

Vishay Siliconix

Automotive N-Channel 100 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	100				
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0.0059				
$R_{DS(on)}$ (Ω) at V_{GS} = 4.5 V	0.0080				
I _D (A)	75				
Configuration	Single				
Package	TO-263				

FEATURES

- TrenchFET[®] power MOSFET
- · Package with low thermal resistance
- AEC-Q101 qualified
- 100 % $\rm R_g$ and UIS tested
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

ABSOLUTE MAXIMUM RATINGS ($T_C = 25 \text{ °C}$, unless otherwise noted)						
PARAMETER	SYMBOL	LIMIT	UNIT			
Drain-Source Voltage	V _{DS}	100	V			
Gate-Source Voltage	V _{GS}	± 20	v			
Continuous Drain Current	$T_C = 25 \ ^\circ C \ ^a$	1	75			
Continuous Drain Current	T _C = 125 °C	ID	67			
Continuous Source Current (Diode Conduction) ^a	ا _S	75	А			
Pulsed Drain Current ^b	I _{DM}	180				
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	60			
Single Pulse Avalanche Energy		E _{AS}	180	mJ		
Maximum Power Dissipation ^b	T _C = 25 °C	D	166	w		
waximum rower dissipation ~	T _C = 125 °C	PD	55	vv		
Operating Junction and Storage Temperature Rang	T _J , T _{stg}	-55 to +175	°C			

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Junction-to-Ambient	PCB mount ^c	R _{thJA}	40	°C/W		
Junction-to-Case (Drain)		R _{thJC}	0.9	0/10		

Notes

- a. Package limited.
- b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$

c. When mounted on 1" square PCB (FR4 material).

