

STGWA40H60DLFB

Trench gate field-stop IGBT, HB series 600 V, 40 A high speed in a TO-247 long leads package

Datasheet - production data

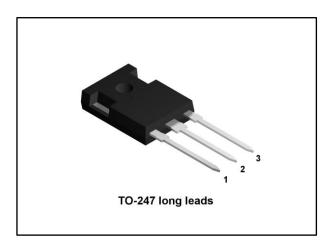
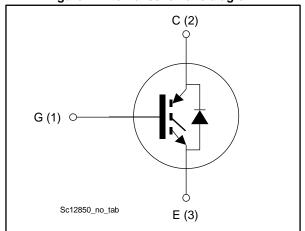



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: V_{CE(sat)} = 1.6 V (typ.)
 @ I_C = 40 A
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance
- Low V_F soft recovery co-packaged diode

Applications

- Induction heating
- Microwave oven
- Resonant converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive V_{CE(sat)} temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packaging
STGWA40H60DLFB	G40H60DLFB	TO-247 long leads	Tube

Contents STGWA40H60DLFB

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	11
4	Packag	e mechanical data	12
	4.1	TO247 long leads package mechanical data	12
5	Revisio	n history	14

STGWA40H60DLFB Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	600	V
lc	Continuous collector current at T _C = 25 °C	80	Α
lc	Continuous collector current at T _C = 100 °C	40	Α
ICP ⁽¹⁾	Pulsed collector current	160	Α
V_{GE}	Gate-emitter voltage	±20	V
l _F	Continuous forward current at T _C = 25 °C	80	Α
l _F	Continuous forward current at T _C = 100 °C	40	Α
I _{FP} ⁽¹⁾	Pulsed forward current	160	Α
Ртот	Total dissipation at T _C = 25 °C	283	W
T _{STG}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	0.53	°C/W
RthJC	Thermal resistance junction-case diode	1.47	°C/W
RthJA	Thermal resistance junction-ambient	50	°C/W

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by maximum junction temperature.

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 2 \text{ mA}$	600			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$		1.6	2	
V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 125 °C		1.7		V	
	voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 175 °C		1.8		
		I _F = 40 A		1.55	1.8	
V_{F}	Forward on-voltage	I _F = 40 A, T _J = 125 °C		1.3		V
		I _F = 40 A, T _J = 175 °C		1.25		
$V_{GE(th)}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 600 V			25	μΑ
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

Table 5: Dynamic characteristics

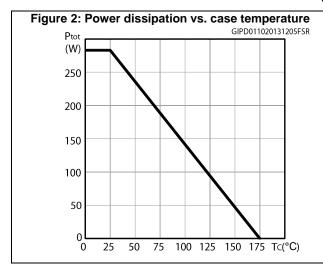
- mail of 2 y mail of one of the original						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance	.,,	ı	5412	1	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 15 V	-	198	-	pF
Cres	Reverse transfer capacitance	VOL = 10 V	-	107	-	
Q_g	Total gate charge	Vcc = 520 V, Ic = 40 A,	ı	210	ı	
Q_ge	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 27: "Gate</i>		39	ı	nC
Qgc	Gate-collector charge	charge test circuit")	-	82	-	

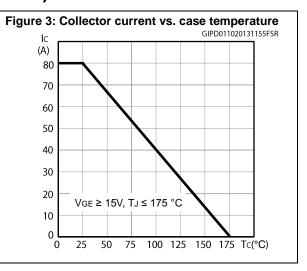
Table 6: IGBT switching characteristics (inductive load)

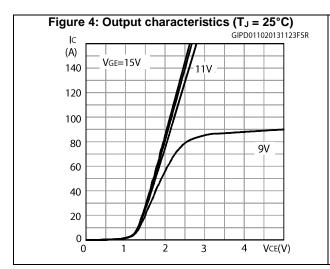
Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off delay time	V _{CE} = 400 V, I _C = 40 A,	ı	142	ı	ns
t _f	Current fall time	$V_{GE} = 15 \text{ V}, R_G = 10 \Omega$ (see Figure 25: "Test circuit	ı	27.6	ı	ns
E _{off} ⁽¹⁾	Turn-off switching energy	for inductive load switching")	ı	363	ı	μJ
t _{d(off)}	Turn-off delay time	V _{CE} = 400 V, I _C = 40 A,	-	141		ns
t _f	Current fall time	V_{GE} = 15 V, R _G = 10 Ω, T _L = 175 °C	-	61	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	(see Figure 25: "Test circuit for inductive load switching")	-	764	-	μJ

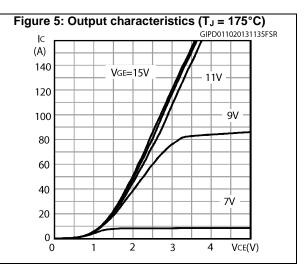
Notes:

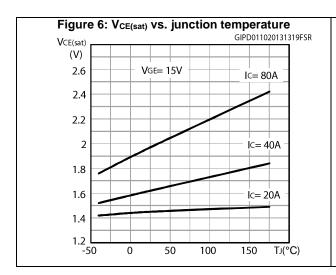
⁽¹⁾Including the tail of the collector current.

