
The information in this data sheet is subject to change

7110597 A

®

SET TOP BOX BACKEND DECODER
WITH INTEGRATED HOST PROCESSOR

STi5500

PRELIMINARY DATA

FEATURES
■ Enhanced 32-bit VL-RISC CPU - 50 MHz clock

• fast integer/bit operation and very high code
density

■ High performance memory/cache subsystem
• 2 Kbytes Instruction cache, 2K bytes SRAM,

2 Kbytes data cache/SRAM
• 200 Mbytes/s maximum bandwidth

■ Combined video and audio decoder core
• Video decoder fully supports MPEG-2

MP@ML. Letter box filter
• Memory reduction - PAL MP@ML in 12 MBits
• 2 to 8 bit per pixel OSD options
• Audio decoder supports layers 1 and 2 of

MPEG, interface to external AC-3 decoder.
■ PAL/NTSC encoder

• Macrovision, teletext, and closed caption.
• Outputs RGB and CVBS, Y, C

■ High performance SDRAM memory interface
• Supports 1 or 2 16-Mbit 100 MHz SDRAMs
• Accessible by MPEG decoder, CPU and DMAs
• High bandwidth access from CPU allows high

performance OSD operations
■ Programmable memory interface

• 4 banks each 8/16 bits wide
• Support for mixed memory, peripherals and

DRAM
■ Hardware transport stream demultiplexor

• Serial input
• Supports DSS, DVB, and DVD bit streams
• 32 PIDs supported
• DES and DVB descramblers

■ Vectored interrupts - 8 prioritized levels.
■ DMA engines/interfaces

• 2 SmartCard interfaces, 2 UARTs, 1 I2C
controller, 3 PWM outputs, 3 timers, 3 capture
timers.

• 34 bits of PIO shared with serial interfaces
• OS-Link interface
• Block move DMA, 2 MPEG DMAs
• Teletext interface
• Serial or 1394 A/V link layer interface

■ Professional toolset support
• ANSI C compiler and libraries
• INQUEST advanced debugging tools

■ Non-intrusive debug controller
• Hardware breakpoints
• Real time trace

■ JTAG Test Access Port
■ 208 pin PQFP package

APPLICATIONS
■ Set Top Boxes to DVB and DSS standards

ST20
CPU

Interrupt
controller

transport
stream

Block move
DMA

2 MPEG
DMAs

Teletext
interface

OS-Link
2 UART

1 I2C
PIO

3 PWM

Diagnostic
controller

and

services

EMI

2
SmartCard
interfaces
(ASC)

MPEG
audio

decoder
AC-3 I/F

MPEG
video

decoder

2 Kbytes
Instruction

cache

2K Data
cache and
2K SRAM

PAL/NTSC
Encoder

Serial
IEEE 1394

SDAV
interface

systems

Hardware

demux

6/4/99

Merry Christmas and Happy New Year 2002!
Brought to you by ST Micro and Xilicon!
Greetings to StuntGuy and his team!
Have fun and don't forget to post your findings :)

STi5500

2/62/289 7110597 A

TABLE OF CONTENTS

1 Introduction ... 7

Part A Architecture 9

2 STi5500 architecture overview ... 10

2.1 STi5500 functional modules .. 11

3 Pin list ... 14

3.1 Pin Functions ... 14
3.2 PIO pins and alternative functions ... 18

4 Package specification ... 20

4.1 208 pin PQFP package dimensions .. 20
4.2 Pin list .. 22

Part B The processor and memory 25

5 Central processing unit ... 26

5.1 Registers .. 26
5.2 Processes and concurrency .. 27
5.3 Priority .. 29
5.4 Process communications ... 30
5.5 Timers .. 30
5.6 Traps and exceptions .. 31

6 Instruction set ... 37

6.1 Instruction cycles ... 37
6.2 Instruction characteristics .. 38
6.3 Instruction set tables .. 39

7 Interrupt controller .. 48

7.1 Interrupt vector table .. 49
7.2 Interrupt handlers ... 49
7.3 Interrupt latency ... 50
7.4 Pre-emption and interrupt priority .. 50
7.5 Restrictions on interrupt handlers .. 50
7.6 Interrupt level controller ... 51
7.7 Interrupt assignments .. 51

8 Memory map ... 53

8.1 System memory use .. 54
8.2 External Memory Space .. 55
8.3 Internal peripheral space ... 55

9 Memory ... 59

9.1 External memory .. 59
9.2 On-chip SRAM memory ... 59
9.3 Caching .. 60

STi5500

3/2897110597 A

9.4 Cache subsystem control registers .. 62

10 External memory interface .. 67

10.1 Pin functions .. 68
10.2 EMI Configuration .. 76

11 System services ... 77

11.1 Reset and initialization ... 77
11.2 Debug .. 77
11.3 Bootstrap ... 78

12 Diagnostic controller ... 80

12.1 Diagnostic hardware .. 80
12.2 Access features ... 81
12.3 Software debugging features ... 81
12.4 Controlling the diagnostic controller ... 84
12.5 Peeking and poking the host from the target ... 85

13 Test access port ... 86

14 Serial link interface (OS-Link) ... 87

14.1 OS-Link protocol .. 87
14.2 OS-Link speed ... 87
14.3 OS-Link connections .. 88

Part C Video and audio 89

15 Data flow ... 90

15.1 On-chip modules .. 90
15.2 Video data flow .. 91
15.3 Audio data flow .. 92

16 Hardware transport stream demultiplexor .. 94

16.1 Introduction .. 94
16.2 Detailed description ... 97
16.3 FRAM ... 108
16.4 Not-equal filtering ... 111
16.5 DMA ... 112
16.6 Clock recovery ... 116
16.7 Interrupts .. 117
16.8 Memory and register map .. 122
16.9 Glossary ... 126

17 MPEG DMA controllers .. 127

17.1 MPEG DMA transfers .. 127
17.2 MPEG control registers .. 128

18 MPEG video decoder ... 130

18.1 Decoder operation ... 130
18.2 Resets .. 131

STi5500

4/64/289 7110597 A

18.3 Bit buffer and start code detection (video) ... 131
18.4 Video decoding pipeline control ... 133
18.5 Quantization table loading ... 135
18.6 Memory mapping of data ... 136
18.7 Using picture pointers .. 140
18.8 The video pipeline .. 141
18.9 PES Parser .. 146

19 Sub-picture decoder ... 149

19.1 Introduction .. 149
19.2 Buffer management and pointers .. 149
19.3 Operation ... 150
19.4 Sub-picture display .. 152

20 MPEG audio decoder with AC-3 interface .. 154

20.1 PCM output .. 154
20.2 Audio decoder control .. 157
20.3 AC-3 interface .. 163

Part D Display 166

21 Display functions .. 167

21.1 Overview .. 167
21.2 MPEG video plane ... 168
21.3 Sub-picture plane ... 181
21.4 On-screen display (OSD) ... 181
21.5 Mixing display planes .. 193

22 Teletext interface .. 194

22.1 Teletext interface internal signals .. 194
22.2 Teletext data out .. 194
22.3 Teletext interrupt control .. 195
22.4 Control registers .. 196

23 PAL/NTSC encoder (DENC) .. 198

23.1 Description ... 198
23.2 Video timing ... 198
23.3 Reset procedure .. 203
23.4 Master mode .. 204
23.5 Slave modes .. 205
23.6 Autotest mode .. 210
23.7 Input demultiplexor .. 211
23.8 Sub-carrier generation ... 212
23.9 Burst insertion .. 212
23.10 Luminance encoding .. 213
23.11 Chrominance encoding .. 215
23.12 Composite video signal generation .. 216
23.13 RGB encoding ... 217
23.14 Closed captioning .. 218

STi5500

5/2897110597 A

23.15 CGMS encoding .. 219
23.16 Teletext encoding .. 220
23.17 Line skip and line insert capability ... 223
23.18 Macrovisiontm Copy Protection Process rev 7.01 ... 223
23.19 CVBS, S-VHS and RGB analog outputs .. 223
23.20 Registers .. 224

24 SDRAM block move ... 227

24.1 Moving blocks of data .. 227

Part E Peripherals 228

25 Clocks ... 229

25.1 ST20 clock ... 230
25.2 MPEG/system clock ... 230

26 Block move DMA .. 232

26.1 Moving blocks of data .. 232

27 PWM and counter module .. 233

27.1 External interface ... 233
27.2 PWM outputs ... 233
27.3 Capture inputs ... 235
27.4 Compare (programmable timer) facilities ... 237
27.5 Capture/compare counter, prescaling and clocking ... 239

28 Asynchronous serial controller ... 240

28.1 Control ... 240
28.2 Transmission and reception ... 242
28.3 Hardware error detection capabilities .. 246
28.4 Baud rate generation ... 246
28.5 Interrupt control .. 248
28.6 SmartCard mode specific operation .. 253

29 SmartCard interface ... 254

29.1 External interface ... 254
29.2 SmartCard clock generator .. 255

30 I2C interface (SSC) .. 256

30.1 High-speed synchronous serial controller .. 256

31 Parallel input/output .. 265

Part F Timing and electrical data 266

32 Timing specifications .. 267

32.1 SDRAM .. 267
32.2 PCM/AC-3 decoder interface ... 271
32.3 EMI timings .. 272
32.4 Rise and fall times ... 275

STi5500

6/66/289 7110597 A

32.5 PIO timings .. 275
32.6 OS-Link timings ... 277
32.7 Reset and Analyse timings .. 278
32.8 Clock timings ... 278
32.9 TAP timings ... 279
32.10 Transport stream demultiplexor timings ... 280

33 Electrical specifications .. 282

33.1 Absolute maximum ratings .. 282
33.2 Operating conditions .. 282
33.3 DC electrical characteristics .. 283

STi5500

7/2897110597 A

1 Introduction
The STi5500 is a programmable transport and MPEG decoder IC designed to meet the specifica-
tions for DVB and DSS set top box systems.

The STi5500 combines the functionality of the set top box transport IC, system microcontroller,
audio and video MPEG decoders, and the PAL/NTSC encoder into a single device.

Transport functions are performed in a hardware module. This block can be programmed to pro-
cess bitstreams for the two standards and includes DES and DVB descramblers and SI filtering.

The performance offered by the ST20 32-bit micro-core allows the following operations to be per-
formed in software:

1 Device drivers and synchronization,

2 System management functions,

3 Electronic program guide,

4 Conditional access module.

The use of a 32-bit CPU enables advanced graphics routines to be employed for on-screen display
functions, allowing fast turnaround system upgrades.

The ST20 micro-core family has been developed by STMicroelectronics to provide the tools and
building blocks to enable the development of highly integrated application-specific 32-bit devices at
the lowest cost and fastest time to market. The ST20 macrocell library includes the ST20Cx family
of 32-bit VL-RISC (variable length reduced instruction set computer) micro-cores, embedded mem-
ories, standard peripherals, I/O, controllers and ASICs.

The STi5500 uses the ST20 macrocell library to provide all of the dedicated hardware modules
required in a DVB/DSS set top box programmable transport-IC. These include:

• High performance internal SRAM and cache subsystem,

• I2C interface to other devices in the set top box,

• UART serial I/O interface to modem and auxiliary ports,

• Interrupt controller for internal and external interrupts,

• DMA to MPEG audio and video device(s),

• External memory interface supporting DRAM, EPROM and peripherals,

• PWM/timer module for control of system clock VCXOs,

• Programmable I/O pins,

• Smart card interfaces.

STi5500 l

8/2878/289 7110597 A

The STi5500 also integrates the functions of the MPEG decoder and PAL/NTSC encoder with the
following features:

• Video decoder fully supports MPEG-2 Main Profile/Main Level (MP@ML).

• Memory reduction architecture allows sharing of single 16-Mbit SDRAM between MPEG
decoding, micro and transport functions - memory expandable to 32 Mbits of SDRAM.

• Letter box filter.

• 2-bit to 8-bit OSD.

• PAL/NTSC encoder.

• RGB outputs.

• CVBS, Y, C outputs.

• Close caption.

• Macrovision 7.01.

• Teletext insertion.

• 2-channel MPEG audio decoder with interface to external audio decoders.

The STi5500 has been designed to minimize system costs. The external memory interface con-
tains a zero glue logic DRAM controller and a low-cost 16-bit EPROM interface. The SDRAM mem-
ory interface directly supports 100MHz SDRAMs providing the very high bandwidths to support
MPEG decoding and display, OSD drawing and display, and general system use. Furthermore the
ST20 VL-RISC micro-core has the highest code density of any 32-bit CPU, leading to the lowest
cost program ROM.

This data sheet refers to silicon versions D and onwards. The version letter can be identified from
the label on the package; the label is of the form:

X-VYY

where V is the main version letter.

Changes to this data sheet since the last edition (42-1696-02 dated July 1998) are marked with
change bars and listed in

STi5500

9/2897110597 A

Part A Architecture

STi5500 l

10/28710/289 7110597 A

2 STi5500 architecture overview
A block diagram of a digital set top receiver based on the ST5500 is shown in Figure 2.1.
A DVB receiver is illustrated, however a DSS receiver would be very similar.
The STi5500 performs the system microcontroller, transport demultiplexer, MPEG video and
MPEG audio decoders, as well as the PAL/NTSC encoder functions. It has been designed to
directly interface with external memory and peripherals with no extra glue logic, keeping the system
cost to a minimum. The STi5500 architectural block diagram is shown on the front cover.