www.vishay.com

SQM70060EL

Vishay Siliconix

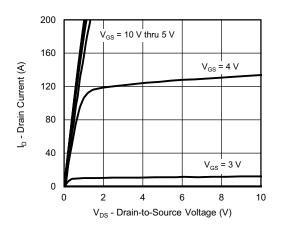
	PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
$ \begin{split} \hline \begin{tabular}{ c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0, I _D = 250 μA		100	-	-	v	
$ \begin{array}{ c c c c } \hline \mbox{Gate-Source Leakage} & I_{GS} & V_{DS} = U, V_{GS} = 20V & - & - & - $	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	1.5	2.0	2.5	v	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-Source Leakage		V _{DS} =	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	± 100	nA	
$ \begin{array}{ c c c c c c } \hline V_{GS} = 0 & V & V_{DS} = 100 & V, T_J = 175 \ ^{\circ}{\rm C} & - & - & 500 \\ \hline On-State Drain Current a & I_{D(on)} & V_{GS} = 10 & V & V_{DS} \ge 5 & 50 & - & - & - & - & - & - & - & - & - & $			$V_{GS} = 0 V$	V _{DS} = 100 V	-	-	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 100 V, T _J = 125 °C	-	-	50	μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{GS} = 0 V$	V _{DS} = 100 V, T _J = 175 °C	-	-	500		
$ \begin{array}{ c c c c c c } \hline Partial $	On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	$V_{DS} \ge 5 V$	50	-	-	Α	
$ \begin{array}{ c c c c c c c } \hline Prain-Source On-State Hesistance a & $P_{DS(on)}$ & $V_{GS} = 10 \ V$ & $I_D = 30 \ A, $T_J = 175 \ ^{\circ}C$ & $-$ & $-$ & 0.0123 \\ \hline $V_{GS} = 4.5 \ V$ & $I_D = 20 \ A$ & $-$ & 0.0056 & 0.0080 \\ \hline $V_{GS} = 4.5 \ V$ & $I_D = 25 \ A$ & $-$ & 95 & $-$ \\ \hline $Dynamic b$ & $V_{DS} = 15 \ V, $I_D = 25 \ A$ & $-$ & 95 & $-$ \\ \hline $Dynamic b$ & $V_{DS} = 15 \ V, $I_D = 25 \ A$ & $-$ & 95 & $-$ \\ \hline $Dynamic b$ & $V_{DS} = 15 \ V, $I_D = 25 \ A$ & $-$ & 95 & $-$ \\ \hline $Dynamic c \ A = 100 \ A = 1000 \ A = 10000 \ A = 1000 \ A = 1000 \ A = 1000 \ A = 1000 $			V _{GS} = 10 V	I _D = 30 A	- 0.0046 0.005		0.0059		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dursing Country On Otata Designations of	P	V _{GS} = 10 V	I _D = 30 A, T _J = 125 °C	-	-	0.0099	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance "	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A, T _J = 175 °C	-	-	0.0123		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = 4.5 V	I _D = 20 A	-	0.0056	0.0080		
$ \begin{array}{ c c c c c c } \hline Input Capacitance & C_{iss} & \\ \hline Output Capacitance & C_{oss} & \\ \hline Output Capacitance & C_{rss} & \\ \hline Reverse Transfer Capacitance & C_{rss} & \\ \hline Total Gate Charge ^{\circ} & Q_g & \\ \hline Gate-Source Charge ^{\circ} & Q_{gs} & \\ \hline Gate-Drain Charge ^{\circ} & Q_{gd} & \\ \hline Gate Resistance & R_g & \\ \hline Turn-On Delay Time ^{\circ} & t_{d(on)} & \\ \hline Rise Time ^{\circ} & t_r & \\ \hline Turn-Off Delay Time ^{\circ} & t_{d(off)} & \\ \hline Fall Time ^{\circ} & t_f & \\ \hline Source-Drain Diode Ratings and Characteristics ^{b} & \\ \hline Pulsed Current ^{a} & _{SM} & \\ \hline \end{array} \right. \\ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance b	g _{fs}	V _{DS}	V _{DS} = 15 V, I _D = 25 A		95	-	S	
$ \begin{array}{ c c c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V & V_{DS} = 25 \ V, \ f = 1 \ MHz & - & 1935 & 2600 \\ \hline Reverse Transfer Capacitance & C_{rss} & Q_g & & & & & & & & & & & & & & & & & & &$	Dynamic ^b		•			•	•		
$ \begin{array}{ c c c c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V & V_{DS} = 25 \ V, \ f = 1 \ MHz & - & 1935 & 2600 \\ \hline Reverse Transfer Capacitance & C_{rss} & Q_g & & & & & & & & & & & & & & & & & & &$	Input Capacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	4170	5500	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance		$V_{GS} = 0 V$		-	1935	2600		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				-	160	220		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge ^c	Qg			-	66	100	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge ^c	Q _{gs}	$V_{GS} = 10 V$	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	14	-		
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time \circle & t_{d(on)} \\ \hline Rise Time \circle & t_r & V_{DD} = 50 \ V, \ R_L = 1.08 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega \\ \hline I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 10$	Gate-Drain Charge ^c	Q _{gd}			-	12	-		
Rise Time °tr $V_{DD} = 50 \text{ V}, \text{ R}_L = 1.08 \Omega$ -2135Turn-Off Delay Time °td(off) $I_D \cong 50 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$ -3460Fall Time °tf-1325Pulsed Current °IISM180	Gate Resistance	R _g	f = 1 MHz		0.90	1.92	3	Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time ^c	t _{d(on)}			-	13	25		
Fall Time ° t _f - 13 25 Source-Drain Diode Ratings and Characteristics ^b - 13 25 Pulsed Current ^a I _{SM} - - 180	Rise Time ^c				-	21	35	ns	
Fall Time ° t _f - 13 25 Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I _{SM} - - 180	Turn-Off Delay Time ^c	t _{d(off)}			-	34	60		
Pulsed Current ^a I _{SM} 180	Fall Time ^c	. ,			-	13	25		
	Source-Drain Diode Ratings and Characteristics ^b								
Forward Voltage V_{SD} $I_F = 50 \text{ A}, V_{GS} = 0$ - 0.90 1.5	Pulsed Current ^a	I _{SM}			-	-	180	Α	
	Forward Voltage	V _{SD}	١ _F	= 50 A, V _{GS} = 0	-	0.90	1.5	V	