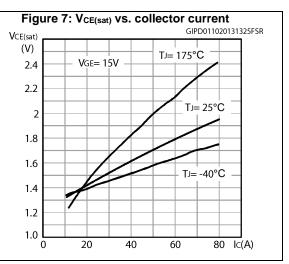

Table 7: IGBT switching characteristics (capacitive load)

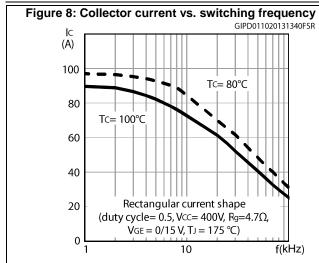

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{off} ⁽¹⁾	Turn-off switching	$V_{CC} = 320$ V, $R_G = 10$ Ω, $I_C = 40$ A, $L = 100$ μH, $C_{Snub} = 20$ nF (see Figure 26: "Test circuit for capacitive load switching")	-	190	1	-
Lom	energy	V_{CC} = 320 V, R_G = 10 Ω, I_C = 40 A, L = 100 μH, C_{snub} = 20 nF, T_J = 175 °C, (see Figure 26: "Test circuit for capacitive load switching")	-	290	ı	μJ

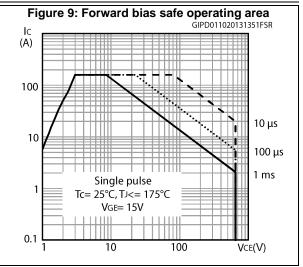

Notes:

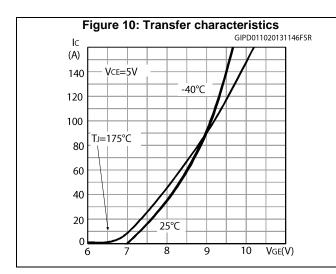

⁽¹⁾Including the tail of the collector current.