Figure 2.1 DVB Digital set top box block diagram

S
T

i5
50

0

D
A

C
s

A
ud

io

Li
nk

-I
C

P
or

t
M

od
ul

at
or

Tu
ne

r

I2
C

 b
us

S
m

ar
tC

ar
d

A
ud

io

U
A

R
T

U
A

R
T

I2
C

 (
S

S
C

)

I2
C

V
id

eo

A
m

pl
ifi

er
U

A
R

T
P

IO

A
/D

A
nt

en
na

/C
ab

le

S
m

ar
tC

ar
d

F
la

sh

25
6K

 x
 1

6
16

 o
r

32
 M

bi
ts

S
D

R
A

M
R

O
M

D
R

A
M

(x
2)

M
od

em

po
w

er
co

nt
ro

lP
IO

Li
nk

-I
C

I2
C

B
uf

fe
rs

P
IO

P
C

M
C

IA
C

A
 M

od
ul

e

P
ol

ar
ity

E
M

I
R

G
B

C
V

B
S

P
C

M

S
D

R
A

M
E

M
I

STi5500

11/2897110597 A

2.1 STi5500 functional modules

The front cover shows the subsystem modules that comprise the STi5500. These modules are out-
lined below and more detailed information is given in the following chapters of this datasheet.

2.1.1 ST20 and peripherals

CPU

The Central Processing Unit (CPU) on the STi5500 is the ST20-C2 32-bit processor core. It con-
tains instruction processing logic, instruction and data pointers and an operand register. It directly
accesses the high speed on-chip SRAM memory, which can store data or programs, and uses
caches to reduce access time to off-chip program and data memory. The processor can access
memory via the general purpose External Memory Interface (EMI) or via the SDRAM EMI which is
shared with the MPEG decoder.

Memory subsystem

The STi5500 on-chip SRAM memory system provides 200 Mbytes/s internal data bandwidth, sup-
porting pipelined 2-cycle internal memory access at 20 ns cycle times. The STi5500 memory sys-
tem consists of 2 Kbytes of SRAM, 2Kbytes of instruction cache, a 2Kbyte data cache that can be
programmed to be SRAM, and an external memory interface (EMI).

The STi5500 product has 2 Kbytes of on-chip SRAM. The advantage of this is the ability to store
time critical code on chip, for instance interrupt routines, software kernels or device drivers, and
even frequently used data without these being flushed from the caches.

The instruction and data caches are direct mapped with a write-back system for the data cache
and support burst accesses to the external memories for refill and write-back which are effective for
increasing performance with page-mode and SDRAM memories.

The STi5500 EMI controls access to the external memory and peripherals while the SDRAM EMI
provides access to the SDRAM buffer for the MPEG decoders, ST20 and DMA peripherals.

The STi5500 EMI can access a 16 Mbyte (or greater if DRAM is used) physical address space in
each of the four general purpose memory banks, and provides sustained transfer rates of up to 80
Mbytes/s. Peripherals that support an asynchronous data acknowledge are supported.

High memory bandwidths up to 200 Mbytes/s can be supported by the SDRAM EMI.

The STi5500 internal memory interconnect provides buffering and arbitration of memory access
requests to sustain very high throughput of memory accesses.

STi5500 l

12/28712/289 7110597 A

System services module

The STi5500 system services module includes:

• phase locked loop (PLL) - accepts 27 MHz input and generates all the internal high fre-
quency clocks needed for the CPU and the OS-Link.

• test access port - JTAG compatible.

• Diagnostics controller accessed via the JTAG port providing:

• Bootstrapping during development

• Hardware breakpoint and watchpoint

• Real time trace

• External LSA triggering support.

Serial communications

To facilitate the connection of this system to a modem for a pay-per-view type system and other
peripherals, two UARTs (ASCs) are included in the device. The UARTs provide an asynchronous
serial interface. The UART can be programmed to support a range of baud rates and data formats,
for example, data size, stop bits and parity.

One synchronous serial communications (SSC) interface is provided on the device. This can be
used to control the Link-IC and the remote control devices in the application via an I2C.

Interrupt subsystem

The STi5500 interrupt subsystem supports eight prioritized interrupt levels. Three external interrupt
pins are provided. Level assignment logic allows any of the internal or external interrupts to be
assigned, and if necessary share, any interrupt level.

Transport stream demultiplexor

The transport stream demultiplexing function is performed by a hardware on-chip module. The
transport stream demultiplexor is sometimes called the link interface, since it interfaces to the Link
IC.

Data packets from the Link-IC input interface are input into a FIFO while the PID is checked to see
if it is currently selected for processing or is to be discarded. A selected packet is parsed by the
module to determine its type and to extract data from it. If the packet is encrypted the correct key is
written into the correct decryption core in the transport stream demultiplex module and the packet
is decrypted.

After parsing and descrambling the packet, the data is either transferred to buffers in external mem-
ory or directly to the MPEG audio and video decoders. If the audio and video data is buffered then
the data can be DMA transferred from the buffer to the MPEG decoders.

Transport packets with up to 32 different PIDs can be extracted. A second filter function is applied
to all section data. The maximum length of the filters is 16 bytes for DSS and 14 bytes for DVB.

Error conditions, system time clock recovery, and control of the hardware module are handled by
software running on the CPU.

STi5500

13/2897110597 A

SmartCard interfaces

The SmartCard interfaces support SmartCards that are compliant with ISO7816-3 and use the
asynchronous protocol.

PWM and counter module

This unit includes three separate pulse width modulator (PWM) generators using a shared counter,
and three timer compare and capture channels sharing a second counter.

The counters can be clocked from a pre-scaled internal clock or from a pre-scaled external clock
via the capture clock input and the event on which the timer value is captured is also programma-
ble.

The PWM counters are 8-bit with 8-bit registers to set the output high time. The capture/compare
counter and the compare and capture registers are 32-bit.

Parallel IO module

34 bits of parallel IO are provided. Each bit is programmable as an output or an input. The output
can be configured as a totem pole or open drain driver. Input compare logic is provided which can
generate an interrupt on any change on any input bit.

Many pins of the STi5500 device are multi-function and can either be configured as PIO or con-
nected to an internal peripheral signal.

Teletext

Teletext data is read from a user defined external memory buffer using a dedicated DMA, and is
encoded in the “World System Teletext” format in the composite video signal.

2.1.2 MPEG decoder subsystem

This subsystem takes the MPEG compressed data streams and decompresses them outputting
digital YUV data in the case of the video and stereo PCM samples in the case of the audio
decoder.

An interface is provided to output an audio bitstream for decoding by an external MPEG or AC-3
decoder to support multi-channel (surround) audio.

The digital video data is fed to the PAL/NTSC encoder subsystem.

The subsystem includes support for on-screen display (OSD) graphics which can be programmed
to be mixed with the digital video output from the video decoder.

2.1.3 PAL/NTSC encoder

Integrated into this subsystem is all of the digital processing and the digital to analog convertors
required to process the digital video output from the MPEG video decoder and produce RGB and
CVBS analog outputs. The output of the teletext interface is filtered and re-inserted into the blank-
ing interval in this subsystem. The Macrovision Anti-taping system is supported.

STi5500 l

14/28714/289 7110597 A

3 Pin list

3.1 Pin Functions

Signal names are prefixed by not if they are active low, otherwise they are active high.

Supplies

Transport stream demultiplexor

MPEG1 audio output and AC-3 audio interface

Pin Number Function

Vdd 19 Power supply.

Gnd 18 Ground.

Vdda 2 Analog power supply for PAL/NTSC encoder.

Vssa 2 Analog ground for PAL/NTSC encoder.

Table 3.1 Supply pins

Pin In/Out Function

F_B_Clk in FEC bit clock.

F_Data in FEC serial data.

F_Error / F_P_Start in Link error (DVB/DSS) or channel packet start (DVD).

F_P_Clk / F_D_Valid in Link packet clock (DVB/DSS) or channel data valid (DVD).

Link_Ext_Clk in External clock to the transport stream demultiplexor block.

Table 3.2 Transport stream demultiplexor pins

Pin In/Out Function

Pcm_Data / A_C_Data out PCM data out or AC-3 data.

Pcm_ClkIn in/out PCM clock input from VCXO.

Pcm_ClkOut / A_C_Stb out PCM clock out or AC-3 data strobe.

A_C_Req in AC-3 audio data request.

A_Pts_Stb in AC-3 audio PTS strobe.

LrClk / A_Word_Clk out Left/right channel clock or AC-3 word clock.

Table 3.3 MPEG1 audio output and AC-3 audio interface pins

STi5500

15/2897110597 A

Video output interface

SDRAM interface

Pin In/Out Function

R_Out out Red output.

G_Out out Green output.

B_Out out Blue output.

C_Out out Chroma output.

CV_Out out Composite video output.

Y_Out out Luma output.

I_Ref_Dac_RGB in DAC current reference.

I_Ref_Dac_YCC in DAC current reference.

V_Ref_Dac_RGB in DAC voltage reference.

V_Ref_Dac_YCC in DAC voltage reference.

Osd_Active in/out OSD active.

PixClk_27Mhz in STi5500 system clock from VCXO.

not_Hsync in/out Horizontal sync.

Odd_not_Even in/out Vertical sync.

Table 3.4 Video output interface pins

Pin In/Out Function

Ad0-11 out SDRAM address bus.

Dq0-15 in/out SDRAM data.

not_SdCS0-1 out SDRAM chip selects.

not_SdCas out SDRAM CAS.

not_SdRas out SDRAM RAS.

not_SdWE out SDRAM write enable.

MemClkIn in SDRAM memory clock input.

MemClkOut out SDRAM memory clock output.

Dqml out DQ mask enable (lower).

Dqmu out DQ mask enable (upper).

Table 3.5 SDRAM Interface pins

STi5500 l

16/28716/289 7110597 A

External memory interface

External interrupts

NRSS serial interfaces

Programmable I/O

The alternative functions of the PIO pins and the shared pins are described in section 3.2.

Pin In/Out Function

Adr1-21 out External memory address bus.

Data0-15 in/out External memory data bus.

not_Ras1 out DRAM RAS.

ReadnotWrite out DRAM R/W strobe.

MemWait in Memory cycle wait.

not_WE0-1 out Byte enable.

not_Cas0 out DRAM CAS.

not_Cas1 out DRAM CAS.

not_CE1-3 out Chip select for banks 1 - 3.

not_Ras0 / not_CE0 out DRAM RAS or chip select for bank 0.

not_OE out Output enable of RAM / ROM.

ProcClockOut out Processor clock.

Table 3.6 EMI pins

Pin In/Out Function

Irq0-2 in Modem, AC-3, servo interrupts.

Table 3.7 External interrupt pins

Pin In/Out Function

Nrss_Clk out NRSS serial clock.

Nrss_In in NRSS serial data input.

Nrss_Out out NRSS serial data output.

Table 3.8 NRSS serial interface pins

Pin In/Out Function

Pio0_0/1, Pio0_3-7 in/out General purpose IO.

Pio1_0/1, Pio1_2-7 in/out General purpose IO.

Pio2_0/1, Pio2_3-5, Pio2_7 in/out General purpose IO.

Pio3_0-7 in/out General purpose IO.

Pio4_0-7 in/out General purpose IO.

Table 3.9 Programmable I/O pins

STi5500

17/2897110597 A

JTAG interface

System use

SDAV bus interface / P1394 bus interface

Pin In/Out Function

Tck in Test clock.

Tdi in Test data input.

Tdo out Test data output.

Tms in Test mode select.

not_Trst in Test reset.

Table 3.10 JTAG interface pins

Pin In/Out Function

Brm2 out PWM output 2.

Brm1 / BootFromRom out/in PWM output 1 or boot from ROM during reset.

Brm0 / Oslink_Sel out/in PWM output 0 or configure OS-Link pins.

not_Rst in STi5500 reset.

Table 3.11 System pins

Pin In/Out Function

Sdav_Clk / P1394_Clk in/out SDAV data strobe/clock or P1394 clock.

Sdav_Data in/out SDAV data line.

Sdav_Dir / P1394_P_Clk in/out SDAV data direction or P1394 packet clock.

Osc_In / 27Mhz_Out in/out SDAV crystal input (49.152MHz) or 27MHz out.

Table 3.12 SDAV and P1394 bus interface pins

STi5500 l

18/28718/289 7110597 A

3.2 PIO pins and alternative functions

To improve flexibility and to allow the STi5500 to fit into different set-top box application architec-
tures, the input and output signals from some of the peripherals are not directly connected to the
pins of the device. Instead they are assigned to the alternative function inputs and outputs of a PIO
port bit. This scheme allows these pins to be configured as general purpose PIO if the associated
peripheral input or output is not required in that particular application.

Peripheral inputs connected to the alternative function input of a PIO bit are permanently con-
nected to the input pin. The output signal from a peripheral is only connected when the PIO bit is
configured into either push-pull or open drain driver alternative function mode.

Figure 3.1 I/O port pin

Table 3.13 shows the assignment of the alternative functions to the PIO bits. Parentheses () in the
table indicate suggested or possible pin usages as a PIO, not an alternative function connection.

I/O pin

Push-pull
tristate
open drain
weak pull-up

Output latch Input latch

Alternative function output

Alternative function inputAlternative function
1 0

STi5500

19/2897110597 A

Pins Pio0_0/1, Pio1_0/1 and Pio2_0/1 are shared between bit 0 and bit 1 of their respective ports.
The different functions for output and input are shown in Table 3.14.

