

MODEL: ST5461B02-3

Ver. 1.1

Date: 26.Apr.2013

Customer's	Approval	сѕот	
Signature	Date	Approved By Product Director	Date
		Name: Albert Hu	
		Signature:	
		Reviewed By PM Manager	Date
		Name: Aaron Tu	
		Signature:	
		Reviewed By Project Leader	Date
		Name: Hank Hu	
		Signature:	
		Reviewed By PM	Date
		Name: Julie Wu	
		Signature:	

Contents

1. General Description	4
1.1 Product Features	4
1.2 Overview	4
1.3 General Information	4
2. Absolute Maximum Ratings	5
2.1 Absolute Maximum Ratings ($T_A = 25 \pm 2$ °C)	5
2.2 Environment Requirement (Based on CSOT Module MT5461B02-1)	5
2.3 Absolute Ratings of Environment (Open Cell)	
3. Electrical Specification	6
3.1 Open Cell Power Consumption (TA = 25 ± 2 °C)	6
3.2 LVDS Characteristics	7
4. Input Terminal Pin Assignment	8
4.1 Interface Pin Assignment	8
4.3 LVDS Interface	
4.3.1 VESA Format (SELLVDS = H)	11
4.3.2 JEIDA Format (SELLVDS = L or Open)	
5. Interface Timing.	13
5.1 Timing Table (DE Only Mode)	13
5.2 Power On/Off Sequence	
6. Optical Characteristics	
6.1 Measurement Conditions	18
6.2 Optical Specifications	19
7. Mechanical Characteristics	24
7.1 Mechanical Specification	24
7.2 Packing	25
7.2.1 Packing Specifications	25
7.2.2 Packing Method	25
8.1 Open Cell Label	26
8.2 Carton Label	26
8.3 Pallet Label	27
9. Precautions	28
9.1 Assembly and Handling Precautions	28
9.2 Safety Precautions	28

Revision History

Version	Date	Page	Section	Description	Revision by
Ver.1.1	26.Apr.2013	28	All	Preliminary Specification was First Issued	Julie Wu

1. General Description

1.1 Product Features

-FHD Resolution (1920 x 1080)

-Very High Contrast Ratio: 4000:1

-Fast Response Time

-Ultra Wide Viewing Angle: 178° (H)/178° (V) (CR≥10)

-DE (Data Enable) Mode

-LVDS (Low Voltage Differential Signaling) Interface

1.2 Overview

ST5461B02-3 is a diagonal 54.6" color active matrix LCD open cell whit 2ch-LVDS interface. This open cell is a transmissive type display operating in the normally black mode. It supports 1920 x 1080 FHD resolution and can display up to 16.7M colors (8bit). Each pixel is divided into Red, Green and Blue sub-pixels which are arranged in vertical stripe.

This open cell dedicates for LCD TV products and provides excellent performance which includes high brightness, ultra wide viewing angle, high color saturation and high color depth. CSOT open cell comply with ROHS for identification.

1.3 General Information

Item	Specification	Unit	Note
Active Area	1209.6 (H) * 680.4 (V)	mm	
Cell Size	1223.6 (H) * 697.1 (V) * 1.75 (D)	mm	
Weight	3.5	kg	Max.
Driving Scheme	a-Si TFT Active Matrix	1	
Number of Pixels	1920 * 1080	pixel	
Pixel Pitch (Sub Pixel)	0.21 * 0.63	mm	
Pixel Arrangement	RGB Vertical Stripe	-	
Display Colors	16.7 M	color	8bit
Display Mode	Transmissive Mode, Normally Black	-	
Glass Thickness (Array/CF)	0.7	mm	
Color Chromaticity	R = (0.638, 0.335) G = (0.321, 0.630) B = (0.157, 0.052) W = (0.280, 0.290)		Typical value measured at CSOT's
Contrast Ratio	4000:1(Typ.)		module MT5461B02-1'BLU
Cell Transmittance 5.96(Typ.)			
View Angle (CR≥10)	+89/-89 (H), +89/-89 (V) (Typ.)		
Polarizer (CF side)	Anti-glare, Haze 2%, Hard Coating (3H)		
Polarizer (TFT side)	Hard Coating (3H)		

2. Absolute Maximum Ratings

2.1 Absolute Maximum Ratings ($T_A = 25 \pm 2$ °C)

The followings are maximum values which, if exceeded, may cause damage to the unit.

Item	Symbol	Va	Unit		
Item	Symbol	Min.	Max.	Oilit	
Power Supply Voltage	V_{CC}	-0.3	13.8	V	
Input Signal Voltage	V _{IN}	-0.3	3.6	V	

2.2 Environment Requirement (Based on CSOT Module MT5461B02-1'BLU)

(1) Temperature and relative humidity range are shown as below.

