower-cost operational amplifiers may be used if the demands are less strict.

CLOCK

In order to preserve accuracy at high input frequency, it is important that the clock have low jitter and fast rise and fall times. Rise/fall times should be kept shorter than 2 ns whenever possible. Overshoot should be minimized. Low jitter is especially important when converting highfrequency input signals. Jitter causes the noise floor to rise proportionally to input signal frequency. The analog input is sampled at the falling edge of the clock.

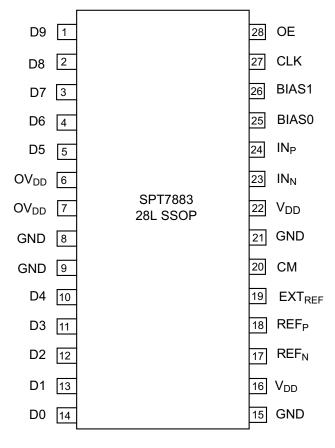
Figure 1 – Typical Interface Circuit

DIGITAL OUTPUTS


When the output enable is set high, then the digital output data appears in offset binary code at CMOS 2.5 V logic levels. Full-scale negative input results in output code 000...0. Full-scale positive input results in output code 111...1. Output data is available 6 clock cycles after the data is sampled. The analog input is sampled one aperture delay (t_{AP}) after the high-to-low clock transition. Output data should be sampled as shown in the timing diagram above.

When the output enable is set low, then the digital output data goes into a high Z-mode.

PCB LAYOUT AND DECOUPLING


A well designed PCB is necessary to get good spectral purity from any high-performance ADC. A multilayer PCB with a solid ground plane is recommended for optimum performance. If the system has a split analog and digital ground plane, it is recommended that all ground pins on the ADC be connected to the analog ground plane (AGND). All digital interface circuits are connected to the digital ground (DGND). AGND and DGND planes must be connected through a ferrite bead placed as close to the ADC as possible. Refer to the typical interface circuit diagram (figure 1) or AN7883 application note for recommended decoupling and PCB layout.

PACKAGE OUTLINE 28-Lead SSOP

	INCHES		MILL	METERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.397	0.407	10.07	10.33
В	0.002	0.008	0.05	0.21
С	0.0256 typ		0.65 typ	
D	0.010	0.015	0.25	0.38
E	0.004	0.008	0.09	0.20
F	0.066	0.070	1.68	1.78
G	0.025	0.037	0.63	0.95
Н	0.301	0.311	7.65	7.90
I	0.205	0.212	5.20	5.38

PIN ASSIGNMENTS

PIN FUNCTIONS

Pin Name	Description	
IN _P IN _N	Differential input signal pins. Common-mode voltage: 1.2 V	
$REF_P REF_N$	Reference I/O pins.	
BIAS0, BIAS1	BIAS1=0, BIAS0=0: Sleep mode (power save) BIAS1=0, BIAS0=1: -12.5% bias BIAS1=1, BIAS0=0: +12.5% bias BIAS1=1, BIAS0=1: Typ. Bias	
CLK	Clock input	
СМ	Common mode voltage output	
D9–D0	Digital outputs (MSB to LSB)	
OE	Enable digital outputs Logic 1: Digital output enable Logic 0: Tri-state	
EXT _{REF}	Digital input: Reference select. EXT _{REF} =1: Use external reference. Internal reference powered down. EXT _{REF} =0: Internal reference is used.	
V _{DD}	Power supply pins	
GND	Ground pins	
OV _{DD}	Power supply pins for output drivers	

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
SPT7883SIR	−40 to +85 °C	28L SSOP

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© Copyright 2002 Fairchild Semiconductor Corporation