Notes

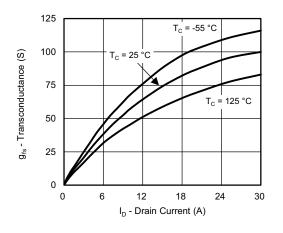
a. Pulse test; pulse width $\leq 300~\mu\text{s},$ duty cycle $\leq 2~\%.$

b. Guaranteed by design, not subject to production testing.

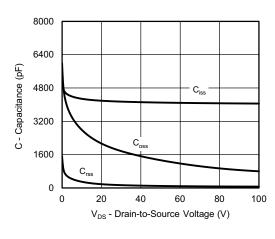
c. Independent of operating temperature.

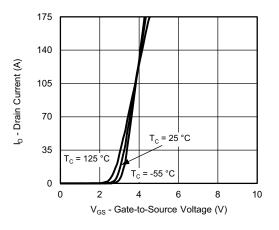

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

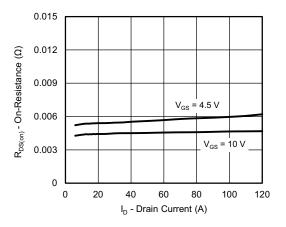
2

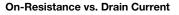


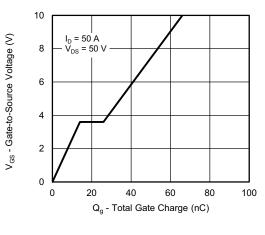
Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Output Characteristics


Transconductance



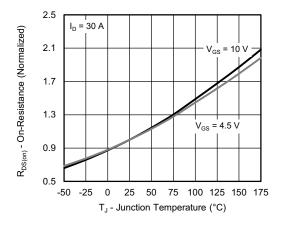

Capacitance

Transfer Characteristics

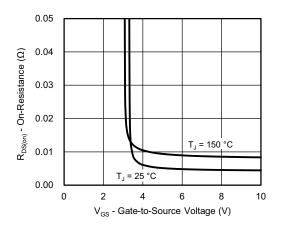
Gate Charge

S16-0653-Rev. A, 18-Apr-16

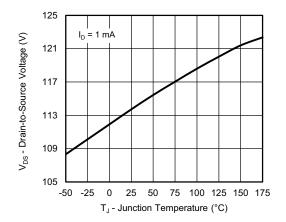
3

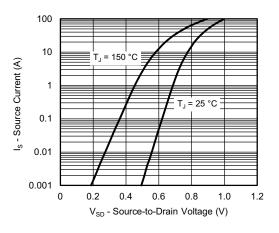

Document Number: 67764

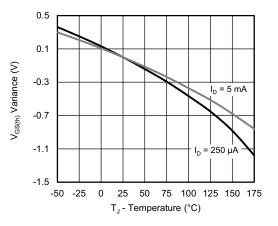
For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