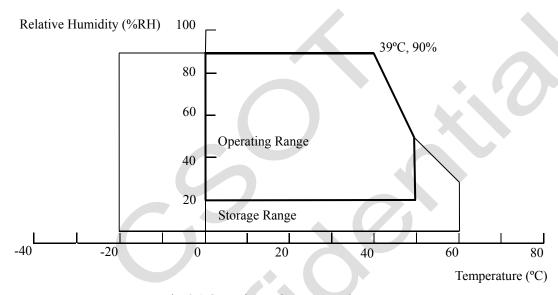


Fig. 2.1 Operating and storage environment

- (a) 90%RH maximum ($T_A \le 39$ °C).
- (b) Wet-bulb temperature should be 39°C maximum ($T_A > 39$ °C).
- (c) No condensation.
- (2) The storage temperature is between 20 °C to 60 °C, and the operating ambient temperature is between 0 °C to 50 °C. The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65°C with LCD module in a temperature controlled chamber alone. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65°C. The range of operating temperature may degrade in case of improper thermal management in the end product design.
- (3) The rating of environment is based on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

2.3 Absolute Ratings of Environment (Open Cell)

When storing open cell as spares for a long time, please follow the precaution instructions:

- (1) Do not store the module in high temperature and high humidity for a long time. It is highly recommended to store the module with temperature from 20°C to 30°C in normal humidity ($50 \pm 10\%$ RH) with shipping package.
- (2) The open cell should be keep within one month shelf life.

3. Electrical Specification

3.1 Open Cell Power Consumption (TA = 25 \pm 2 °C)

Parameter		Crimbal	Value			Unit	Note
		Symbol	Min.	Тур.	Max.	Onit	Note
Power Supply Vol	tage	V _{CC}	10.8	12.0	13.2	V	(1)
Rush Current		I_{RUSH}	-	-	2.5	A	(2)
Dawar Cumply	White Pattern	I_{CC}	-	0.45	0.59	A	
Power Supply	Horizontal Stripe	I_{CC}	-	1.1	1.43	A	(3)
Current	Black Pattern	I_{CC}	-	0.46	0.6	A	
CMOS Interface	Input High Threshold Voltage	V_{IH}	2.7	-	3.3	V	
	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	

Note:

- (1) The ripple voltage should be controlled less than 10% of $V_{\rm CC}$.
- (2) Measurement condition: $V_{CC} = 12V$, Rising time = 470 μ s.

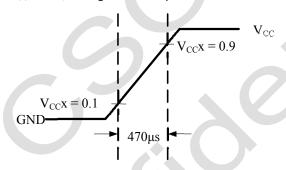



Fig. $3.1 V_{CC}$ rising time condition

(3) Measurement condition: $V_{CC} = 12V$, $Ta = 25 \pm 2^{\circ}C$, F = 60 Hz. The test patterns are shown as below.

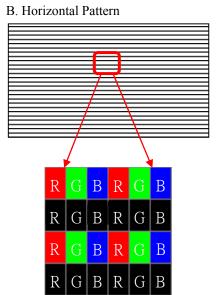


Fig. 3.2 Test patterns

3.2 LVDS Characteristics

Parameter		Cumbal		Value	Unit	Note		
		Symbol	Min.	Тур.	Max.	Oiiit	Note	
LVDS Interface	Differential Input High Threshold Voltage	V_{TH}	+100	-	-	mV		
	Differential Input Low Threshold Voltage	V_{TL}	ı	ı	-100	mV		
	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V	(1)	
	Differential Input Voltage	$ V_{ID} $	200	400	600	mV		
	Terminating Resistor	R_T	87.5	100	112.5	ohm		

Note:

(1) The LVDS input signal has been defined as follows:

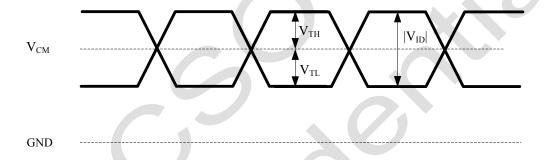


Fig. 3.3 LVDS input signal

4. Input Terminal Pin Assignment

4.1 Interface Pin Assignment

CN1: 187147-51221-3 (P-two) or equivalent (see Note (4))