Port bit
Alternative function of PIO pins

PIO port 0 PIO port 1 PIO port 2 PIO port 3 PIO port 4

0
ASC0TxD or

Sc1DataOut
SSC0 MTSR

ASC2TxD

or Sc0DataOut

1
ASC0RxD or

Sc1DataIn
SSC0 MRST

ASC2RxD

or Sc0DataIn

2 Not connected SSC0 SClk Not connected

3 Sc1Clk CaptureIn1 Sc0Clk

4 (Sc1RST) CaptureIn2
CompareOut0
(Sc0RST)

5 (Sc1CmdVcc) ASC1TxD (Sc0CmdVcc)
CompareOut1
(IROut)

6 ASC0Dir ASC1RxD Not connected TriggerIn CaptureIn3

7 (Sc1Detect) ASC3TxD
CaptureIn0
(Sc0Detect)

TriggerOut ASC3RxD

Table 3.13 Alternative function of PIO pins

Pin
Output function

(port bit)

Input function

(port bit)

Pio0_0/1 Pio0_0 Pio0_1

Pio1_0/1 Pio1_0 Pio1_1

Pio2_0/1 Pio2_0 Pio2_1

Table 3.14 Functions of shared PIO pins

STi5500 l

20/28720/289 7110597 A

4 Package specification
The STi5500 is available in a 208 pin plastic quad flat pack (PQFP) package.

4.1 208 pin PQFP package dimensions

Notes

1 Lead finish to be 85 Sn/15 Pb solder plate.

REF. CONTROL DIM. mm ALTERNATIVE DIM. INCHES NOTES

MIN NOM MAX MIN NOM MAX

A - - 4.080 - - 0.161

A1 0.25 - 0.40 0.010 - 0.016

A2 3.240 3.600 3.740 0.127 0.142 0.147

B 0.190 - 0.380 0.007 - 0.015

C 0.120 - 0.180 0.005 - 0.007

D 30.350 - 30.850 1.195 - 1.215

D1 27.900 28.000 28.100 1.098 1.102 1.106

D3 - 25.500 - - 1.004 - REF

E 30.350 - 30.850 1.195 - 1.215

E1 27.900 28.000 28.100 1.098 1.102 1.106

E3 - 25.500 - - 1.004 - REF

e - 0.500 - - 0.020 - BSC

K 0 - 7 0 - 7

L 0.350 0.500 0.650 0.014 0.020 0.026

L1 - 1.300 - - 0.051 - TYP

Zd - 1.250 - - 0.049 - REF

Ze - 1.250 - - 0.049 - REF

Table 4.1 208 pin PQFP package dimensions

STi5500

21/2897110597 A

Figure 4.1 208 pin PQFP package dimensions

STi5500 l

22/28722/289 7110597 A

4.2 Pin list

STi5500

23/2897110597 A

1 Vdd P 53 Vdda_0 P

2 Pio3_7 I/O 54 Vssa_0 P

3 Pio2_0/1 I/O 55 B_Out O

4 Gnd P 56 G_Out O

5 Pio2_3 I/O 57 R_Out O

6 Pio2_4 I/O 58 V_Ref_Dac_RGB I

7 Pio2_5 I/O 59 I_Ref_Dac_RGB I

8 Pio2_7 I/O 60 Vdda_1 P

9 Pio1_0/1 I/O 61 Vssa_1 P

10 Pio1_2 I/O 62 Y_Out O

11 Pio1_5 I/O 63 C_Out O

12 Pio1_6 I/O 64 CV_Out O

13 Pio1_7 I/O 65 V_Ref_Dac_YCC I

14 Pio4_7 I/O 66 I_Ref_Dac_YCC I

15 Pio0_0/1 I/O 67 Vdd P

16 Pio0_3 I/O 68 Gnd P

17 Pio0_4 I/O 69 Ad4 O

18 Vdd P 70 Ad5 O

19 Gnd P 71 Ad6 O

20 Pio0_5 I/O 72 Ad7 O

21 Pio0_6 I/O 73 Ad8 O

22 Pio0_7 I/O 74 Ad9 O

23 Irq0 I 75 Vdd P

24 Irq1 I 76 MemClkOut O

25 Irq2 I 77 Gnd P

26 Brm0 / Oslink_Sel I/O 78 Ad0 O

27 Brm1 / BooFromRom I/O 79 Ad1 O

28 Brm2 O 80 Ad2 O

29 not_Rst I 81 Ad3 O

30 Sdav_Clk I/O 82 Ad10 O

31 Sdav_Data I/O 83 Ad11 O

32 Sdav_Dir I/O 84 not_SdCS0 O

33 Osc_In / 27Mhz_Out I/O 85 not_SdCS1 O

34 Vdd P 86 Vdd P

35 Gnd P 87 Gnd P

36 F_Data I 88 not_SdRas O

37 F_B_Clk I 89 not_SdCas O

38 F_P_Clk / D_Valid I 90 not_SdWE O

39 F_Error / P_Start I 91 Dqml O

40 Nrss_Clk O 92 Dq0 I/O

41 Nrss_Out O 93 Dq1 I/O

42 Nrss_In I 94 Dq2 I/O

43 Pcm_ClkOut / A_C_Stb O 95 Vdd P

44 Pcm_Data / A_C_Data O 96 Gnd P

45 Pcm_ClkIn I/O 97 Dq3 I/O

46 lrClk / A_Word_Clk O 98 Dq4 I/O

47 A_C_Req I 99 Dq5 I/O

48 A_Pts_Stb I 100 Dq6 I/O

49 Vdd P 101 Dq7 I/1O

50 Gnd P 102 Vdd P

51 not_Hsync I/O 103 Gnd P

52 Odd_not_Even I/O 104 MemClkIn I

STi5500 l

24/28724/289 7110597 A

105 Dqmu O 157 Data14 I/O

106 Dq8 I/O 158 Data15 I/O

107 Dq9 I/O 159 Vdd P

108 Dq10 I/O 160 Gnd P

109 Dq11 I/O 161 Adr1 O

110 Vdd P 162 Adr2 O

111 Gnd P 163 Adr3 O

112 Dq12 I/O 164 Adr4 O

113 Dq13 I/O 165 Adr5 O

114 Dq14 I/O 166 Adr6 O

115 Dq15 I/O 167 Adr7 O

116 Link_Ext_Clk I 168 Adr8 O

117 Osd_Active I/O 169 Adr9 O

118 PixClk_27Mhz I 170 Adr10 O

119 Vdd P 171 Vdd P

120 Gnd P 172 Gnd P

121 not_WE0 O 173 Adr11 O

122 not_WE1 O 174 Adr12 O

123 not_OE O 175 Adr13 O

124 not_CE1 O 176 Adr14 O

125 not_CE2 O 177 Adr15 O

126 not_CE3 O 178 Adr16 O

127 not_Ras0 / not_CE0 O 179 Adr17 O

128 not_Ras1 O 180 Adr18 O

129 not_Cas0 O 181 Adr19 O

130 Vdd P 182 Adr20 O

131 Gnd P 183 Adr21 O

132 not_Cas1 O 184 Vdd P

133 ReadnotWrite O 185 Gnd P

134 Vdd P 186 Tdi I

135 Vdd P 187 Tms I

136 MemWait I 188 Tck I

137 ProcClockOut O 189 Tdo O

138 Vdd P 190 not_Trst I

139 Vdd P 191 Pio4_0 I/O

140 Gnd P 192 Pio4_1 I/O

141 Data0 I/O 193 Pio4_2 I/O

142 Data1 I/O 194 Pio4_3 I/O

143 Data2 I/O 195 Pio4_4 I/O

144 Data3 I/O 196 Pio4_5 I/O

145 Data4 I/O 197 Pio4_6 I/O

146 Data5 I/O 198 Pio1_3 I/O

147 Data6 I/O 199 Pio1_4 I/O

148 Data7 I/O 200 Gnd P

149 Vdd P 201 Pio3_0 I/O

150 Gnd P 202 Pio3_1 I/O

151 Data8 I/O 203 Pio3_2 I/O

152 Data9 I/O 204 Pio3_3 I/O

153 Data10 I/O 205 Pio3_4 I/O

154 Data11 I/O 206 Pio3_5 I/O

155 Data12 I/O 207 Pio3_6 I/O

156 Data13 I/O 208 Vdd P

STi5500

25/2897110597 A

Part B The processor and memory

STi5500 l

26/28726/289 7110597 A

5 Central processing unit
The Central Processing Unit (CPU) is the ST20 32-bit processor core. It contains instruction pro-
cessing logic, instruction and data pointers, and an operand register. It can directly access the high
speed on-chip memory, which can store data or programs. Where larger amounts of memory are
required, the processor can access memory via the External Memory Interface (EMI).

The processor provides high performance:

• Fast integer multiply - 4 cycle multiply

• Fast bit shift - single cycle barrel shifter

• Byte and part-word handling

• Scheduling and interrupt support

• 64-bit integer arithmetic support.

The scheduler provides a single level of pre-emption. In addition, multi-level pre-emption is pro-
vided by the interrupt subsystem, see Chapter 7 for details. Additionally, there is a per-priority trap
handler to improve the support for arithmetic errors and illegal instructions.

5.1 Registers

The CPU contains six registers which are used in the execution of a sequential integer process.
The six registers are:

• The workspace pointer (Wptr) which points to an area of store where local data is kept.

• The instruction pointer (Iptr) which points to the next instruction to be executed.

• The status register (Status).

• The Areg, Breg and Creg registers which form an evaluation stack.

The Areg, Breg and Creg registers are the sources and destinations for most arithmetic and logi-
cal operations. Loading a value into the stack pushes Breg into Creg, and Areg into Breg, before
loading Areg. Storing a value from Areg, pops Breg into Areg and Creg into Breg. Creg is left
undefined.

Figure 5.1 Registers used in sequential integer processes

Areg

Breg

Creg

Wptr

Iptr

Local data ProgramRegisters

STi5500

27/2897110597 A

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For
example, the add instruction adds the top two values in the stack and places the result on the top of
the stack. The use of a stack removes the need for instructions to explicitly specify the location of
their operands. No hardware mechanism is provided to detect that more than three values have
been loaded onto the stack; it is easy for the compiler to ensure that this never happens.

Note that a location in memory can be accessed relative to the workspace pointer, enabling the
workspace to be of any size.

The use of shadow registers provides fast, simple and clean context switching.

5.2 Processes and concurrency

This section describes the default behavior of the CPU and it should be noted that the user can
alter this behavior, for example by disabling timeslicing or installing a user scheduler.

A process starts, performs a number of actions, and then either stops without completing or termi-
nates complete. Typically, a process is a sequence of instructions. The CPU can run several pro-
cesses in parallel (concurrently). Processes may be assigned either high or low priority, and there
may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to
be executed together, sharing the processor time. This removes the need for a software kernel,
although kernels can still be written if desired.

At any time, a process may be

active - being executed,
- interrupted by a higher priority process,
- on a list waiting to be executed.

inactive - waiting to input,
- waiting to output,
- waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time.
Each active high priority process executes until it becomes inactive. The scheduler allocates a por-
tion of the processor’s time to each active low priority process in turn (see section 5.3). Active pro-
cesses waiting to be executed are held in two linked lists of process work spaces, one of high
priority processes and one of low priority processes. Each list is implemented using two registers,
one of which points to the first process in the list, the other to the last. In the linked process list
shown in Figure 5.2, process S is executing and P, Q and R are active, awaiting execution. Only the
low priority process queue registers are shown; the high priority process ones behave in a similar
manner.

STi5500 l

28/28728/289 7110597 A

Figure 5.2 Linked process list

Each process runs until it has completed its action or is descheduled. In order for several pro-
cesses to operate in parallel, a low priority process is only permitted to execute for a maximum of
two timeslice periods. After this, the machine deschedules the current process at the next timeslic-
ing point, adds it to the end of the low priority scheduling list and instead executes the next active
process. The timeslice period is 1ms.

There are only certain instructions at which a process may be descheduled. These are known as
descheduling points. A process may only be timesliced at certain descheduling points. These are
known as timeslicing points and are defined in such a way that the operand stack is always empty.
This removes the need for saving the operand stack when timeslicing. As a result, an expression
evaluation can be guaranteed to execute without the process being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace
and the next process taken from the list.

The processor core provides a number of special instructions to support the process model, includ-
ing startp (start process) and endp (end process). When a main process executes a parallel con-
struct, startp is used to create the necessary additional concurrent processes. A startp instruction
creates a new process by adding a new workspace to the end of the scheduling list, enabling the
new concurrent process to be executed together with the ones already being executed. When a
process is made active it is always added to the end of the list, and thus cannot pre-empt pro-
cesses already on the same list.

Function High priority Low priority

Pointer to front of active process list FptrReg0 FptrReg1

Pointer to back of active process list BptrReg0 BptrReg1

Table 5.1 Priority queue control registers

P

Q

R

S

Areg

Breg

Creg

Wptr

Iptr

FptrReg1

BptrReg1

Registers Local data

Iptr.s
Link.s

Iptr.s
Link.s

Iptr.s

Program

STi5500

29/2897110597 A

The correct termination of a parallel construct is assured by use of the endp instruction. This uses
a data structure that includes a counter of the parallel construct components which have still to ter-
minate. The counter is initialized to the number of components before the processes are started.
Each component ends with an endp instruction which decrements and tests the counter. For all but
the last component, the counter is non zero and the component is descheduled. For the last com-
ponent, the counter is zero and the main process continues.

5.3 Priority

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing and priority interrupts.

The processor can execute processes at one of two priority levels, one level for urgent (high prior-
ity) processes, one for less urgent (low priority) processes. A high priority process will always exe-
cute in preference to a low priority process if both are able to do so.

High priority processes are expected to execute for a short time. If one or more high priority pro-
cesses are active, then the first on the queue is selected and executes until it has to wait for a com-
munication, a timer input, or until it completes processing.

