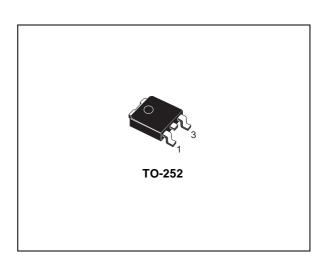


STD36NH02L

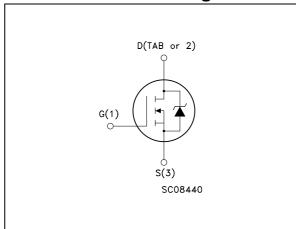
N-channel 24V - 0.011Ω - 30A - DPAK STripFET™ III Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STD36NH02L	24V	<0.0145Ω	30A ⁽¹⁾


- 1. Guaranteed when external Rg=4.7 Ω and $t_f < t_{fmax}$
- R_{DS(on)} * Q_g industry's benchmark
- Conduction losses reduced
- Switching losses reduced

Description


This series of products utilizes the last advanced design rules of ST's proprietary STripFET™ technology. This is suitable for the most demanding DC-DC converter application where high efficiency is to be achieved.

Applications

■ Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging	
STD36NH02L	D36NH02L	DPAK	Tape & reel	

Contents STD36NH02L

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuit	8
4	Package mechanical data	9
5	Packaging mechanical data	. 11
6	Revision history	12

STD36NH02L Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{spike} (1)	Drain-source voltage rating	30	V
V _{DS}	Drain-Source Voltage (V _{GS} = 0)	24	V
V _{GS}	Gate-Source Voltage	± 20	V
I _D ⁽²⁾	Drain Current (continuous) at T _C = 25°C	30	Α
I _D	Drain Current (continuous) at T _C =100°C	30	Α
I _{DM} ⁽³⁾	Drain Current (pulsed)	120	Α
P _{TOT}	Total Dissipation at T _C = 25°C	45	W
	Derating Factor	0.27	W/°C
E _{AS} (4)	Single pulse avalanche energy	200	mJ
T _J T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 175	°C

- 1. Guaranteed when external Rg=4.7 Ω and $t_{\rm f}$ < $t_{\rm fmax}$
- 2. Value limited by wire bonding
- 3. Pulse width limited by safe operating area.
- 4. Starting Tj=25°C, $I_D=19A$, $V_{DD}=18V$

Table 2. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case Max	3.33	°C/W
R _{thj-amb}	Thermal resistance junction-ambient Max	100	°C/W
T _I	Maximum lead temperature for soldering purpose	275	°C

Electrical characteristics STD36NH02L

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1$ mA, $V_{GS} = 0$	24			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 20V, V _{DS} = 20V @125°C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.8	2.5	V
R _{DS(on)}	Static Drain-Source On Resistance	V_{GS} = 10V, I_{D} = 15A V_{GS} = 5V, I_{D} = 15A		0.011 0.013	0.0145 0.026	Ω

Table 4. Dynamic

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =10V, I _D = 15A		18		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output Capacitance Reverse transfer capacitance	V _{DS} =15V, f=1 MHz, V _{GS} =0		860 255 45		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$0.44V \le V_{DD} \le 10V$, $I_D = 30A$, $V_{GS} = 10V$ (see Figure 14)		15.5 4.1 1.7	20	nC nC nC
Q _{OSS} (2)	Output charge	V _{DS} =16V, V _{GS} =0		6		ns
R _G	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20mV open drain		3		Ω

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

^{2.} $Q_{oss} = C_{oss}^* \Delta V_{IN}$, $C_{oss} = C_{gd} + C_{ds}$

Table 5. Switching times

Symbol	Parameter	Test condictions	Min	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} =10V, I_D = 15A, R_G =4.7 Ω , V_{GS} =10V (see Figure 13)		8 70 22 15		ns ns ns

Table 6. Source drain diode

Symbol	Parameter	Test condictions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				30	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				120	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 15A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 30A,di/dt = 100A/ μ s, V_{DD} =15V, Tj=150°C (see Figure 15)		24 16 1.3		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Electrical characteristics STD36NH02L