Pin No.	Symbol	Description	Note
1	WP	Write Protect (High: Write Enable, Low or Open: Write Disable)	
2	SCL	I2C Serial Clock (for adjust VCOM)	(2)
3	SDA	I2C Serial Data (for adjust VCOM)	
4	N.C	No Connection	(1)
E	I /D O	Output Signal for Left Right Glasses Control	
5	L/R_O	(High: Left Glass turn on Low: Right glass turn on)	
6	N.C.	No Connection	
7	CELLVDC	Input Signal for LVDS Data Format Selection	(2)
7	SELLVDS	(High: VESA Format, Low or Open: JEIDA Format)	(3)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	(1)
11	GND	Ground	
12	ORX0-	Odd Pixel Negative LVDS Differential Data Input. Channel 0	
13	ORX0+	Odd Pixel Positive LVDS Differential Data Input. Channel 0	
14	ORX1-	Odd Pixel Negative LVDS Differential Data Input. Channel 1	
15	ORX1+	Odd Pixel Positive LVDS Differential Data Input. Channel 1	
16	ORX2-	Odd Pixel Negative LVDS Differential Data Input. Channel 2	
17	ORX2+	Odd Pixel Positive LVDS Differential Data Input. Channel 2	
18	GND	Ground	
19	OCLK-	Odd Pixel Negative LVDS Differential Clock Input	
20	OCLK+	Odd Pixel Positive LVDS Differential Clock Input	
21	GND	Ground	
22	ORX3-	Odd Pixel Negative LVDS Differential Data Input. Channel 3	
23	ORX3+	Odd Pixel Positive LVDS Differential Data Input. Channel 3	
24	N.C.	No Connection	(1)
25	N.C.	No Connection	(1)
26	20/20	Input Signal for 2D/3D Mode Selection	
26	2D/3D	(High: 3D Enable, LOW: 3D Disable)	
27	N.C.	No Connection	(1)
28	ERX0-	Even Pixel Negative LVDS Differential Data Input. Channel 0	
29	ERX0+	Even pixel Positive LVDS Differential Data Input. Channel 0	
30	ERX1-	Even Pixel Negative LVDS Differential Data Input. Channel 1	

31	ERX1+	Even Pixel Positive LVDS Differential Data Input. Channel 1	
32	ERX2-	Even Pixel Negative LVDS Differential Data Input. Channel 2	
33	ERX2+	Even Pixel Positive LVDS Differential Data Input. Channel 2	
34	GND	Ground	
35	ECLK-	Even Pixel Negative LVDS Differential Clock Input	
36	ECLK+	Even Pixel Negative LVDS Differential Clock Input	
37	GND	Ground	
38	ERX3-	Even Pixel Negative LVDS Differential Data Input. Channel 3	
39	ERX3+	Even Pixel Positive LVDS Differential Data Input. Channel 3	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	N.C.	No Connection	(1)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V Power Supply	
49	VCC	+12V Power Supply	
50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	
<i>J</i> 1	,	12 t Tomot Suppry	

Note:

- (1) For CSOT internal only, please let it open.
- (2) 3D Format: Default line by line.
- (3) High: connect to $+3.3V \rightarrow VESA$ Format; Low: connect to GND or Open \rightarrow JEIDA format.
- (4) The first LVDS data is ODD LVDS data.
- (5) The direction of pin assignment is shown as below:

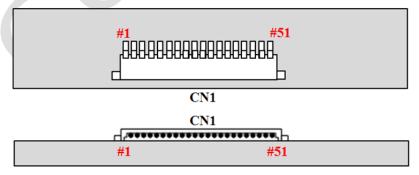


Fig. 4.1 LVDS connector direction sketch map

CN6: 0-12002024-5 (XINDAYITONG) or equivalent (see note)

	Control board to Converter						
Pin NO.	Symbol	Feature					
1	VSYNC	VSYNC					
2	2D/3D	ON/OFF,Low:2D,High,3D					
3	NC	No Connection					
4	NC	No Connection					
5	NC	No Connection					
6	GND	Ground					
7	NC	No Connection					
8	NC	No Connection					
9	NC	No Connection					
10	NC	No Connection					
11	NC	No Connection					
12	NC	No Connection					

Note:

The direction of pin assignment is shown as below:

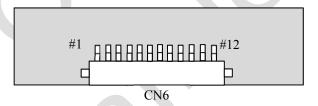


Fig. 4.2 converter connector direction sketch map

4.2 Block Diagram of Interface

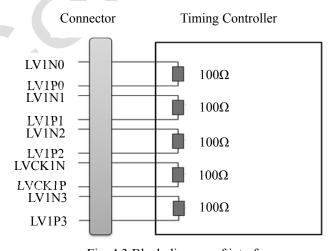


Fig. 4.3 Block diagram of interface

Attention:

- (1) This open cell uses a 100 ohms (Ω) resistor between positive and negative lines of each receiver input.
- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line respectively.