If no process at high priority is active, but one or more processes at low priority are active, then one
is selected. Low priority processes are periodically timesliced to provide an even distribution of pro-
cessor time between tasks which use a lot of computation.

If there are n low priority processes, then the maximum latency from the time at which a low priority
process becomes active to the time when it starts processing is the order of 2n timeslice periods. It
is then able to execute for between one and two timeslice periods, less any time taken by high pri-
ority processes. This assumes that no process monopolizes the time of the CPU; i.e. it has fre-
quent timeslicing points.

The specific condition for a high priority process to start execution is that the CPU is idle or running
at low priority and the high priority queue is non-empty.

If a high priority process becomes able to run while a low priority process is executing, the low pri-
ority process is temporarily stopped and the high priority process is executed. The state of the low
priority process is saved into ‘shadow’ registers and the high priority process is executed. When no
further high priority processes are able to run, the state of the interrupted low priority process is re-
loaded from the shadow registers and the interrupted low priority process continues executing.
Instructions are provided on the processor core to allow a high priority process to store the shadow
registers to memory and to load them from memory. Instructions are also provided to allow a pro-
cess to exchange an alternative process queue for either priority process queue (see). These
instructions allow extensions to be made to the scheduler for custom run-time kernels.

A low priority process may be interrupted after it has completed execution of any instruction. In
addition, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions are interruptible. Also some instructions may be aborted,
and are restarted when the process next becomes active (refer to the Instruction Set chapter).

STi5500 l

30/28730/289 7110597 A

5.4 Process communications

Communication between processes takes place over channels, and is implemented in hardware.
Communication is point-to-point, synchronized and unbuffered. As a result, a channel needs no
process queue, no message queue and no message buffer.

A channel between two processes executing on the same CPU is implemented by a single word in
memory; a channel between processes executing on different processors is implemented by point-
to-point links. The processor provides a number of operations to support message passing, the
most important being in (input message) and out (output message).

The in and out instructions use the address of the channel to determine whether the channel is
internal or external. This means that the same instruction sequence can be used for both hard and
soft channels, allowing a process to be written and compiled without knowledge of where its chan-
nels are implemented.

Communication takes place when both the inputting and outputting processes are ready. Conse-
quently, the process which first becomes ready must wait until the second one is also ready. The
inputting and outputting processes only become active when the communication has completed.

A process performs an input or output by loading the evaluation stack with, a pointer to a message,
the address of a channel, and a count of the number of bytes to be transferred, and then executing
an in or out instruction.

5.5 Timers

There are two 32-bit hardware timer clocks which ‘tick’ periodically. These are independent of any
on-chip peripheral real time clock. The timers provide accurate process timing, allowing processes
to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented approximately every
microsecond, cycling completely in approximately 4295 seconds. The other is accessible only to
low priority processes and runs 64 times slower, giving 15625 ticks per second. It has a full period
of approximately 76 hours.

Actual timer speeds are derived from the processor speed ProcClockOut and are given in the
Clocks chapter. The periods may be calculated as follows:

High_priority_clock_period = 1µs × Nominal_speed / ProcClockOut_speed

Low_priority_clock_period = High_priority_clock_period x 64

Register Function

ClockReg0 Current value of high priority (level 0) process clock.

ClockReg1 Current value of low priority (level 1) process clock.

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue.

TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue.

TptrReg0 High priority timer queue.

TptrReg1 Low priority timer queue.

Table 5.2 Timer registers

STi5500

31/2897110597 A

The current value of the processor clock can be read by executing a ldtimer (load timer) instruction.
A process can arrange to perform a tin (timer input), in which case it will become ready to execute
after a specified time has been reached. The tin instruction requires a time to be specified. If this
time is in the ‘past’ then the instruction has no effect. If the time is in the ‘future’ then the process is
descheduled. When the specified time is reached the process becomes active. In addition, the
ldclock (load clock), stclock (store clock) instructions allow total control over the clock value and the
clockenb (clock enable), clockdis (clock disable) instructions allow each clock to be individually
stopped and re-started.

Figure 5.3 shows two processes waiting on the timer queue, one waiting for time 21, the other for
time 31.

Figure 5.3 Timer registers

5.6 Traps and exceptions

A software error, such as arithmetic overflow or array bounds violation, can cause an error flag to
be set in the CPU. The flag is directly connected to the ErrorOut pin. Both the flag and the pin can
be ignored, or the CPU stopped. Stopping the CPU on an error means that the error cannot cause
further corruption. As well as containing the error in this way it is possible to determine the state of
the CPU and its memory at the time the error occurred. This is particularly useful for postmortem
debugging where the debugger can be used to examine the state and history of the processor
leading up to and causing the error condition.

In addition, if a trap handler process is installed, a variety of traps/exceptions can be trapped and
handled by software. A user supplied trap handler routine can be provided for each high/low pro-
cess priority level. The handler is started when a trap occurs and is given the reason for the trap.

ClockReg0

TnextReg0

TptrReg0

Work spaces
Program

5

21

31

Empty

Comparator

Alarm 21

STi5500 l

32/28732/289 7110597 A

The trap handler is not re-entrant and must not cause a trap itself within the same group. All traps
can be individually masked.

5.6.1 Trap groups

The trap mechanism is arranged on a per priority basis. For each priority there is a handler for each
group of traps, as shown in Figure 5.4.

Figure 5.4 Trap arrangement

There are four groups of traps, as detailed below.

• Breakpoint

This group consists of the Breakpoint trap. The breakpoint instruction (j0) calls the break-
point routine via the trap mechanism.

• Errors

The traps in this group are IntegerError and Overflow. Overflow represents arithmetic over-
flow, such as arithmetic results which do not fit in the result word. IntegerError represents
errors caused when data is erroneous, for example when a range checking instruction finds
that data is out of range.

• System operations

This group consists of the LoadTrap, StoreTrap and IllegalOpcode traps. The IllegalOpcode
trap is signalled when an attempt is made to execute an illegal instruction. The LoadTrap
and StoreTrap traps allow a kernel to intercept attempts by a monitored process to change
or examine trap handlers or trapped process information. It enables a user program to sig-
nal to a kernel that it wishes to install a new trap handler.

• Scheduler

The scheduler trap group consists of the ExternalChannel, InternalChannel, Timer,
TimeSlice, Run, Signal, ProcessInterrupt and QueueEmpty traps. The ProcessInterrupt
trap signals that the machine has performed a priority interrupt from low to high. The
QueueEmpty trap indicates that there is no further executable work to perform. The other
traps in this group indicate that the hardware scheduler wants to schedule a process on a
process queue, with the different traps enabling the different sources of this to be moni-
tored.

Low priority traps High priority traps

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

STi5500

33/2897110597 A

The scheduler traps enable a software scheduler kernel to use the hardware scheduler to
implement a multi-priority software scheduler.

Note that scheduler traps are different from other traps as they are caused by the micro-
scheduler rather than by an executing process.

Trap groups encoding is shown in Table 5.3 below. These codes are used to identify trap groups to
various instructions.

In addition to the trap groups mentioned above, the CauseError flag in the Status register is used
to signal when a trap condition has been activated by the causeerror instruction. It can be used to
indicate when trap conditions have occurred due to the user setting them, rather than by the sys-
tem.

5.6.2 Events that can cause traps

Table 5.4 summarizes the events that can cause traps and gives the encoding of bits in the trap
Status and Enable words.

Trap group Code

Breakpoint 0

CPU errors 1

System operations 2

Scheduler 3

Table 5.3 Trap group codes

STi5500 l

34/28734/289 7110597 A

5.6.3 Trap handlers

For each trap handler there is a trap handler structure and a trapped process structure. Both the
trap handler structure and the trapped process structure are in memory and can be accessed via
instructions, see section 5.6.4.

The trap handler structure specifies what should happen when a trap condition is present, see
Table 5.5.

The trapped process structure saves some of the state of the process that was running when the
trap was taken, see Table 5.6.

In addition, for each priority, there is an Enables register and a Status register. The Enables regis-
ter contains flags to enable each cause of trap. The Status register contains flags to indicate which
trap conditions have been detected. The Enables and Status register bit encodings are given in
Table 5.4.

Trap cause
Status/Enable

codes
Trap

group
Comments

Breakpoint 0 0 When a process executes the breakpoint instruction (j0) then it traps
to its trap handler.

IntegerError 1 1 Integer error other than integer overflow - e.g. explicitly checked or
explicitly set error.

Overflow 2 1 Integer overflow or integer division by zero.

IllegalOpcode 3 2 Attempt to execute an illegal instruction. This is signalled when opr
is executed with an invalid operand.

LoadTrap 4 2 When the trap descriptor is read with the ldtraph instruction or when
the trapped process status is read with the ldtrapped instruction.

StoreTrap
5 2 When the trap descriptor is written with the sttraph instruction or

when the trapped process status is written with the sttrapped
instruction.

InternalChannel 6 3 Scheduler trap from internal channel.

ExternalChannel 7 3 Scheduler trap from external channel.

Timer 8 3 Scheduler trap from timer alarm.

Timeslice 9 3 Scheduler trap from timeslice.

Run 10 3 Scheduler trap from runp (run process) or startp (start process).

Signal 11 3 Scheduler trap from signal.

ProcessInterrupt 12 3 Start executing a process at a new priority level.

QueueEmpty 13 3 Caused by no process active at a priority level.

CauseError
15 (Status only) Any,

encoded
0-3

Signals that the causeerror instruction set the trap flag.

Table 5.4 Trap causes and Status/Enable codes

STi5500

35/2897110597 A

A trap will be taken at an interruptible point if a trap is set and the corresponding trap enable bit is
set in the Enables register. If the trap is not enabled then nothing is done with the trap condition. If
the trap is enabled then the corresponding bit is set in the Status register to indicate the trap con-
dition has occurred.

When a process takes a trap the processor saves the existing Iptr, Wptr, Status and Enables in
the trapped process structure. It then loads Iptr, Wptr and Status from the equivalent trap handler
structure and ANDs the value in Enables with the value in the structure. This allows the user to dis-
able various events while in the handler, in particular a trap handler must disable all the traps of its
trap group to avoid the possibility of a handler trapping to itself.

The trap handler then executes. The values in the trapped process structure can be examined
using the ldtrapped instruction (see section 5.6.4). When the trap handler has completed its opera-
tion it returns to the trapped process via the tret (trap return) instruction. This reloads the values
saved in the trapped process structure and clears the trap flag in Status.

Note that when a trap handler is started, Areg, Breg and Creg are not saved. The trap handler
must save the Areg, Breg, Creg registers using stl (store local).

5.6.4 Trap instructions

Trap handlers and trapped processes can be set up and examined via the ldtraph, sttraph,
ldtrapped and sttrapped instructions. Table 5.7 describes the instructions that may be used when
dealing with traps.

Comments Location

Iptr Iptr of trap handler process. Base + 3

Wptr Wptr of trap handler process. A null Wptr indicates that a trap handler has not been installed. Base + 2

Status Contains the Status register that the trap handler starts with. Base + 1

Enables
A word which encodes the trap enable and global interrupt masks, which will be ANDed with
the existing masks to allow the trap handler to disable various events while it runs.

Base + 0

Table 5.5 Trap handler structure

Comments Location

Iptr Points to the instruction after the one that caused the trap condition. Base + 3

Wptr Wptr of the process that was running when the trap was taken. Base + 2

Status The relevant trap bit is set, see Table 5.3 for trap codes. Base + 1

Enables Interrupt enables. Base + 0

Table 5.6 Trapped process structure

STi5500 l

36/28736/289 7110597 A

The first four instructions transfer data to/from the trap handler structures or trapped process struc-
tures from/to an area in memory. In these instructions Areg contains the trap group code (see
Table 5.3) and Breg points to the 4 word area of memory used as the source or destination of the
transfer. In addition Creg contains the priority of the handler to be installed/examined in the case of
ldtraph or sttraph. ldtrapped and sttrapped apply only to the current priority.

If the LoadTrap trap is enabled then ldtraph and ldtrapped do not perform the transfer but set the
LoadTrap trap flag. If the StoreTrap trap is enabled then sttraph and sttrapped do not perform the
transfer but set the StoreTrap trap flag.

The trap enable masks are encoded by an array of bits (see Table 5.4) which are set to indicate
which traps are enabled. This array of bits is stored in the lower half-word of the Enables register.
There is an Enables register for each priority. Traps are enabled or disabled by loading a mask into
Areg with bits set to indicate which traps are to be affected and the priority to affect in Breg. Exe-
cuting trapenb ORs the mask supplied in Areg with the trap enables mask in the Enables register
for the priority in Breg. Executing trapdis negates the mask supplied in Areg and ANDs it with the
trap enables mask in the Enables register for the priority in Breg. Both instructions return the pre-
vious value of the trap enables mask in Areg.

5.6.5 Restrictions on trap handlers

There are various restrictions that must be placed on trap handlers to ensure that they work cor-
rectly.

1 Trap handlers must not deschedule or timeslice. Trap handlers alter the Enables masks,
therefore they must not allow other processes to execute until they have completed.

2 Trap handlers must have their Enable masks set to mask all traps in their trap group to
avoid the possibility of a trap handler trapping to itself.

3 Trap handlers must terminate via the tret (trap return) instruction. The only exception to this
is that a scheduler kernel may use restart to return to a previously shadowed process.

Instruction Meaning Use

ldtraph load trap handler Load the trap handler from memory to the trap handler descriptor.

sttraph store trap handler Store an existing trap handler descriptor to memory.

ldtrapped load trapped Load replacement trapped process status from memory.

sttrapped store trapped Store trapped process status to memory.

trapenb trap enable Enable traps.

trapdis trap disable Disable traps.

tret trap return Used to return from a trap handler.

causeerror cause error Program can simulate the occurrence of an error.

