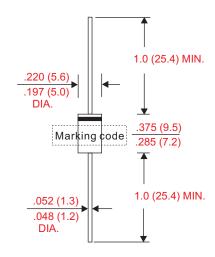


3A Leaded Type Schottky Barrier Rectifiers

■ Features


- Electrostatic discharge (ESD) test under IEC6100-4-2 standard >16KV(SR32~SR36).
 standard >10KV(SR310~SR320).
- Axial lead type devices for through hole design.
- Low power loss, high efficiency.
- High current capability, low forward voltage drop.
- High surge capability.
- · Ultra high-speed switching.
- Silicon epitaxial planar chip, metal silicon junction.
- Suffix "G" indicates Halogen-free part, ex.SR32G.
- Lead-free parts meet environmental standards of MIL-STD-19500 /228

■ Mechanical data

- Epoxy:UL94-V0 rated flame retardant
- · Case: Molded plastic, DO-201AD / DO-27
- Lead: Axial leads, solderable per MIL-STD-202, Method 208 guranteed
- Polarity: Color band denotes cathode end
- Weight : Approximated 1.10 gram

Outline

DO-27(DO-201AD)

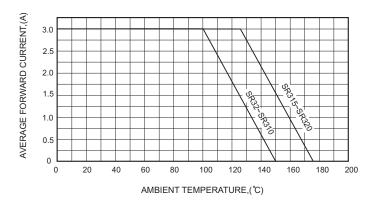
Dimensions in inches and (millimeters)

■ Maximum ratings and electrical characteristics

Rating at 25° C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Conditions	Symbol	MIN.	TYP.	MAX.	UNIT
Forward rectified current	See Fig.1	Io			3.0	Α
Forward surge current	8.3ms single half sine-wave superimposed on rate load (JEDEC method)	I _{FSM}			70	А
Barrana	$V_R = V_{RRM} T_A = 25^{\circ}C$				0.5	
Reverse current	$V_R = V_{RRM} T_A = 100^{\circ}C$	I _R			20	20 mA
Diode junction capacitance	f=1MHz and applied 4V DC reverse voltage	C¹		250		pF
Thermal resistance	Junction to ambient	R _{eJA}		55		°C/W
Storage temperature		T _{STG}	-55		+175	°C

Symbol	Marking code	Max. repetitive peak reverse voltage V _{RRM} (V)	Max. RMS voltage V _{RMS} (V)	Max. DC blocking voltage $V_{_{\mathbb{R}}}(V)$	Max. forward voltage @3A, $T_A = 25^{\circ}C$ $V_F(V)$	Operating temperature T _J (°C)	
SR32	SR32	20	14	20	0.45	-50 ~ +150	
SR34	SR34	40	28	40	0.50		
SR36	SR36	60	42	60	0.70		
SR310	SR310	100	70	100	0.81		
SR315	SR315	150	105	150	0.87	-50 ~ +175	
SR320	SR320	200	140	200	0.90		


Document ID : DS-11K81 Issued Date : 2010/05/05 Revised Date : 2012/05/31 Revision : C

3A Leaded Type Schottky Barrier Rectifiers

■ Rating and characteristic curves

FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE

FIG.3-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

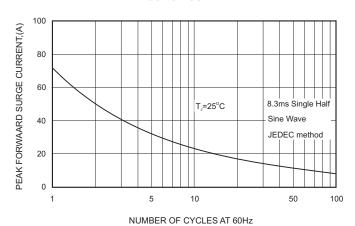


FIG.4-TYPICAL JUNCTION CAPACITANCE

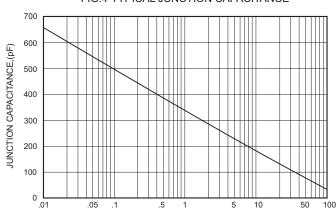
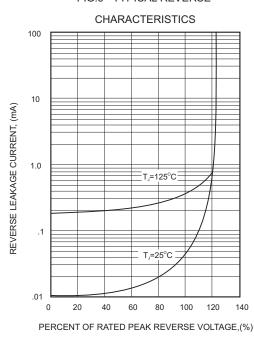



FIG.2-TYPICAL FORWARD

FIG.5 - TYPICAL REVERSE

Document ID : DS-11K81 Issued Date : 2010/05/05 Revised Date : 2012/05/31

Revision : C

3A Leaded Type Schottky Barrier Rectifiers

- CITC reserves the right to make changes to this document and its products and specifications at any time without notice.
- Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- CITC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does CITC assume any liability for application assistance or customer product design.
- CITC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.
- No license is granted by implication or otherwise under any intellectual property rights of CITC.
- CITC products are not authorized for use as critical components in life support devices or systems without express written approval of CITC.

http://www.citcorp.com.tw/

Tel:886-3-5600628

Fax:886-3-5600636

Add:Rm. 3, 2F., No.32, Taiyuan St., Zhubei City, Hsinchu County 302, Taiwan (R.O.C.)

Document ID : DS-11K81 Issued Date : 2010/05/05 Revised Date : 2012/05/31

Revision: C