4.3 LVDS Interface

4.3.1 VESA Format (SELLVDS = H)

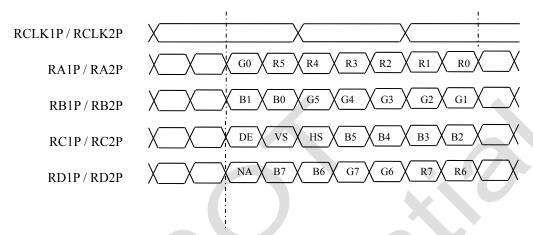


Fig. 4.4 VESA format

4.3.2 JEIDA Format (SELLVDS = L or Open)

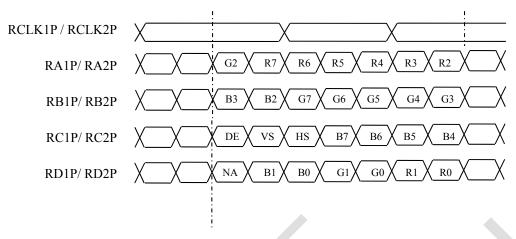


Fig. 4.5 JEIDA format

4.4 Pattern FOR V-com Adjustment

Dot - inversion pattern

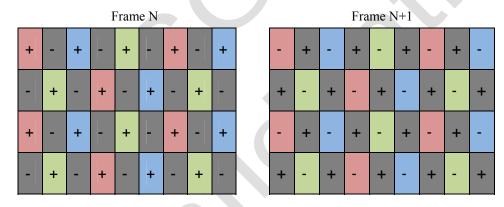


Fig. 4.6 Pattern for V-com adjustment

5. Interface Timing

5.1 Timing Table (DE Only Mode)

Signa	1	Item	Symbol	Min.	Тур.	Max.	Unit	Note
		Frequency	F_{CLK} (=1/ T_{CLK})	60	74.25	77	MHz	(2)
LVDS	\$	Input cycle to cycle jitter	T_{rel}	I		200	ps	(3)
Receiver (Clock	Spread spectrum modulation range	F_{clkin_mod}	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)
		Spread spectrum modulation frequency	F_{SSM}			200	KHz	
LVDS Receiver		Receiver Skew Margin	T_{RSM}	-400	_	400	ps	(5)
Frame R	oto	2D Mode	F	48	60	62.5	Hz	
riaine K	ate	3D Mode	F	60	60	60	Hz	(7)
	2D	Total	TV	1115	1125	1380	TH	TV = TVD +TVB
		Display	TVD		1080		TH	
Vertical		Blank	TVB	35	45	300	TH	
Term		Total	TV		1125		TH	
	3D	Display	TVD		1080		TH	(6),(8)
		Blank	TVB		45		TH	
	25	Total	TH	1050	1100	1150	TCLK	TH = THD + THB
	2D	Display	THD		960		TCLK	
Horizontal Term		Blank	THB	90	140	190	TCLK	
	3D	Total	TH	1050	1100	1150	TCLK	TH = THD + THB
		Display	THD		960		TCLK	
		Blank	THB	90	140	190	TCLK	

Notes

(2) Please make sure the range of pixel clock follows the following equations:

 $Fclkin(max) \ge Fmax \times Tv \times Th$ $Fmin \times Tv \times Th \ge Fclkin(min)$

⁽¹⁾ The The TFT LCD open cell is operated in DE only mode, H sync and V sync input signal have no effect on normal operation.

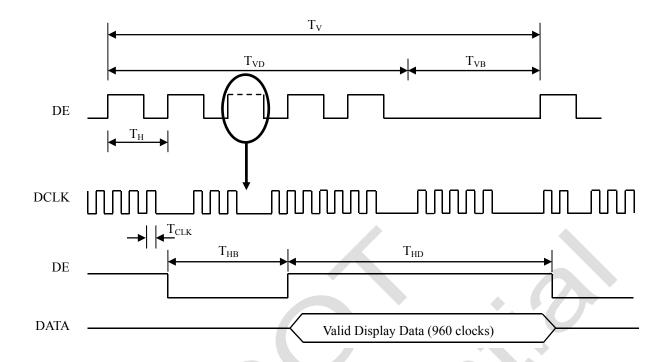


Fig. 5.1 Interface signal timing diagram

(3)The input clock cycle-to-cycle is defined as below figures.

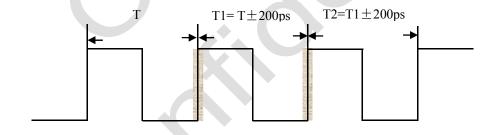
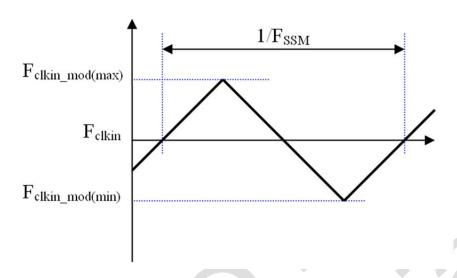



Fig. 5.2 Jitter

(4) The SSCG (Spread Spectrum Clock Generator) is defined as the following figure.