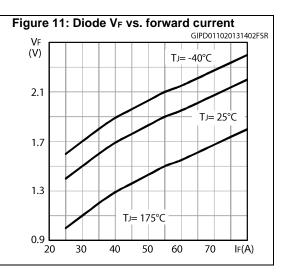

2.1 Electrical characteristics (curves)

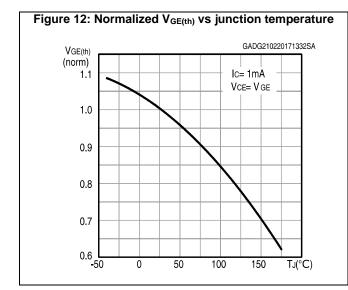


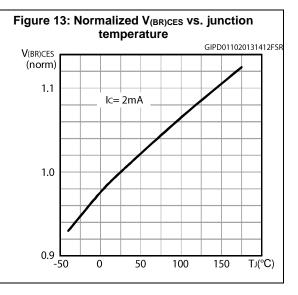


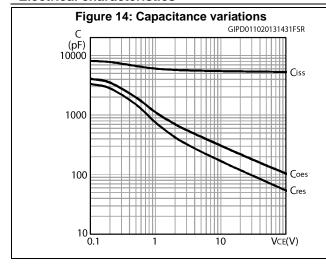


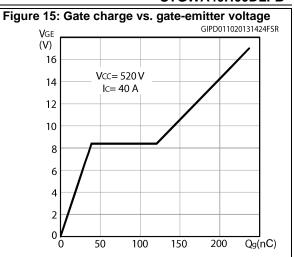


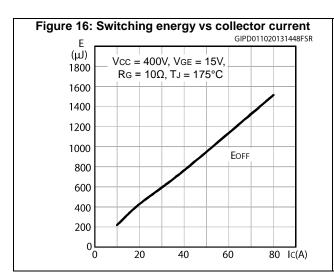


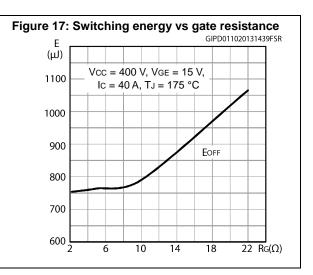


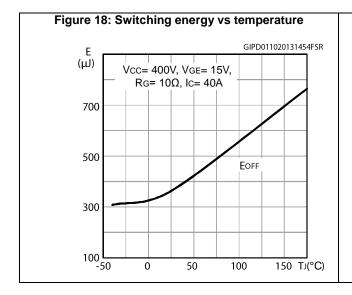


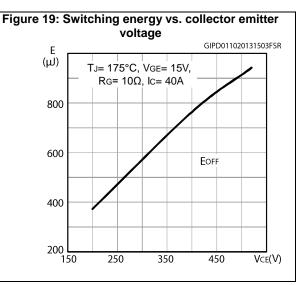


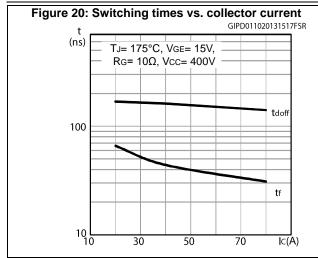


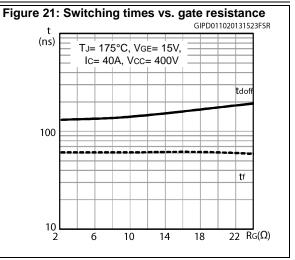


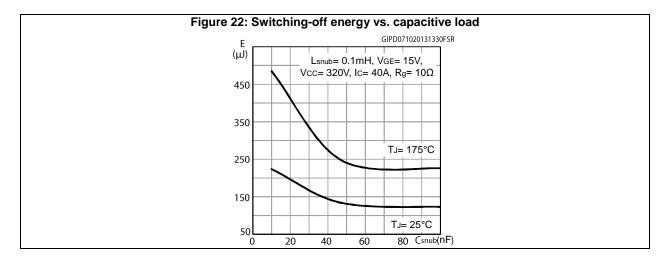


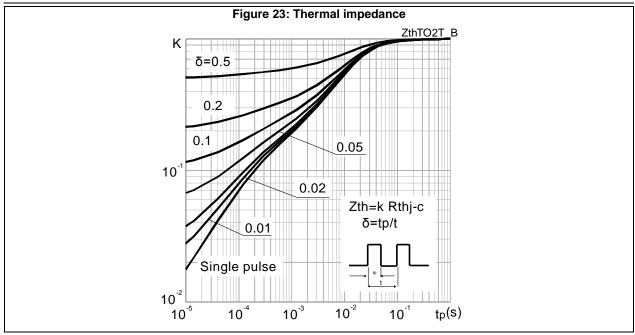


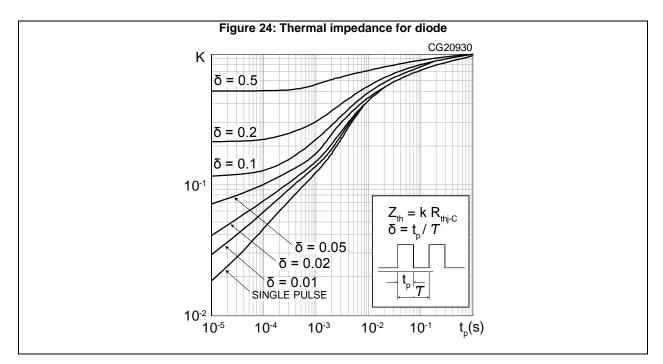


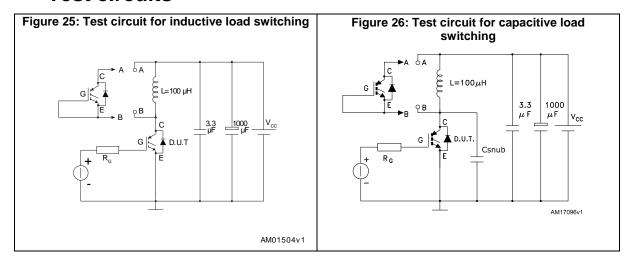


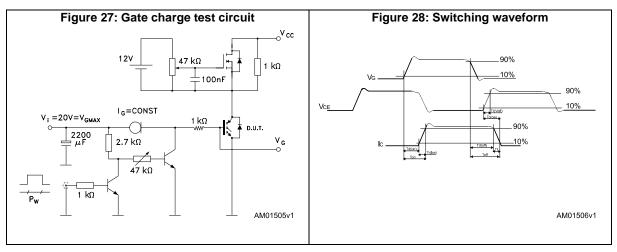












STGWA40H60DLFB Test circuits

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO247 long leads package mechanical data

HEAT-SINK PLANE øΡ E3 A2-Ď A1. *b2* (3x) b 8463846_2_F

Figure 29: TO-247 long leads package outline

Table 8: TO-247 long leads package mechanical data

	rubic of 10 247 long load	mm		
Dim.	Min.	Тур.	Max.	
А	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.26	
b2			3.25	
b3			2.25	
С	0.59		0.66	
D	20.90	21.00	21.10	
Е	15.70	15.80	15.90	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	5.34	5.44	5.54	
L	19.80	19.92	20.10	
L1			4.30	
Р	3.50	3.60	3.70	
Q	5.60		6.00	
S	6.05	6.15	6.25	

Revision history STGWA40H60DLFB

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
03-Mar-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