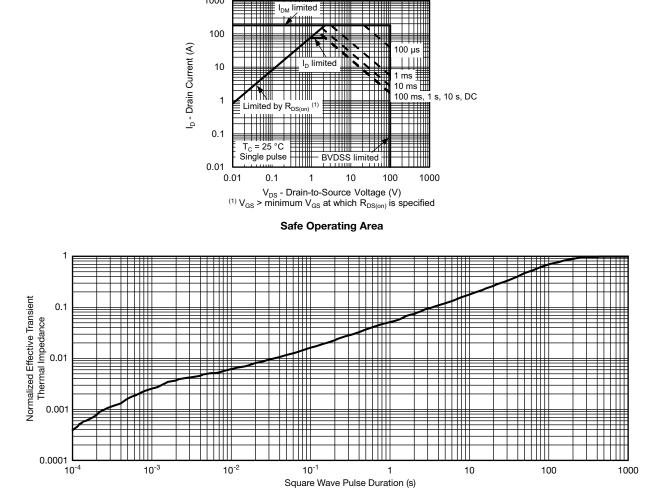

On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage

Drain Source Breakdown vs. Junction Temperature

Source Drain Diode Forward Voltage

Threshold Voltage


4

Vishay Siliconix

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

1000


Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix

Document Number: 67764

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

Note

• The characteristics shown in the two graphs

S16-0653-Rev. A, 18-Apr-16

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

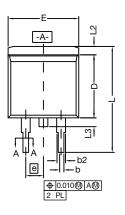
are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

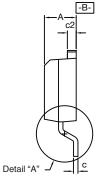
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67764.

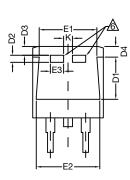
D²PAK / TO-263 and TO-262

Ordering codes for the SQ rugged series power MOSFETs in the D²PAK / TO-263 and TO-262 packages:

DATASHEET PART NUMBER	OLD ORDERING CODE ^a	NEW ORDERING CODE	
SQM100N04-2m7	SQM100N04-2M7-GE3	SQM100N04-2M7_GE3	
SQM100N10-10	SQM100N10-10-GE3	SQM100N10-10_GE3	
SQM110N05-06L	SQM110N05-06L-GE3	SQM110N05-06L_GE3	
SQM110P06-8m9L	SQM110P06-8M9L-GE3	SQM110P06-8M9L_GE3	
SQM120N02-1m3L	SQM120N02-1M3L-GE3	SQM120N02-1M3L_GE3	
SQM120N03-1m5L	SQM120N03-1M5L-GE3	SQM120N03-1M5L_GE3	
SQM120N04-1m7	SQM120N04-1M7-GE3	SQM120N04-1M7_GE3	
SQM120N04-1m7L	SQM120N04-1M7L-GE3	SQM120N04-1M7L_GE3	
SQM120N04-1m9	SQM120N04-1M9-GE3	SQM120N04-1M9_GE3	
SQM120N06-06	SQM120N06-06-GE3	SQM120N06-06_GE3	
SQM120N06-3m5L	SQM120N06-3M5L-GE3	SQM120N06-3M5L_GE3	
SQM120N10-09	SQM120N10-09-GE3	SQM120N10-09_GE3	
SQM120N10-3m8	SQM120N10-3M8-GE3	SQM120N10-3M8_GE3	
SQM120P04-04L	SQM120P04-04L-GE3	SQM120P04-04L_GE3	
SQM120P06-07L	SQM120P06-07L-GE3	SQM120P06-07L_GE3	
SQM120P10-10m1L	-	SQM120P10_10m1LGE3	
SQM200N04-1m1L	SQM200N04-1M1L-GE3	SQM200N04-1M1L_GE3	
SQM200N04-1m7L	SQM200N04-1M7L-GE3	SQM200N04-1M7L_GE3	
SQM200N04-1m8	SQM200N04-1M8-GE3	SQM200N04-1M8_GE3	
SQM25N15-52	SQM25N15-52-GE3	SQM25N15-52_GE3	
SQM35N30-97	SQM35N30-97-GE3	SQM35N30-97_GE3	
SQM40010EL	-	SQM40010EL_GE3	
SQM40N10-30	SQM40N10-30-GE3	SQM40N10-30_GE3	
SQM40N15-38	SQM40N15-38-GE3	SQM40N15-38_GE3	
SQM40P10-40L	SQM40P10-40L-GE3	SQM40P10-40L_GE3	
SQM47N10-24L	SQM47N10-24L-GE3	SQM47N10-24L_GE3	
SQM50020EL	-	SQM50020EL_GE3	
SQM50N04-4m0L	SQM50N04-4M0L-GE3	SQM50N04-4M0L_GE3	
SQM50N04-4m1	SQM50N04-4M1-GE3	SQM50N04-4M1_GE3	
SQM50P03-07	SQM50P03-07-GE3	SQM50P03-07_GE3	
SQM50P04-09L	SQM50P04-09L-GE3	SQM50P04-09L_GE3	
SQM50P06-15L	SQM50P06-15L-GE3	SQM50P06-15L_GE3	
SQM50P08-25L	SQM50P08-25L-GE3	SQM50P08-25L_GE3	
SQM60030E	-	SQM60030E_GE3	
SQM60N06-15	SQM60N06-15-GE3	SQM60N06-15_GE3	
SQM60N20-35	SQM60N20-35-GE3	SQM60N20-35_GE3	
SQM70060EL	-	SQM70060EL_GE3	
SQM85N15-19	SQM85N15-19-GE3	SQM85N15-19_GE3	
SQV120N10-3m8	SQV120N10-3m8-GE3	SQV120N10-3m8_GE3	
SQV120N06-4m7L	_	SQV120N06-4m7L_GE3	