(5) The LVDS timing diagram and setup/hold time is defined and showed as the following figure

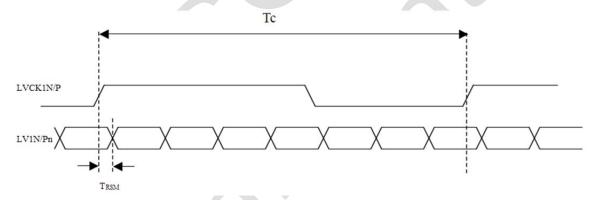


Fig.5.3 LVDS receive interface timing diagram

- (6) Please fix the vertical timing in 3D mode. (Vertical Total =1125/ Display =1080/Blank=45)
- (7) In 3D mode, the setup F should be in Typ. In order to ensure that the eclectic function performance to avoid no display symptom. (Except picture quality symptom)
- (8) In 3D mode, the setup Tv and Tvb should be in Typ. In order to ensure that the electric function performance to avoid no display symptom. (Except picture quality symptom)

5.2 Power On/Off Sequence

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

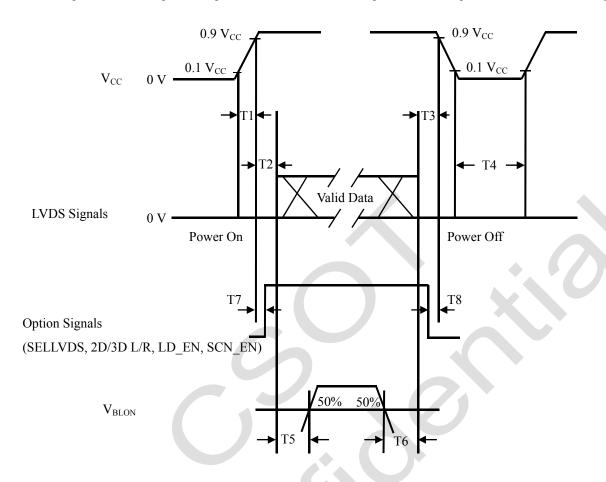


Fig.5.4 Power on/off sequence

Doromotor		Unit		
Parameter	Min.	Тур.	Max.	Onit
T1	0.5	-	10.0	ms
T2	0.0	-	-	ms
Т3	0.0	1	-	ms
T4	1000.0	1	-	ms
T5	500.0	-	-	ms
Т6	100.0	1	-	ms
Т7	-	-	T2	ms
Т8	-	-	Т3	ms

Attention:

- (1) The supply voltage of the external system for the open cell input should follow the definition of Vcc.
- (2) When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case that V_{CC} is in off level, please keep the level of input signals on the low or high impedance. If T2 < 0, that may cause electrical overstress.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

6. Optical Characteristics

6.1 Measurement Conditions

The table below is the test condition of optical measurement.

Item	Symbol	Value	Unit		
Ambient Temperature	T_{A}	25 ± 2	°C		
Ambient Humidity	H_A	50 ± 10	%RH		
Supply Voltage	V_{CC}	12	V		
Driving Signal	Refer to the typical value in Chapter 3: Electrical Specification				
Vertical Refresh Rate F _R		120	Hz		

To avoid abrupt temperature change during optical measurement, it's suggested to warm up the LCD module more than 60 minutes after lighting the backlight and in the windless environment.

To measure the LCD cell, it is suggested to set up the standard measurement system as Fig. 6.1. The measuring area S should contain at least 500 pixels of the LCD cell as illustrated in Fig.6.2 (A means the area allocated to one pixel). In this model, for example, the minimum measuring distance Z is 370mm when θ is 2 degree. Hence, 500mm is the typical measuring distance. This measuring condition is referred to 301-2H of VESA FPDM 2.0 about viewing distance, angle, and angular field of view definition.

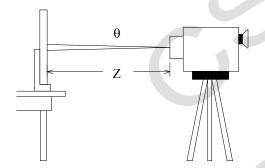


Fig. 6.1 The standard set-up system of measurement

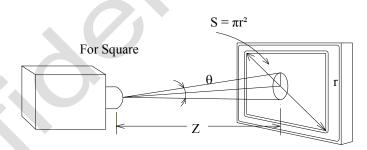


Fig. 6.2 The area S contains at least 500 pixels to be measured

$$N = \frac{S}{A} \geqslant 500 \text{ pixels}$$

N means the actual number of the pixels in the area S.

6.2 Optical Specifications

The table below of optical characteristics is measured by MINOLTA CS2000, MINOLTA CA310, ELDIM OPTI Scope-SA and ELDIM EZ contrast in dark room.