Table 5.7 Instructions which may be used when dealing with traps

STi5500

37/2897110597 A

6 Instruction set
This chapter provides information on the ST20-C2 instruction set. It contains tables listing all the
instructions, and where applicable provides details of the number of processor cycles taken by an
instruction.

The instruction set has been designed for simple and efficient compilation of high-level languages.
All instructions have the same format, designed to give a compact representation of the operations
occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits
(MSB) of the byte are a function code and the four least significant bits (LSB) are a data value, as
shown in Figure 6.1.

Figure 6.1 Instruction format

For further information on the instruction set refer to the ST20C2 Instruction Set Manual (document
number 72-TRN-273).

6.1 Instruction cycles

Timing information is available for some instructions. However, it should be noted that many
instructions have ranges of timings which are data dependent.

Where included, timing information is based on the number of clock cycles assuming any memory
accesses are to 2 cycle internal memory and no other subsystem is using memory. Actual time will
be dependent on the speed of external memory and memory bus availability.

Note that the actual time can be increased by:

1 the instruction requiring a value on the register stack from the final memory read in the pre-
vious instruction – the current instruction will stall until the value becomes available.

2 the first memory operation in the current instruction can be delayed while a preceding
memory operation completes - any two memory operations can be in progress at any time,
any further operation will stall until the first completes.

3 memory operations in current instructions can be delayed by access by instruction fetch or
subsystems to the memory interface.

4 there can be a delay between instructions while the instruction fetch unit fetches and par-
tially decodes the next instruction – this will be the case whenever an instruction causes the
instruction flow to jump.

Note that the instruction timings given refer to ‘standard’ behavior and may be different if, for exam-
ple, traps are set by the instruction.

Function Data

7 4 3 0

STi5500 l

38/28738/289 7110597 A

6.2 Instruction characteristics

Table 6.2 gives the basic function code of each of the primary instructions. Where the operand is
less than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one
prefix instruction (pfix) is required for each additional four bits of the operand. If the operand is neg-
ative the first prefix instruction will be nfix. Examples of pfix and nfix coding are given in Table 6.1.

Any instruction which is not in the instruction set tables is an invalid instruction and is flagged ille-
gal, returning an error code to the trap handler, if loaded and enabled.

The Notes column of the tables indicates the features of an instruction as described in Table 6.2.

Mnemonic Function code Memory code

ldc #3 #4 #43

ldc #35

is coded as

pfix #3 #2 #23

ldc #5 #4 #45

ldc #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

ldc #7 #4 #47

ldc -31 (ldc #FFFFFFE1)

is coded as

nfix #1 #6 #61

ldc #1 #4 #41

Table 6.1 Prefix coding

Ident Feature

E Instruction can set an IntegerError trap

L Instruction can cause a LoadTrap trap

S Instruction can cause a StoreTrap trap

O Instruction can cause an Overflow trap

I Interruptible instruction

A Instruction can be aborted and later restarted.

D Instruction can deschedule

T Instruction can timeslice

Table 6.2 Instruction features

STi5500

39/2897110597 A

6.3 Instruction set tables

Function
code

Memory
code

Mnemonic Processor
cycles

Name Notes

0 0X j 5 jump D, T

1 1X ldlp 1 load local pointer

2 2X pfix 0 to 1 prefix

3 3X ldnl 2 load non-local

4 4X ldc 1 load constant

5 5X ldnlp 1 load non-local pointer

6 6X nfix 0 to 1 negative prefix

7 7X ldl 1 load local

8 8X adc 1 add constant O

9 9X call 8 call

A AX cj 1 or 5 conditional jump

B BX ajw 2 adjust workspace

C CX eqc 1 equals constant

D DX stl 1 store local

E EX stnl 2 store non-local

F FX opr 0 operate

Table 6.2 Primary functions

Memory
code

Mnemonic Processor
cycles

Name Notes

22FA testpranal 2 test processor analyzing

23FE saveh 3 save high priority queue registers

23FD savel 3 save low priority queue registers

21F8 sthf 1 store high priority front pointer

25F0 sthb 1 store high priority back pointer

21FC stlf 1 store low priority front pointer

21F7 stlb 1 store low priority back pointer

25F4 sttimer 2 store timer

2127FC lddevid 1 load device identity

27FE ldmemstartval 1 load value of MemStart address

Table 6.3 Processor initialization operation codes

STi5500 l

40/28740/289 7110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

24F6 and 1 and

24FB or 1 or

23F3 xor 1 exclusive or

23F2 not 1 bitwise not

24F1 shl 1 shift left

24F0 shr 1 shift right

F5 add 1 add A, O

FC sub 1 subtract A, O

25F3 mul 4 multiply A, O

27F2 fmul 6 fractional multiply A, O

22FC div 5 to 37 divide A, O

21FF rem 5 to 40 remainder A, O

F9 gt 1 greater than A

25FF gtu 1 greater than unsigned A

F4 diff 1 difference

25F2 sum 1 sum

F8 prod 4 product A

26F8 satadd 2 saturating add A

26F9 satsub 2 saturating subtract A

26FA satmul 5 saturating multiply A

Table 6.4 Arithmetic/logical operation codes

STi5500

41/2897110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

21F6 ladd 2 long add A, O

23F8 lsub 2 long subtract A, O

23F7 lsum 2 long sum

24FF ldiff 2 long diff

23F1 lmul 5 to 6 long multiply A

21FA ldiv 5 to 39 long divide A, O

23F6 lshl 2 long shift left A

23F5 lshr 2 long shift right A

21F9 norm 2 to 5 normalize A

26F4 slmul 5 signed long multiply A, O

26F5 sulmul 5 signed times unsigned long multiply A, O

Table 6.5 Long arithmetic operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

F0 rev 1 reverse

23FA xword 4 extend to word A

25F6 cword 3 check word A, E

21FD xdble 2 extend to double

24FC csngl 3 check single A, E

24F2 mint 1 minimum integer

25FA dup 1 duplicate top of stack

27F9 pop 1 pop processor stack

68FD reboot 1 reboot

Table 6.6 General operation codes

STi5500 l

42/28742/289 7110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

F2 bsub 1 byte subscript

FA wsub 1 word subscript

28F1 wsubdb 1 form double word subscript

23F4 bcnt 1 byte count

23FF wcnt 1 word count

F1 lb 1 load byte

23FB sb 2 store byte

24FA move move message I

Table 6.7 Indexing/array operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F2 ldtimer 1 load timer

22FB tin timer input I

24FE talt 3 timer alt start

25F1 taltwt timer alt wait D, I

24F7 enbt 2 to 8 enable timer

22FE dist disable timer I

Table 6.8 Timer handling operation codes

STi5500

43/2897110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

F7 in input message D

FB out output message D

FF outword output word D

FE outbyte output byte D

24F3 alt 2 alt start

24F4 altwt 4 to 7 alt wait D

24F5 altend 9 alt end

24F9 enbs 1 to 2 enable skip

23F0 diss 1 disable skip

21F2 resetch 3 reset channel

24F8 enbc 2 to 5 enable channel

22FF disc 2 to 7 disable channel

Table 6.9 Input and output operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F0 ret 3 return

21FB ldpi 1 load pointer to instruction

23FC gajw 3 general adjust workspace

F6 gcall 6 general call

22F1 lend 5 to 8 loop end T

Table 6.10 Control operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

FD startp 5 start process

F3 endp 4 to 6 end process D

23F9 runp 3 run process

21F5 stopp 2 stop process

21FE ldpri 1 load current priority

Table 6.11 Scheduling operation codes

STi5500 l

44/28744/289 7110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

21F3 csub0 2 check subscript from 0 A, E

24FD ccnt1 3 check count from 1 A, E

22F9 testerr 2 test error false and clear

21F0 seterr 2 set error

25F5 stoperr 2 to 3 stop on error (no error) D

25F7 clrhalterr 1 clear halt-on-error

25F8 sethalterr 1 set halt-on-error

25F9 testhalterr 2 test halt-on-error

Table 6.12 Error handling operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

25FB move2dinit 3 initialize data for 2D block move

25FC move2dall 2D block copy I

25FD move2dnonzero 2D block copy non-zero bytes I

25FE move2dzero 2D block copy zero bytes I

Table 6.13 2D block move operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

27F4 crcword 36 calculate crc on word A

27F5 crcbyte 12 calculate crc on byte A

27F6 bitcnt 3 count bits set in word A

27F7 bitrevword 2 reverse bits in word

27F8 bitrevnbits 2 reverse bottom n bits in word A

Table 6.14 CRC and bit operation codes

STi5500

45/2897110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

27F3 cflerr 3 check floating point error E

29FC fptesterr 1 load value true (FPU not present)

26F3 unpacksn 10 unpack single length floating point number A

26FD roundsn 7 round single length floating point number A

26FC postnormsn 9 post-normalize correction of single length float-
ing point number

A

27F1 ldinf 1 load single length infinity

Table 6.15 Floating point support operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF7 cir 3 check in range A, E

2CFC ciru 3 check in range unsigned A, E

2BFA cb 3 check byte A, E

2BFB cbu 2 check byte unsigned A, E

2FFA cs 3 check sixteen A, E

2FFB csu 2 check sixteen unsigned A, E

2FF8 xsword 3 sign extend sixteen to word A

2BF8 xbword 3 sign extend byte to word A

Table 6.16 Range checking and conversion instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF1 ssub 1 sixteen subscript

2CFA ls 1 load sixteen

2CF8 ss 2 store sixteen

2BF9 lbx 1 load byte and sign extend

2FF9 lsx 1 load sixteen and sign extend

Table 6.17 Indexing/array instructions

STi5500 l

46/28746/289 7110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

2FF0 devlb 3 device load byte A

2FF2 devls 3 device load sixteen A

2FF4 devlw 3 device load word A

62F4 devmove device move I

2FF1 devsb 3 device store byte A

2FF3 devss 3 device store sixteen A

2FF5 devsw 3 device store word A

Table 6.18 Device access instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F5 wait 5 to 11 wait D

60F4 signal 7 to 12 signal

Table 6.19 Semaphore instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F0 swapqueue 4 swap scheduler queue

60F1 swaptimer 5 swap timer queue

60F2 insertqueue 3 to 4 insert at front of scheduler queue

60F3 timeslice 3 to 4 timeslice

60FC ldshadow 6 to 31 load shadow registers A

60FD stshadow 6 to 17 store shadow registers A

62FE restart 20 restart

62FF causeerror 7 to 8 cause error

61FF iret 3 to 11 interrupt return

2BF0 settimeslice 2 set timeslicing status

2CF4 intdis 2 interrupt disable

2CF5 intenb 2 interrupt enable

2CFD gintdis 5 global interrupt disable

2CFE gintenb 5 global interrupt enable

Table 6.20 Scheduling support instructions

STi5500

47/2897110597 A

Memory
code

Mnemonic Processor
cycles

Name Notes

26FE ldtraph 12 load trap handler L

2CF6 ldtrapped 12 load trapped process status L

2CFB sttrapped 12 store trapped process status S

26FF sttraph 12 store trap handler S

60F7 trapenb 4 trap enable

60F6 trapdis 4 trap disable

60FB tret 8 to 10 trap return

Table 6.21 Trap handler instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

68FC ldprodid 1 load product identity

63F0 nop 1 no operation

Table 6.22 Processor initialization and no operation instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

64FF clockenb 2 clock enable

64FE clockdis 2 clock disable

64FD ldclock 2 load clock

64FC stclock 2 store clock

Table 6.23 Clock instructions

STi5500 l

48/28748/289 7110597 A

7 Interrupt controller
The interrupt system allows an on-chip subsystem or external interrupt pin to interrupt the currently
running process in order to run an interrupt handling process.

Depending on the device, an interrupt may be signalled by one of the following:

• a signal on an external Irq pin,

• a signal from an internal peripheral or subsystem,

• software asserting an interrupt in the Pending register.

Interrupts are implemented using an on-chip interrupt controller peripheral and an on-chip interrupt
level controller. The interrupt level controller (described in section 7.6) multiplexes incoming inter-
rupts onto the eight programmable interrupt inputs of the interrupt controller. This multiplexing is
controllable by software.

The interrupt controller supports eight prioritized interrupts as inputs, and manages the pending
interrupts. This allows nested pre-emptive interrupts for real-time system design.

All interrupts are at a higher priority than the low priority process queue. Each interrupt can be pro-
grammed to be at a lower or higher priority than the high priority process queue, by writing to the
priority bit in the HandlerWptr registers. Interrupts which are specified as higher priority must be
contiguous from the highest numbered interrupt downwards. For example, if 4 interrupts are pro-
grammed as higher priority and 4 as lower priority the higher priority interrupts must be
Interrupt7:4 and the lower priority interrupts Interrupt3:0.

Figure 7.1 Interrupt priority

Interrupt 7

Interrupt 0

High priority

Low priority

Increasing
pre-emption

.

...

process

process

Interrupt 7

Interrupt 0

.

...

when Priority bit set to 1

when Priority bit set to 1

when Priority bit set to 0

when Priority bit set to 0

STi5500

49/2897110597 A

7.1 Interrupt vector table

The interrupt controller contains a table of pointers to interrupt handlers. Each interrupt handler is
represented by its work space pointer (HandlerWptr). The table contains a work space pointer for
each level of interrupt.

The HandlerWptr gives access to the code, data and interrupt save space of the interrupt handler.
The position of the HandlerWptr in the interrupt table implies the priority of the interrupt.