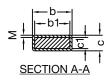

Note


a. Old ordering code is obsolete and no longer valid for new orders



Vishay Siliconix

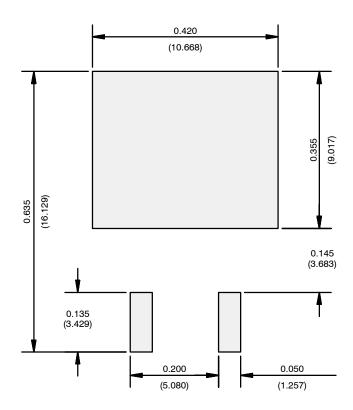
TO-263 (D²PAK): 3-LEAD



DETAIL A (ROTATED 90°)

		INC	HES	MILLIN	IETERS	
DIM.		MIN.	MAX.	MIN.	MAX.	
A		0.160	0.190	4.064	4.826	
	b	0.020	0.039	0.508	0.990	
	b1	0.020	0.035	0.508	0.889	
	b2	0.045	0.055	1.143	1.397	
с*	Thin lead	0.013	0.018	0.330	0.457	
C	Thick lead	0.023	0.028	0.584	0.711	
c1	Thin lead	0.013	0.017	0.330	0.431	
CI	Thick lead	0.023	0.027	0.584	0.685	
	c2	0.045	0.055	1.143	1.397	
	D	0.340	0.380	8.636	9.652	
	D1	0.220	0.240	5.588	6.096	
	D2	0.038	0.042	0.965	1.067	
	D3	0.045	0.055	1.143	1.397	
	D4	0.044	0.052	1.118	1.321	
	E	0.380	0.410	9.652	10.414	
	E1	0.245	-	6.223	-	
	E2	0.355	0.375	9.017	9.525	
E3		0.072	0.078	1.829	1.981	
	е	0.100 BSC		2.54 BSC		
	К	0.045	0.055	1.143	1.397	
L		0.575	0.625	14.605	15.875	
L1		0.090	0.110	2.286	2.794	
L2		0.040	0.055	1.016	1.397	
L3		0.050	0.070	1.270	1.778	
L4		0.010 BSC		0.254 BSC		
	М	-	0.002	-	0.050	
ECN: T13-0707-Rev. K, 30-Sep-13 DWG: 5843						

Notes


- 1. Plane B includes maximum features of heat sink tab and plastic. 2. No more than 25 % of L1 can fall above seating plane by
- max. 8 mils.3. Pin-to-pin coplanarity max. 4 mils.
- 4. *: Thin lead is for SUB, SYB.
 - Thick lead is for SUM, SYM, SQM.
- 5. Use inches as the primary measurement.

This feature is for thick lead.

Revison: 30-Sep-13

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.