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

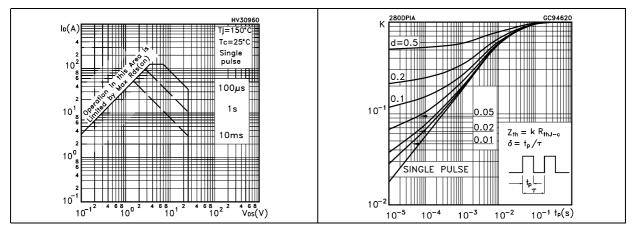


Figure 3. Output characterisics

Figure 4. Transfer characteristics

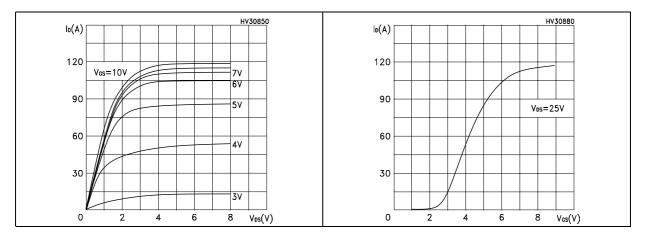
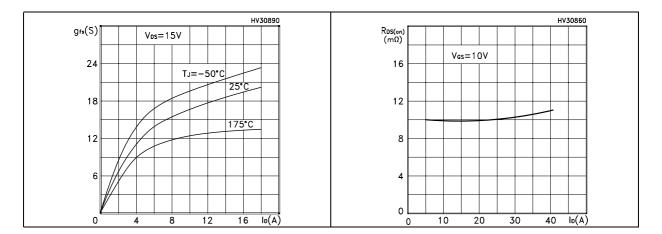



Figure 5. Transconductance

Figure 6. Static drain-source on resistance

6/13

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

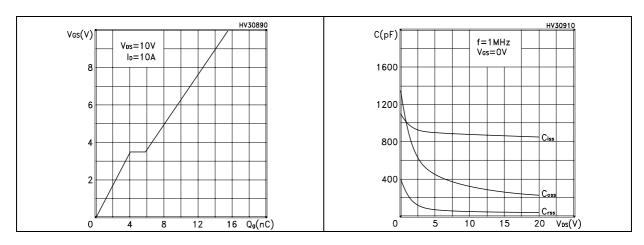
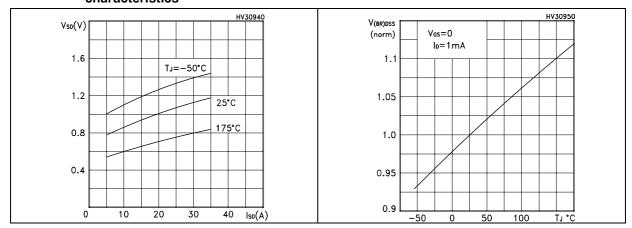



Figure 9. Normalized gate threshold voltage Figure 10. Normalized on resistance vs vs temperature temperature

temperature HV30930 HV30920 Vcs(th) (norm) Ros(on) V_{GS}=10V ID=10A V_{DS}=V_{GS} I_D=250μA 1.8 1.0 1.4 8.0 1.0 0.6 0.6 0.4 0.2 -50 0 50 100 TJ(°C) 0 50 100 TJ(°C)

Figure 11. Source-drain diode forward characteristics

Figure 12. Normalized B_{VDSS} vs temperature

Test circuit STD36NH02L

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

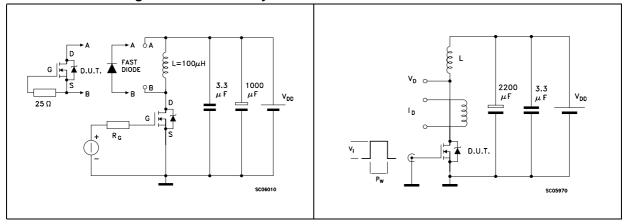
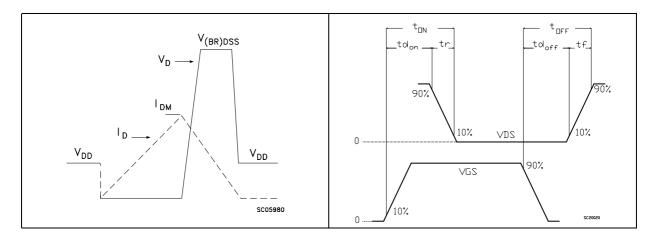
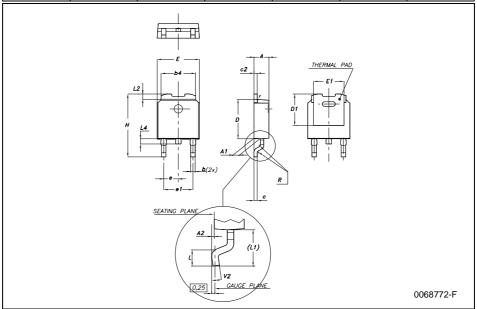



Figure 17. Unclamped inductive waveform

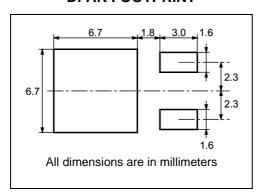
Figure 18. Switching time waveform

5/


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:: www.st.com

577


DPAK MECHANICAL DATA

DIM	mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		2.28			0.090	
e1	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

Revision history STD36NH02L

6 Revision history

Table 7. Revision history

Date	Revision	Changes
27-Apr-2006	1	First Release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