Run-time library support is provided for setting and programming the vector table.

7.2 Interrupt handlers

At any interruptible point in its execution the CPU can receive an interrupt request from the inter-
rupt controller. The CPU immediately acknowledges the request.

In response to receiving an interrupt the CPU performs a procedure call to the process in the vector
table. The state of the interrupted process is stored in the work space of the interrupt handler as
shown in Figure 7.2. Each interrupt level has its own work space.

Figure 7.2 State of interrupted process

The interrupt routine is initialized with space below HandlerWptr. The Iptr and Status word for the
routine are stored there permanently. This should be programmed before the HandlerWptr is writ-
ten into the vector table.

The behavior of the interrupt differs depending on the priority of the CPU when the interrupt occurs.
If an interrupt occurs when the CPU is running at high priority, and the interrupt is set at a higher
priority than the high priority process queue, the CPU saves the current process state (Areg, Breg,
Creg, Wptr, Iptr and Status) into the workspace of the interrupt handler. The value HandlerWptr,
which is stored in the interrupt controller, points to the top of this work space. The values of Iptr and
Status to be used by the interrupt handler are loaded from this work space and starts executing the
handler. The value of Wptr is then set to the bottom of this save area.

Before interrupt

HandlerWptr

Areg

Breg

Creg

Interrupting high priority

HandlerWptr

Wptr

Iptr

Status

HandlerWptr

Null Status

process
Interrupting low priority

process or CPU idle

Handler Iptr

Handler Status

Handler Iptr

Handler Status

Handler Iptr

Handler Status

STi5500 l

50/28750/289 7110597 A

If an interrupt occurs when the CPU is running at high priority, and the interrupt is set at a lower pri-
ority than the high priority process queue, no action is taken and the interrupt waits in a queue until
the high priority process queue is empty (see section 7.4).

Interrupts always take priority over low priority processes. If an interrupt occurs when the CPU was
idle or running at low priority, the Status is saved. This indicates that no valid process is running
(Null Status). The interrupted processes (low priority process) state is stored in shadow registers.
This state can be accessed via the ldshadow (load shadow registers) and stshadow (store shadow
registers) instructions. The interrupt handler is then run at high priority.

When the interrupt routine has completed it must adjust Wptr to the value at the start of the handler
code and then execute the iret (interrupt return) instruction. This restores the interrupted state from
the interrupt handler structure and signals to the interrupt controller that the interrupt has com-
pleted. The processor will then continue from where it was before being interrupted.

7.3 Interrupt latency

The interrupt latency is dependent on the data being accessed and the position of the interrupt
handler and the interrupted process. This allows systems to be designed with the best trade-off use
of fast internal memory and interrupt latency.

7.4 Pre-emption and interrupt priority

Each interrupt channel has an implied priority fixed by its place in the interrupt vector table. All
interrupts will cause scheduled processes of any priority to be suspended and the interrupt handler
started. Once an interrupt has been sent from the controller to the CPU the controller keeps a
record of the current executing interrupt priority. This is only cleared when the interrupt handler
executes a return from interrupt (iret) instruction. Interrupts of a lower priority arriving will be
blocked by the interrupt controller until the interrupt priority has descended to such a level that the
routine will execute. An interrupt of a higher priority than the currently executing handler will be
passed to the CPU and cause the current handler to be suspended until the higher priority interrupt
is serviced.

In this way interrupts can be nested and a higher priority interrupt will always pre-empt a lower pri-
ority one. Deep nesting and placing frequent interrupts at high priority can result in a system where
low priority interrupts are never serviced or the controller and CPU time are consumed in nesting
interrupt priorities and not executing the interrupt handlers.

7.5 Restrictions on interrupt handlers

There are various restrictions that must be placed on interrupt handlers to ensure that they interact
correctly with the rest of the process model implemented in the CPU.

1 Interrupt handlers must not deschedule.

5 Interrupt handlers must not execute communication instructions. However they may com-
municate with other processes through shared variables using the semaphore signal to
synchronize.

6 Interrupt handlers must not perform 2D block move instructions.

7 Interrupt handlers must not cause program traps. However they may be trapped by a

STi5500

51/2897110597 A

scheduler trap.

7.6 Interrupt level controller

The interrupt level controller multiplexes twenty three incoming interrupt signals onto the eight
interrupt inputs of the interrupt controller. In this way, it gives programmable control of the priority of
the interrupts and extends the number of possible interrupts to twenty three.

There are twenty three interrupt signals to be handled by the interrupt subsystem. They may be
generated by other on-chip subsystems or be received from external pins. Software assigns signal
n to one of the 8 inputs to the interrupt controller by writing the priority of the required input in the
register IntnPriority.
Thus each input of the interrupt controller responds to zero or more of the twenty three system
interrupts. The interrupt level controller asserts interrupt output p when one or more of the input
interrupts with programmed priority equal to p are high. It is level sensitive.
Where two or more system interrupts are assigned to one interrupt handler, the routine is able to
ascertain the source of an interrupt by doing a device read from the InputInterrupts register and
examining the bits that correspond to the system interrupts assigned to that handler.

7.7 Interrupt assignments

The interrupts from the internal peripherals and external pins on the STi5500 are assigned as
shown in Table 7.1.

Interrupt Peripheral Pin Notes

0 Port 0 Compare function on PIO port.

1 Port 1 Compare function on PIO port.

2 Port 2 Compare function on PIO port.

3 Port 3 Compare function on PIO port.

4 Port 4 Compare function on PIO port.

5 SSC0 OR of signals SSC0TIR, SSC0RIR, SSC0EIR.

6 ASC3 OR of signals ASC3TIR, ASC3TBIR, ASC3RIR, ASC3EIR.

7 ASC2 OR of signals ASC2TIR, ASC2TBIR, ASC2RIR, ASC2EIR.

8 ASC1 OR of signals ASC1TIR, ASC1TBIR, ASC1RIR, ASC1EIR.

9 ASC0 OR of signals ASC0TIR, ASC0TBIR, ASC0RIR, ASC0EIR.

10 PWM and Capture OR of signals PWMInt, Capture[2:0]Int, Compare[2:0]Int.

11 Teletext Teletext DMA complete.

12 Transport Stream Demultiplexor

13 Reserved

14 Video decoder

15 Audio decoder

Table 7.1 Interrupt assignments

STi5500 l

52/28752/289 7110597 A

16 Reserved

17 Reserved

18 Irq0

19 Irq1

20 Irq2

Interrupt Peripheral Pin Notes

Table 7.1 Interrupt assignments

STi5500

53/2897110597 A

8 Memory map
The STi5500 has a 32-bit signed (twos complement) address space where the address ranges
from MinInt (#80000000) at the bottom to MaxInt (#7FFFFFFF) at the top. 32-bit (four-byte) words
are addressed by 30-bit word addresses, and a 2-bit byte-selector identifies the bytes in the word.

Memory is divided into areas with different memory characteristics and intended purposes. Some
areas are dedicated to a specific purpose either because they contain memory-mapped devices or
because they are reserved by the system.

Figure 8.1 shows the broad memory map arrangement, and Table 8.1 shows the details.

Figure 8.1 Memory map

MinInt: 0x80000000
2 Kbyte SRAM

2 Kbyte data cache when used as SRAM
0x80001000

0xC0000000

0x00000000

0x7FFFFFFF

0x80000800

Shared SDRAM
0xC0400000

0x40000000
EMI Bank 0

EMI Bank 1

EMI Bank 2

EMI Bank 3

0x50000000

0x60000000

0x70000000

Peripheral configuration registers

0x20040000

R
eg

io
n

 0
R

eg
io

n
 3

R
eg

io
n

 2
R

eg
io

n
 1

Not available

Reserved

Not available

STi5500 l

54/28754/289 7110597 A

The space is divided up for different uses as follows:

• The bottom 2 Kbytes, or optionally if the Data Cache is not used 4 Kbytes, is occupied by
on-chip SRAM

• The 4 Mbyte area from 0xC0000000 to 0xC03FFFFF (in region 1) is for SDRAM, which is
shared with the MPEG decoders.

• The area from 0x00000000 to 0x3FFFFFFF (region 2) is dedicated to memory-mapped or
command-mapped on-chip peripherals. Memory-mapped on-chip or off-chip peripherals
must be accessed via the Device Access Instructions rather than normal addressing.

• 0x40000000 to 0x7FFFFFFF (region 3) is for external memory and peripherals, accessed
through the External Memory Interface (EMI).

8.1 System memory use

Addresses below MemStart are dedicated to processor use and should not be accessed directly
but via the appropriate instructions. The address of MemStart can be obtained using the ldmem-
startval instruction.

When booting from ROM, the system boots from the predefined location BootEntry (#7FFFFFFE)
near the top of memory.

8.1.1 Subsystem channels memory

Each channel-based DMA subsystem is allocated a word of storage below MemStart. This is used
by the processor to store information about the state of the channel. This information should not
normally be examined directly, although debugging kernels may need to do so.

Interrupting DMA subsystems do not have a channel word allocated and rely on interrupts to per-
form synchronisation with the processes running on the processor.

8.1.2 Boot channel

The subsystem channel which is a link input channel is identified as a ‘boot channel’. When the
processor is reset, and is set to boot from link, it waits for boot commands on this channel. In
the case of STi5500 this is the OS-link channel Link0.

8.1.3 Trap handlers memory

The area of memory reserved for trap handlers is broken down hierarchically. Full details on trap
handlers is given in the section on the CPU.

• Each high/low process priority has a set of trap handlers.

• Each set of trap handlers has a handler for each of four trap groups.

• Each trap group handler has a trap handler structure and a trapped process structure.

• Each of the structures contains four words.

The contents of these addresses can be accessed via ldtraph, sttraph, ldtrapped and sttrapped
instructions.

STi5500

55/2897110597 A

8.1.4 Boot ROM

When the processor boots from ROM, it jumps to a boot program held in ROM with an entry point 2
bytes from the top of memory at #7FFFFFFE. These 2 bytes are used to encode a negative jump
of up to 256 bytes down in the ROM program. For large ROM programs it may then be necessary
to encode a longer negative jump to reach the start of the routine.

8.2 External Memory Space

The EMI decodes the top quarter of the address space into four banks into which different external
memories and peripherals can be mapped.

When the STi5500 is in slave mode the EMI inverts address bits 21-19 for any access to Bank 3 to
avoid a clash with the ROM address space used by the PowerPC.

Further details of the EMI can be found in Chapter 10.

8.3 Internal peripheral space

On-chip peripherals are mapped to addresses in the address range 0x00000000 to 0x3FFFFFFF.
They can only be accessed by the device access instructions listed in Table 6.18.

Each on-chip peripheral occupies a 4 Kbyte block, as shown in Table 8.1. Table 8.2 lists the vari-
ables used elsewhere in this document to signify the bases of blocks of registers.

STi5500 l

56/28756/289 7110597 A

Designation
Address (byte)

Use
Start Finish

MaxInt #7FFFFFFF Boot jump offset byte 1

BootEntry #7FFFFFFE Boot entry point: jump offset byte 0

#70000000 #7FFFFFFD
ST20 EMI bank 3:

Boot ROM

#60000000 #6FFFFFFF
ST20 EMI bank 2:

Uncommitted: User code/data/stack/peripherals

#50000000 #5FFFFFFF
ST20 EMI bank 1:

Uncommitted: User code/data/stack/peripherals

#40000000 #4FFFFFFF

ST20 EMI bank 0:

DRAM if present, else uncommitted:

User code/data/stack/peripherals

#20027000 #3FFFFFFF RESERVED

#20026000 #20026FFF Block move DMA controller peripheral*

#20025000 #20025FFF RESERVED

#20024000 #20024FFF Teletext DMA controller peripheral*

#20023000 #20023FFF RESERVED

#20022000 #20022FFF MPEGDMA2 (SDAV) controller peripheral*

#20021000 #20021FFF MPEGDMA1 controller peripheral*

#20020000 #20020FFF MPEGDMA0 controller peripheral*

#20012000 #2001FFFF RESERVED

#20011000 #20011FFF Interrupt level controller peripheral*

#20010000 #20010FFF PIO4 controller peripheral*

#2000F000 #2000FFFF PIO3 controller peripheral*

#2000E000 #2000EFFF PIO2 controller peripheral*

#2000D000 #2000DFFF PIO1 controller peripheral*

#2000C000 #2000CFFF PIO0 controller peripheral*

#2000B000 #2000BFFF PWM and counter controller peripheral*

#2000A000 #2000AFFF RESERVED

#20009000 #20009FFF SSC controller peripheral*

#20008000 #20008FFF SmartCard1 clock generator peripheral*

#20007000 #20007FFF SmartCard0 clock generator peripheral *

#20006000 #20006FFF ASC3 controller peripheral*

#20005000 #20005FFF ASC2 (SmartCard1) controller peripheral*

#20004000 #20004FFF ASC1 controller peripheral*

#20003000 #20003FFF ASC0 (SmartCard0) controller peripheral*

#20002000 #20002FFF Transport stream demultiplexor registers*

#20001000 #20001FFF RESERVED

#20000000 #20000FFF Interrupt Controller*

*Registers accessed via CPU device accesses

Table 8.1 STi5500 memory map

STi5500

57/2897110597 A

#00005000 #1FFFFFFF RESERVED

#00004000 #00004FFF Cache configuration*

#00003000 #00003FFF Diagnostic controller*

#00002000 #00002FFF EMI configuration*

#00001000 #00001FFF MPEG Data/Registers*

#00000000 #00000FFF RESERVED

Start of external memory #C0000000 #FFFFFFFF SDRAM: Video memory/user code/data/stack

#80004000 #BFFFFFFF RESERVED

#80000800 #80000FFF
Internal SRAM if the data cache is not enabled.

