

- Ideal for 433.92 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Rugged, Hermetic, Low Profile TO-39 Package

SR433

Absolute Maximum Rating (Ta=25°C)								
Parameter		Rating	Unit					
CW RF Power Dissipation	Р	0	dBm					
DC Voltage	V _{DC}	±30	V					
Operating Temperature Range	T_{A}	-10 ~ +60	°C					
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C					

Electronic Characteristics							
	Parameter	Sym	Minimum	Typical	Maximum	Unit	
Frequency (25°C)	Nominal Frequency	f_C	NS	433.92	NS	MHz	
	Tolerance from 433.92 MHz	Δf_C	-	-	± 75	KHz	
Insertion Loss		IL	-	1.5	2.2	dB	
Quality Factor	Unloaded Q-Value	Q_U	-	11,600	-	-	
	50Ω Loaded Q-Value	Q_L	-	1,850	-	-	
Temperature Stability	Turnover Temperature	T_{O}	25	-	55	°C	
	Turnover Frequency	f_{O}	-	fc	-	KHz	
	Frequency Temperature Coefficient	FTC	-	-0.032	-	ppm/°C2	
Frequency Aging	Absolute Value during the First Year	$ f_A $	=	-	10	ppm/yr	
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ	
RF Equivalent RLC Model	Motional Resistance	R_{M}	-	19.0	29.0	Ω	
	Motional Inductance	L_M	-	80.7885	-	μН	
	Motional Capacitance	C_M	-	1.6669	-	fF	
	Pin 1 to Pin 2 Static Capacitance	Co	1.65	1.95	2.25	pF	

NS = Not Specified

Notes:

- 1. The center frequency, $f_{\rm C}$ is measured at the minimum IL point with the resonator in the 50Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25$ °C \pm 2°C.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 \left[1 FTC \left(T_0 T_C \right)^2 \right]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.

- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW)
 component(s) per se, not for applications, processes and circuits
 implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

Phone: +86 (10) 5820-3910

Fax: +86 (10) 5820-3915

Email: sales@vanlong.com

Web: http://www.vanlong.com

Package Dimensions (TO-39)

Marking

Laser or Ink Marking

Line 1: Part number Line 2: Date code

Typical Application Circuit

Low Power Transmitter Application

Typical Frequency Response

Electrical Connections

Terminals	ninals Connection 1 Input/ Output 2 Output/ Input	
1		
2		
3	Case-Ground	

Package Dimensions

Dimensions	Nom (mm)			
Dimensions	Min	Max		
Α	9.10	9.50		
В	3.20	3.60		
С	2.80	3.20		
D	Ф0.25	Ф0.65		
E	4.98	5.18		
F	2.54 Nominal			
G	0.4	0.5		

Equivalent LC Model and Test Circuit

Local Oscillator Application

Temperature Characteristics

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 (10) 5820-3910

Fax: +86 (10) 5820-3915

Email: sales@vanlong.com

Web: http://www.vanlong.com