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Static Contrast Ratio		CR		-	4000	-	-	(1) (2)
Response Time		$T_{\rm L}$		-	6.5	12	ms	(3)
Center Transmittance		Т%		-	5.96		%	(2) (4)
G !!		CT-2D		-	-	4%	-	(2) (5)
Crosstaik	Crosstalk			-	3.5%	-	-	(6)
	Red	R_X	θ_{H} = 0°, θ_{V} = 0° Normal direction at center point with CSOT's module: MT5461B02-1'BLU		0.638	Typ.	-	(2) (7)
		R _Y			0.335			
	Green	G_X			0.321			
Color		G_{Y}		Тур.	0.630			
Chromaticity	Blue	B_X		- 0.03	0.157	+ 0.03	-	(2) (7)
(CIE1931)		B _Y			0.050		-	
	White	W_X			0.280		-	
		W _Y			0.290		-	
	Color Gamut	CG			72	-	% NTSC	
Viewing Angle	Horizontal	θ_{H^+}	CR≥10	1	89	-	Deg.	(8)
		$\theta_{ ext{H-}}$		-	89	-		
	Vertical	θ_{V^+}		-	89	-		
		$\theta_{ ext{V-}}$		-	89	-		

Note:

(1) Definition of static contrast ratio (CR):

It's necessary to switch off all the dynamic and dimming function when measuring the static contrast ratio.

Static Contrast Ratio (CR) =
$$\frac{\text{CR - W}}{\text{CR - D}}$$

CR-W is the luminance measured by LMD (light-measuring device) at the center point of the LCD module with full-screen displaying white. The standard setup of measurement is illustrated in Fig. 6.3; CR-D is the luminance measured by LMD at the center point of the LCD module with full-screen displaying black. The LMD in this item is CS2000.

(2) The LMD in the item could be a spectroradiometer such as (KONICA MINOLTA) CS2000, CS1000 (TOPCON), SR-UL2 or the same level spectroradiometer. Other display color analyzer (KONICA MINOLTA) CA210, CA310 or (TOPCON) BM-7 could be involved after being calibrated with a spectroradiometer on each stage of a product.

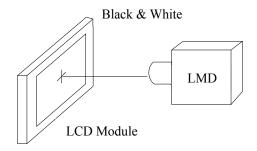


Fig. 6.3 The standard setup of CR measurement

(3) Response time T_L is defined as the average transition time in the response time matrix. The table below is the response time matrix in which each element $t_{X \text{ to } Y}$ is the transition time from luminance ratio X to Y. X and Y are two different luminance ratios among 0%, 25%, 50%, 75%, and 100% luminance. The transition time $t_{X \text{ to } Y}$ is defined as the time taken from 10% to 90% of the luminance difference between X and Y (X < Y) as illustrated in Fig.6.4. When X > Y, the definition of $t_{X \text{ to } Y}$ is the time taken from 90% to 10% of the luminance difference between X and Y. The response time is optimized on refresh rate $F_r = 60$ Hz.

Measured		Luminance Ratio of Previous Frame				
Transition	n Time	0%	25%	50%	75%	100%
	0%		t _{25% to 0%}	t _{50% to 0%}	t _{75% to 0%}	t _{100% to 0%}
Luminance Ratio of Current Frame	25%	t _{0% to 25%}		t _{50% to 25%}	t _{75% to 25%}	t _{100% to 25%}
	50%	t _{0% to 50%}	t _{25% to 50%}		t _{75% to 50%}	t _{100% to 50%}
	75%	t _{0% to 75%}	t _{25% to 75%}	t _{50% to 75%}		t _{100% to 75%}
	100%	t _{0% to 100%}	t _{25% to 100%}	t _{50% to 100%}	t _{75% to 100%}	

 $t_{X \text{ to } Y}$ means the transition time from luminance ratio X to Y.

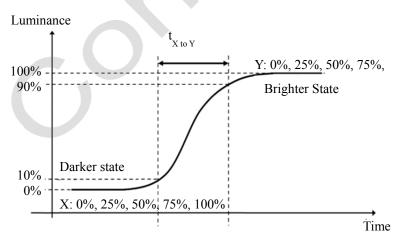


Fig. 6.4 The definition of $t_{X \text{ to } Y}$

All the transition time is measured at the center point of the LCD module by ELDIM OPTI Scope-SA.