User code/data/stack

MemStart #80000140 #800007FF Internal SRAM: <2Kbytes user code/data/stack

#80000130 #8000013F Low priority Scheduler trapped process

#80000120 #8000012F Low priority Scheduler trap handler

#80000110 #8000011F Low priority SystemOperations trapped process

#80000100 #8000010F Low priority SystemOperations trap handler

#800000F0 #800000FF Low priority Error trapped process

#800000E0 #800000EF Low priority Error trap handler

#800000D0 #800000DF Low priority Breakpoint trapped process

#800000C0 #800000CF Low priority Breakpoint trap handler

#800000B0 #800000BF High priority Scheduler trapped process

#800000A0 #800000AF High priority Scheduler trap handler

#80000090 #8000009F High priority SystemOperations trapped process

#80000080 #8000008F High priority SystemOperations trap handler

#80000070 #8000007F High priority Error trapped process

#80000060 #8000006F High priority Error trap handler

#80000050 #8000005F High priority Breakpoint trapped process
TrapBase #80000040 #8000004F High priority Breakpoint trap handler

#80000038 #8000003F RESERVED

#80000034 #80000037 Block move DMA controller channel out

#8000002C #80000033 RESERVED

#80000028 #8000002B MPEG2 (SDAV) DMA channel

#80000024 #8000002A MPEG1 DMA channel

#80000020 #80000023 MPEG0 DMA channel

#80000014 #8000001F RESERVED

#80000010 #80000013 Link0 (boot) input channel

#80000004 #8000000F RESERVED
MinInt #80000000 #80000003 Link0 output channel

Designation
Address (byte)

Use
Start Finish

*Registers accessed via CPU device accesses

Table 8.1 STi5500 memory map

STi5500 l

58/28758/289 7110597 A

Variable Value Block

ASC0BaseAddress 0x20003000 Asynchronous serial controller (ASC) 0.

ASC1BaseAddress 0x20004000 Asynchronous serial controller (ASC) 1.

ASC2BaseAddress 0x20005000 Asynchronous serial controller (ASC) 2.

ASC3BaseAddress 0x20006000 Asynchronous serial controller (ASC) 3.

AudioBaseAddress 0x00001200 MPEG audio decoder.

BMBaseAddress 0x20026000 Block move DMA controller.

CacheBaseAddress 0x00004000 Cache configuration.

DCUBaseAddress 0x00003000 Diagnostic controller unit (DCU).

DENCBaseAddress 0x00001600 PAL/NTSC digital encoder.

EMIBaseAddress 0x00002000 External memory interface (EMI).

IntControllerBase 0x20000000 Interrupt controller.

InterruptLevelBase 0x20011000 Interrupt level controller.

MPEGDMA0BaseAddress 0x20020000 MPEG DMA0 controller.

MPEGDMA1BaseAddress 0x20021000 MPEG DMA1 controller.

MPEGDMA2BaseAddress 0x20022000 MPEG DMA2 (SDAV) controller.

PIO0BaseAddress 0x2000C000 PIO port 0 controller.

PIO1BaseAddress 0x2000D000 PIO port 1 controller.

PIO2BaseAddress 0x2000E000 PIO port 2 controller.

PIO3BaseAddress 0x2000F000 PIO port 3 controller.

PIO4BaseAddress 0x20010000 PIO port 4 controller.

PWMBaseAddress 0x2000B000 PWM and counter module.

SmartCard0BaseAddress 0x20007000 SmartCard interface 0.

SmartCard1BaseAddress 0x20008000 SmartCard interface 1.

SSCBaseAddress 0x20009000 Synchronous serial controller (SSC) 0.

SubPictureBaseAddress 0x00001400 Sub-picture decoder.

TransportDemuxBase 0x20002000 Transport stream demultiplexor.

TtxtBaseAddress 0x20024000 Teletext interface.

VideoBaseAddress 0x00001000 MPEG video decoder.

Table 8.2 Register block base variables

STi5500

59/2897110597 A

9 Memory
Memory is normally accessed by the load, store, block move and channel instructions. These will
use data cache if it is enabled, and do not guarantee the order of accesses to different addresses.
The device access instructions listed in Table 6.18 should be used when there is a need to bypass
the data cache in a cacheable area, or if there is a need to know when a write occurs to an external
device or memory area.

9.1 External memory

9.1.1 EMI accessible memory

The EMI decodes region 3 of the address space into four banks, into which different external mem-
ories and peripherals can be mapped. Further details of the EMI can be found in Chapter 10. One
of the banks supports DRAM and one bank is normally used for boot ROM.

• The locations 0x40000000 to 0x4FFFFFFF are generally used for DRAM, but may be used
for any external memory or peripherals.

• The locations 0x50000000 to 0x6FFFFFFF may be used for any external memory or
peripherals except DRAM.

• The locations 0x70000000 to 0x7FFFFFFF may be used for any external memory or
peripherals except DRAM, but are generally used for boot ROM. When booting from ROM,
the system boots from the predefined location BootEntry (0x7FFFFFFE) near the top of
memory space.

Accessing some areas of memory causes special access characteristics (strobes etc.) to be gener-
ated depending on the way the EMI is programmed.

The EMI provides address decoding, address and data buses, timing strobes, enabling signals and
refresh where appropriate.

9.1.2 SDRAM

SDRAM occupies the first 32 Mbits of region 1, and is shared with the MPEG decoders. OSD bit-
maps, for example, are stored in this memory.

For details of the SDRAM interface configuration and set-up, refer to the register manual.

9.2 On-chip SRAM memory

This internal memory module, known as on-chip memory, contains

• 2 Kbytes of dedicated SRAM, mapped into the lowest 2 Kbytes of memory space from Min-
Int (0x80000000) extending upwards, as shown in Figure 8.1.

• 2 Kbytes which can be configured as SRAM or as data cache. When it is configured as
SRAM, it is mapped to the 2 Kbytes immediately above the dedicated SRAM, i.e. from
0x80000800 upwards, as shown in Figure 8.1. The default configuration is SRAM.

STi5500 l

60/28760/289 7110597 A

Part of the lowest 2 Kbytes of memory is committed to system use; see section 8.1 and Table 8.1
for details. The remainder of the lowest 2 Kbytes of memory is uncommitted and can be used to
store on-chip data, stack or code for time-critical routines.

Locations between 0x80001000 (or 0x80000800 if data cache is used) and 0xBFFFFFFF should
not be addressed.

9.3 Caching

Cache can be used to reduce the average access delay imposed on the CPU when it accesses a
memory location to read or write. Some locations should not be cached, for example those to
which other modules have direct memory access.

The STi5500 cache subsystem provides:

• 2 Kbytes of direct-mapped write-back data cache;

• 2 Kbytes of direct-mapped read-only instruction cache.

The data cache may be configured as memory. If it is used as data cache, the region bounded by
the addresses 0x80000800 to 0x80000FFF in main memory should not be used.

The instruction cache is identical in operation to the data cache, except that it is read-only and can-
not be configured as SRAM.

The cache configuration is held in memory-mapped registers. The registers must be accessed
using the device access instructions.

Device access instructions can also be used to force access to external memory without going
through the cache. These instructions can be used to solve any cache coherency issues. Device
writes do not change the value in the cache.

Registers are provided to configure areas of memory to be cacheable or non-cacheable for data
access, as described in section 9.4.5.

Note that the correct cache initialization sequences, described in section 9.3.2, must be used
before the caches are enabled.

9.3.1 Outline of Operation

The cache is four 32-bit words (16 bytes) wide and 128 lines (2 KBytes, 512 words) high. It is
direct-mapped (sometimes called one way set associative). This is shown in Figure 9.1.

STi5500

61/2897110597 A

Figure 9.1 2 Kbyte data or instruction cache

Each line of the cache can only store data from specific four-word sections of memory at 2 Kbyte
intervals, with the bottom line of the cache coinciding with the 4 words just above each 2 Kbyte
boundary. Thus the line number of the cache pinpoints the four-word section of memory within a 2
Kbyte block, i.e. bits 4 to 10 of the address. The 21 most significant bits of the address selects the
2 Kbyte block. These 21 bits are stored in 128 tag registers, with one tag register corresponding to
each cache lines. The significance of the parts of the address when using the cache are shown in
Figure 9.2

Figure 9.2 Address fields when using cache

If a request is made to access a cacheable memory location, and a copy of that location is held in
cache, then the access is said to have made a cache hit. A hit is identified by comparing the
address bits 11 to 31 with the address tag for the cache line given by the address bits 4 to 10. If the
cache is hit, then the access is completed by the cache subsystem. If the cache is missed, the
appropriate cache line is written back to memory, and if necessary the new location in memory is
read into that cache line. All cache reads and writes to memory are complete lines because of the
efficiency of accessing the memory in burst mode.

16 bytes per line

128 lines

Address tag
bits 31 to 11

4-bit selector of
byte within cache line

0341031

7-bit selector of line in
2 Kbyte memory block

or cache

21-bit address tag

STi5500 l

62/28762/289 7110597 A

9.3.2 Cache initialization

Before the caches are enabled, they must be correctly initialized. To do this the cache must first be
invalidated before it is accessed. To ensure this occurs, the invalidate bit of each cache must be set
with the cache disabled and then the enable bit set to enable the cache.

This sequence has the effect of forcing a cache to be invalid, which initializes the cache state
before any other accesses are considered by the cache.

9.4 Cache subsystem control registers

The cache subsystem can be controlled by registers which are mapped into the device address
space. The registers are grouped in a 4 Kbyte block, with the base of the block at the address
CacheBaseAddress. The value of CacheBaseAddress is given in the Memory Map chapter. The
addresses of the registers are given in the tables as offsets from this address. The cache control
registers are listed in Table 9.1.

The cache subsystem registers enable the caches, control cache functions such as flushing and
invalidation, and are used to mark sections of memory space as cacheable or not cacheable. Reg-
isters should be accessed using the device access instructions.

The CacheControlLock must be 0 before cache can be enabled or memory can be made cache-
able. After changing these registers, the CacheControlLock should be set to 1. Once this lock is
set it cannot be cleared except by a reset. It is not recommended to change the cache configura-
tion other than at reset.

9.4.1 Selecting cache

It is possible to select either data cache or an extra 2 Kbyte of on-chip SRAM. This is done by writ-
ing to the DCacheNotSRAM bit of the SelectCache register. The default is to select the extra on-
chip SRAM. It is not recommended to change the selection other than during booting of the appli-
cation. To select data cache mode, set the DCacheNotSRAM bit to 1. Do not access locations
0x80000800 to 0x80000FFF when using the data cache.

The instruction cache is enabled by setting EnableICache to 1 in the SelectCache register.

Register Offset Bits Access Function
Reset
value

CacheControl 0x000 8 R/W
Cacheability of address range 0xC0000000 to
0xC007FFFF and 0xC0200000 to #C027FFFF.

0

SelectCache 0x100 2 W Enable cache. 0

InvalidateDCache 0x200 1 W Invalidate the data cache. -

InvalidateICache 0x300 1 W Invalidate the instruction cache. -

FlushDCache 0x400 1 W Flush the data cache. -

CacheControlLoc
k

0x500 1 R/W
Lock the CacheControl, SelectCache and
CacheControlLock registers.

0

Table 9.1 Cache control registers

STi5500

63/2897110597 A

All cache should be invalidated before being enabled, as described in section 9.3.2. When cache is
enabled, the cache contents will be random and must be invalidated by setting the invalidate bit
first before enabling the cache.

Changing from SRAM to data cache should normally only be performed during the initialization
stage of an application. However, if it is necessary to do so at other times, it is essential to invali-
date the cache contents by setting the invalidate bit first and then enabling the cache.

It is not recommended to change selection from data cache to SRAM during operation. However, if
it is necessary to do so, it is essential to flush the cache to maintain memory integrity before mak-
ing the change.

9.4.2 Invalidating cache

Invalidating a cache marks every line as not containing valid data.

Data cache

The data cache is invalidated by setting the InvalidateDCache register to 1. This register is auto-
matically reset to 0 on completion of the task.

Any memory accesses that are cacheable which are started before the data cache invalidation is
complete will be blocked until it is completed.

Instruction cache

The instruction cache is invalidated by setting the InvalidateICache register to 1. This register is
automatically reset to 0 on completion of the task.

Any instruction fetches that are cacheable and were started before completion of the invalidation of
the instruction cache, will be blocked until it is completed.

SelectCache CacheBaseAddress + 0x100 Write only

Bit Bit field Function

0 DCacheNotSRAM
Select the configuration for data cache memory.

0 SRAM (default).
1 Data cache.

1 EnableICache
Enable the instruction cache.

0 Disabled.
1 Enabled.

Table 9.2 DCacheNotSRAM register format

InvalidateDCache CacheBaseAddress + 0x200 Write only

Bit Bit field Function

0 Invalidate
Select the configuration for data cache memory.

0 No action.
1 Invalidate the data cache.

Table 9.3 InvalidateDCache register format

STi5500 l

64/28764/289 7110597 A

9.4.3 Flushing the data cache

Flushing the cache means forcing a write-back to memory of every dirty line in the cache. A dirty
line is a line of cache that has been written to since it was loaded or last written back. Only the data
cache can be flushed; the instruction cache never needs flushing since it is read only.

To flush the data cache, set the FlushDCache register to 1. It is automatically reset to 0 on com-
pletion of the task. Any memory accesses that are cacheable which were started before the flush of
the data cache is complete, will be blocked until it is completed.