(4) Definition of center Transmittance (T %):

The transmittance is measured with full white pattern (Gray 255)

(5) Definition of the 2D mode crosstalk(CT-2D):

YA = Luminance of measured location without gray level 1023 pattern (cd/m²)

YB = Luminance of measured location with gray level 1023 pattern(cd/m^2)

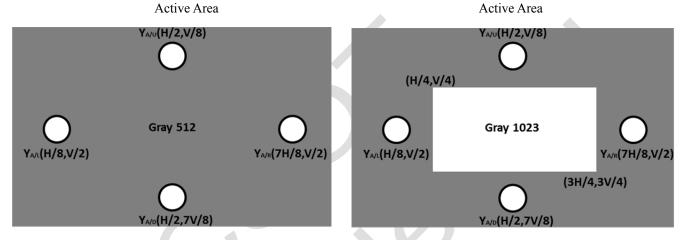


Fig. 6.5 The definition of 2D mode crosstalk

(6) Definition of the 3D mode performance:

Test pattern

Pattern	Left eye image	Right eye image	remark
WW			Left eye image: L255 Right eye image:L255 L(WW) is denoted as the luminance of "WW"
WB			Left eye image: L255 Right eye image:L0 L(WB) is denoted as the luminance of "WB"
BW			Left eye image: L0 Right eye image:L255 L(BW) is denoted as the luminance of "BW"
ВВ			Left eye image: L0 Right eye image:L0 L(BB) is denoted as the luminance of "BB"

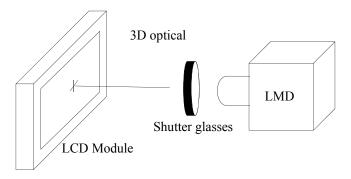


Fig. 6.6 The standard setup of 3D optical measurement

Measure the center point of the LCD module through the shutter glasses under 3D mode operation. The standard of measurement is illustrated Fig. 6.6.

The 3D luminance (Lw-3D) is the luminance measured by LMD with well controlled shutter glasses at the center point of the LCD module with test pattern L(WW).

The 3D crosstalk is measured at the center point of the LCD module through right-eye glasses.

Definition of the 3D mode crosstalk:
$$CT-3D = \frac{L(WB) - L(BB)}{L(BW) - L(BB)}$$

(7) Definition of color chromaticity:

Each chromaticity coordinates (x, y) are measured in CIE1931 color space when full-screen displaying primary color R, G, B and white. The color gamut is defined as the fraction in percent of the area of the triangle bounded by R, G, B coordinates and the area is defined by NTSC 1953 color standard in the CIE color space. Chromaticity coordinates are measured by CS2000 and the standard setup of measurement is shown in Fig. 6.7.

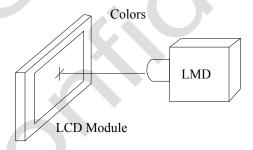


Fig. 6.7 The standard setup of color chromaticity measurement

(8) Definition of viewing angle coordinate system (θ_H , θ_V):

The contrast ratio is measured at the center point of the LCD module. The viewing angles are defined at the angle that the contrast ratio is larger than 10 at four directions relative to the perpendicular direction of the LCD module (two vertical angles: up θ_{V^+} and down θ_{V^-} ; and two horizontal angles: right θ_{H^+} and left θ_{H^-}) as illustrated in Fig. 6.8. The contrast ratio is measured by ELDIM EZ Contrast.

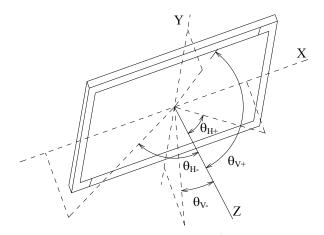
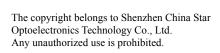
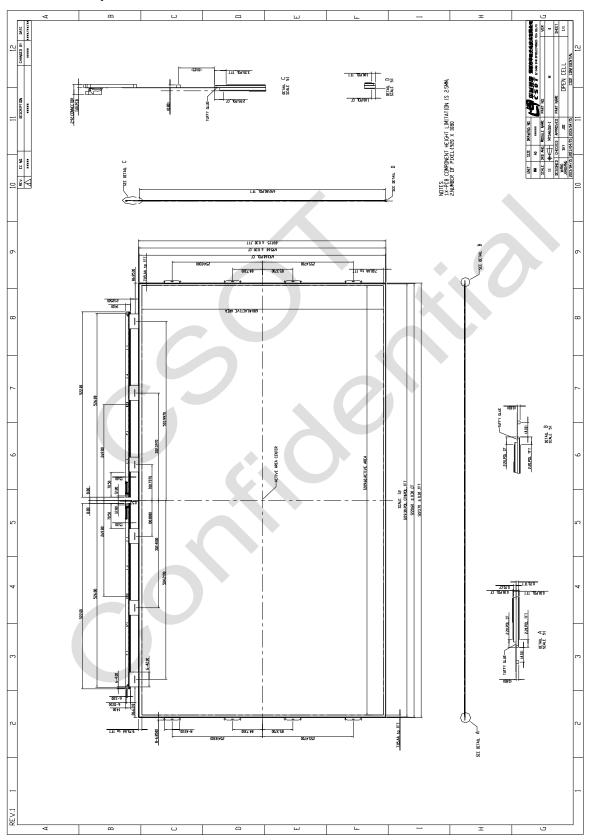




Fig. 6.8 Viewing angle coordination system

7. Mechanical Characteristics

7.1 Mechanical Specification

7.2 Packing

7.2.1 Packing Specifications

Itama	Specification					
Item	Quantity	Dimension (mm)	Weight (kg)			
Packing Box	6 pcs/box	1380 (L) * 1080 (W) * 131 (H)	Net Weight: 21 (Max.)			
			Gross Weight: 27.26 (Max.)			
Pallet	1	1420 (L) * 1120 (W) * 150 (H)	Net Weight: 32			
Stack Layer	9					
Boxes per Pallet	9					
Pallet after Packing	54 pcs/pallet	1420 (L) * 1120 (W) * 1049 (H)	Gross Weight: 280			

7.2.2 Packing Method

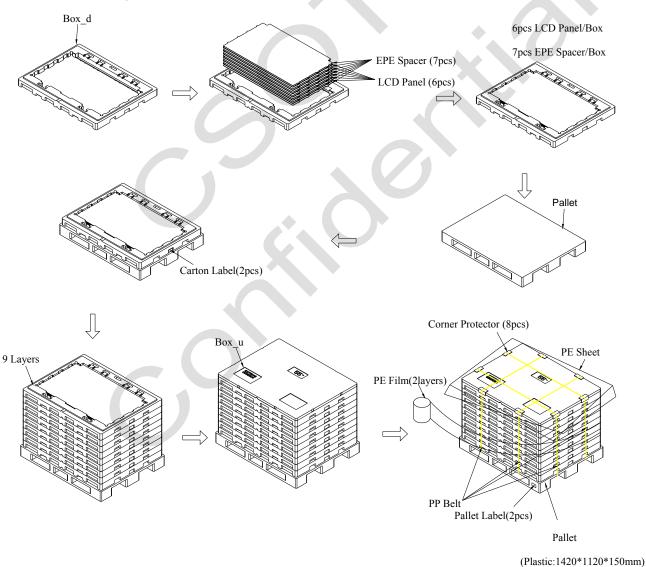
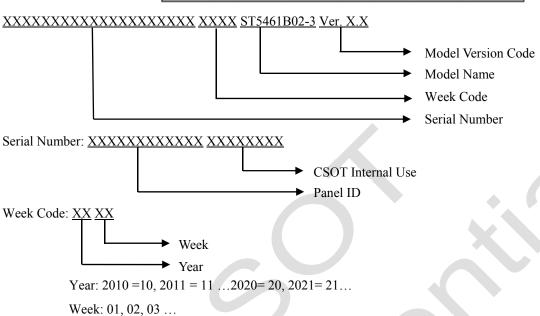
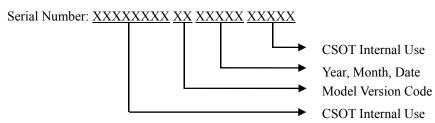



Fig. 7.1 Packing method (protector film stick on the front of the LCD module)

8. Definition of Labels

8.1 Open Cell Label


Model Name: ST5461B02-3

Ver.X.X: Version, for example: 0.1, 0.2, ..., 1.1, 1.2, ..., 2.1, 2.2, ...

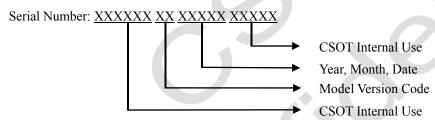
8.2 Carton Label

For RoHS compliant products, CSOT will add RoHS for identification.

Manufactured Date:

Year: 2010 = 10, 2011 = 11...2020 = 20, 2021 = 21...

Month: 1~9, A~C, for Jan. ~ Dec.


Date: 01~31, for 1st to 31st

Model Version Code: Version of product, for example: 01, 02, 11, 12...

8.3 Pallet Label

Model Name: ST5461B02-3

9. Precautions

9.1 Assembly and Handling Precautions

- (1) Do not apply rough force such as bending or twisting to the open cell during assembly.
- (2) It is recommended to assemble or install a open cell into the user's system in clean working areas. The dust and oil may cause electrical shorter damage the polarizer.
- (3) Do not apply pressure or impulse to the open cell to prevent the damage to the open cell.
- (4) Always follow the correct power-on sequence. This can prevent the damage and latch-up to the LSI chips.
- (5) Do not plug in or pull out the interface connector while the open cell is in operation.
- (6) Use soft dry cloth without chemicals for cleaning because the surface of polarizer is very soft and easily be scratched.
- (7) Moisture can easily penetrate into the open cell and may cause the damage during operation.
- (8) High temperature or humidity may deteriorate the performance of the open cell. Please store open cell in the specified storage conditions.
- (9) When ambient temperature is lower than 10 °C, the display quality might be deteriorated. For example, the response time will become slow.

9.2 Safety Precautions

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the open cell end of life, it is not harmful in case of normal operation and storage.