9.4.4 Lock register

The cache configuration can be locked by writing a 1 to the CacheControlLock register bit. Reset
of this flag is only performed by a hardware reset. This bit should be set to 1 after all the cache con-
figuration registers have been written.

9.4.5 Cacheable and non-cacheable memory locations

It may be desirable for some locations in memory to be not cached. For example, where other units
have direct memory access, the cache could get out of step with the memory, i.e. the cache could
become incoherent.

InvalidateICache CacheBaseAddress + 0x300 Write only

Bit Bit field Function

0 Invalidate
Invalidate the instruction cache.

0 No action.
1 Invalidate the instruction cache.

Table 9.4 InvalidateICache register format

FlushDCache CacheBaseAddress + 0x400 Write only

Bit Bit field Function

0 Flush
Flush the data cache.

0 No action.
1 Flush the data cache.

Table 9.5 FlushDCache register format

CacheControlLock CacheBaseAddress + 0x500 Read/write

Bit Bit field Function

0 Lock
Lock the CacheControl, SelectCache and CacheControlLock registers.

0 Unlocked, i.e. registers can be written.
1 Locked, i.e. registers can only be read.

Table 9.6 CacheControlLock register format

STi5500

65/2897110597 A

Some areas of memory are predefined to be cacheable, some are predefined to be not cacheable,
and other areas may be programmed to be cacheable by the data cache using the configuration
registers. The cacheability of an area of memory by the data cache may be different from the
cacheability by the instruction cache. Cacheability by the instruction cache is predefined.

Table 9.7 summarizes the cacheability of different areas of memory. Table 9.9, illustrated by
Figure 9.3 shows the programmable cacheability by the data cache.

Setting one bit in the CacheControl register makes two 64 Kbyte blocks of SDRAM cacheable,
one block near the bottom of each half of SDRAM space.

Region Memory Range Data cache Instruction cache

Region 0 0x80000000 - 0xBFFFFFFF Only the bottom 2 Kbytes of SRAM. Not cacheable.

Region 1 0xC0000000 - 0xFFFFFFFF
Not cacheable except where defined by the
CacheControl register.

Fully cacheable.

Region 2 0x00000000 - 0x3FFFFFFF Not cacheable. Fully cacheable.

Region 3 0x40000000 - 0xFFFFFFF Fully cacheable. Fully cacheable.

Table 9.7 Memory cacheability

CacheControl CacheBaseAddress + 0x000 Read/write

Bit Bit field Function

0-7 Cacheable0-7
Set the cacheability by the data cache of the two address ranges given in Table 9.9.

0 Not cacheable.
1 Cacheable.

Table 9.8 CacheControl register format

Bit
Lower half of SDRAM Upper half of SDRAM

Block start Block end Block size Block start Block end Block size

0 0xC0000000 0xC000FFFF 64 Kbytes 0xC0200000 0xC020FFFF 64 Kbytes

1 0xC0010000 0xC001FFFF 64 Kbytes 0xC0210000 0xC021FFFF 64 Kbytes

2 0xC0020000 0xC002FFFF 64 Kbytes 0xC0220000 0xC022FFFF 64 Kbytes

3 0xC0030000 0xC003FFFF 64 Kbytes 0xC0230000 0xC023FFFF 64 Kbytes

4 0xC0040000 0xC004FFFF 64 Kbytes 0xC0240000 0xC024FFFF 64 Kbytes

5 0xC0050000 0xC005FFFF 64 Kbytes 0xC0250000 0xC025FFFF 64 Kbytes

6 0xC0060000 0xC006FFFF 64 Kbytes 0xC0260000 0xC026FFFF 64 Kbytes

7 0xC0070000 0xC007FFFF 64 Kbytes 0xC0270000 0xC027FFFF 64 Kbytes

Table 9.9 Blocks of memory which may be programmed to be data cacheable

STi5500 l

66/28766/289 7110597 A

Figure 9.3 Cacheable memory areas in Region 1

0xC007FFFF
0xC0070000
0xC006FFFF
0xC0060000
0xC005FFFF
0xC0050000
0xC004FFFF
0xC0040000
0xC003FFFF
0xC0030000
0xC002FFFF
0xC0020000
0xC001FFFF
0xC0010000
0xC000FFFF
0xC0000000

Block 7

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0

0xC027FFFF
0xC0270000
0xC026FFFF
0xC0260000
0xC025FFFF
0xC0250000
0xC024FFFF
0xC0240000
0xC023FFFF
0xC0230000
0xC023FFFF
0xC0220000
0xC021FFFF
0xC0210000
0xC020FFFF
0xC0200000

 7

 6

 5

 4

 3

 2

 1

 0

Block 7

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0

 7

 6

 5

 4

 3

 2

 1

 0

Region 1

Region 0

Memory map CacheControl
register bit

Block address Block Address

CacheControl
register bit

STi5500

67/2897110597 A

10 External memory interface
The External Memory Interface (EMI) controls the movement of data between the STi5500 and off-
chip memory. It is designed to support memory subsystems with minimal (often zero) external sup-
port logic.

The EMI can access a 16 Mbyte physical address space (greater if DRAM is used) in four general
purpose memory banks. The EMI supports the memory subsystems required in most set top
receiver applications, including 16-bit DRAM devices, with zero external support logic.

The interface can be configured for a wide variety of timing and decode functions through configu-
ration registers.

The EMI maps external memory into the top quarter of the address space and is partitioned into
four banks with each bank occupying one sixteenth of the total address space (see Figure 10.1).
This allows the implementation of mixed memory systems with support for DRAM, SRAM,
EPROM, and I/O. The timing of each of the four memory banks can be selected separately, with
different device types being placed in each bank with no external hardware support.

Figure 10.1 Memory allocation

The EMI supports two distinct types of memory, called device types:

• DRAM type with a multiplexed row and column address which is used to support fast page
mode DRAM or other devices with multiplexed rows and columns;

• SRAM or peripheral type which is used to support SRAMs, peripherals, EPROM or Flash
ROMs.

00000000

7FFFFFFF

FFFFFFFF

80000000 Internal SRAM

BFFFFFFF
C0000000

3FFFFFFF
40000000

On-chip peripheral registers
(including the EMI and cache configuration registers)

are mapped into this region.

Addresses shown are physical addresses.

On-chip peripheral
registers

EMI bank0

EMI bank1

EMI bank3

EMI bank2
70000000

60000000

50000000

80000800
80001000

SRAM (D-cache off)

MPEG SDRAM

STi5500 l

68/28768/289 7110597 A

EMI bank 0 can support either type, while banks 1, 2 and 3 only support SRAM or peripheral type.
Only 16-bit wide devices are supported.

As the banks are of a fixed size, range checking of addresses is not possible. This means that soft-
ware tools must be aware of the physical external memory capacity. The behavior of some of the
strobes depends on whether the bank being accessed has been configured as DRAM or SRAM /
peripheral.

In this chapter a cycle is one processor clock cycle and a phase is one half of the duration of one
processor clock cycle.

10.1 Pin functions

This section describes the functions of the external memory interface pins. A signal name prefixed
by not indicates active low.

Data0-15

The data bus transfers 16-bit data items. The least significant bit of the data bus is always Data0,
and the most significant bit is Data15.

Adr1-21

The address bus may be operated in both multiplexed and non-multiplexed modes. When bank 0 is
configured to device type DRAM then the internally generated 32-bit address is multiplexed as row
and column addresses through the external address bus.

not_WE0-1

The EMI uses 2-byte word addressing and two byte enable strobes are provided, one for each
byte.16-bit wide memory is defined as an array of 2-byte words, with 22 address bits selecting a 2-
byte word and not_WE0-1 selecting a byte within the word. not_WE0 enables the least significant
byte, named byte 0, containing data bits 0 to 7. This pin should be connected to the enable for
Data0-7. Similarly, not_WE1 enables the most significant byte, named byte 1, containing data bits
8 to 15. This pin should be connected to the enable for Data8-15. Other bus masters must not drive
the same data pins during a write.

For banks configured for SRAM or peripherals, the not_WE strobes are fully programmable. They
may be used as data enable strobes with the same timing and may be configured to be active on
read cycles, write cycles, or both read and write cycles. For banks configured as DRAM, the
not_WE strobes are directly related to the not_Cas strobe timing for that bank and are active dur-
ing write cycles only.

not_Ras0-1

EMI banks 0 is capable of supporting DRAM devices. Furthermore this bank may be sub-decoded
into two sub-banks. The stobes not_Ras0-1 are used as the DRAM RAS strobes to this bank or
these sub-banks.

If bank 0 is not configured for device type DRAM, then the not_Ras0 strobe is used as a chip
select for this banks.

STi5500

69/2897110597 A

Table 10.1 summarizes the behavior of the not_Ras0-1 strobes for bank 0.

not_Cas0-1

The two CAS strobes not_Cas0-1 are only used for bank 0 when configured for DRAM-type
devices. The CAS strobes can be programmed to be in one of two modes.

• Bank mode in which only one CAS strobe is used for the entire bank and sub-banks (if
any).

• Byte mode in which each CAS strobe is used as a byte-decoded CAS strobe and can be
used across both banks (and any sub-banks).

Byte mode is used to support 16-bit wide DRAMs or DRAM modules that provide multiple CAS
strobes, one for each byte, and a single write signal to allow byte write operations.

The alternative type of DRAMs that has multiple write signals, one for each byte, and a single CAS
to allow byte write operations or banks that are constructed from 1, 4, or 8-bit wide DRAMs can be
interfaced using bank mode.

CAS strobes in bank mode

If bank 0 is set to DRAM device type with bank mode selected, then not_Cas0 is the sole CAS
strobe for bank 0. Unused CAS strobes remain inactive during an access.

CAS strobes in byte mode

For banks containing DRAM that requires byte decoded CAS strobes, one programmable CAS
strobe is allocated to each byte. Each of the CAS strobes in this mode will have the timing pro-
grammed into the CAS timing configuration registers of bank 0, if they are active during that cycle.
Byte mode CAS strobes are active during an access if the byte corresponding to the strobe is being
accessed.

During refresh cycles, all CAS strobes will go low at the start of the cycle and remain low until the
end of the cycle.

In byte mode, not_Cas0 enables Data0-7 and not_Cas1 enables Data8-15. Only the CAS strobes
that enable bytes which are being accessed will be active during an access cycle.

Mixing bank and byte mode

For full flexibility bank 0 features CAS mode (byte or bank mode) support. Table 10.2 gives a full
listing of the active strobes for each mode.

Bank configuration not_Ras0 pin not_Ras1 pin

Bank 0 DRAM with no sub-decoding Bank 0 RAS strobe Unused

Bank 0 DRAM with two sub-banks Bank 0 sub-bank 0 RAS strobe Bank 0 sub-bank 1 RAS strobe

Bank 0 contains SRAM / peripheral Bank 0 chip select strobe Unused

Table 10.1 RAS pin functionality for bank 0

STi5500 l

70/28770/289 7110597 A

not_CE0-3

The not_CE0-3 strobes act as the chip select strobes for banks 0 to 3 respectively of the EMI.
Bank 3 usually, though not necessarily, contains the system ROM.

MemWait

Wait states can be generated by taking MemWait high. MemWait is sampled during SRAM or
peripheral accesses only.

MemWait retains the state of any strobe during the cycle after the one in which it was asserted
until it is deasserted. When MemWait is de-asserted the access continues as programmed by the
configuration interface. The MemWait signal must be synchronous with the ProcClockOut clock.

not_OE

The behavior of the not_OE signal depends on the type of memory being accessed. If the access
is to a bank configured for DRAM then the not_OE strobe is active only during a read access when
it is asserted low CASe1Time after the start of CASTime, and deasserted high at the end of CAS-
Time. For accesses to configured as SRAM / peripheral the not_OE strobe is programmable and
will behave according to the values in the EMIConfigData registers for that bank.

ReadnotWrite

This signal indicates whether the current cycle is a read or a write cycle. During writes, the signal is
asserted low at the beginning of the access (i.e. at the start of RASTime for DRAM banks and at
the start of CSTime for SRAM / peripheral banks) and deasserted high at the end of the access
(end of CASTime / CSTime). At all other times this signal is held high.

ProcClockOut

This is a reference signal for external bus cycles, which oscillates at the processor clock frequency.

10.1.1 External bus cycles

The external memory interface is designed to provide efficient support for dynamic memory and
other devices such as static memory and IO devices. This flexibility is provided by allowing the
required wave-forms to be programmed via configuration registers (see section 10.2).

Memory is byte addressed, with 16-bit words aligned on 2-byte boundaries.

During read cycles byte level addressing is performed internally by the STi5500. The EMI can read
bytes or words. The width of the bank is fixed at 16 bits.

During write cycles the STi5500 uses the not_WE0-1 strobes to perform addressing of bytes. If a
particular byte is not to be written then the corresponding data outputs are tristated. Writes can be
less than the size of the bank.

Bank configuration not_Cas0 not_Cas1

Bank mode Active Unused

Byte mode Active Data0-7 Active Data8-15

Table 10.2 Active strobes in bank and byte mode

STi5500

71/2897110597 A

The internally generated address is indicated on pins Adr1-21. The least significant bit of the data
bus is always Data0.

The following sections describe the access cycles for the two device types supported, DRAM and
SRAM or peripherals

10.1.2 DRAM access cycles

DRAM access cycles are supported in Bank 0 only when it is set to device type DRAM.

A DRAM memory access cycle consists of a number of defined periods or times, as shown in
Figure 10.2. All of the named times shown in this diagram together with other parameters such as
RAS address shift and page size are programmable to suit a wide variety of DRAM types.

Figure 10.2 DRAM memory cycle

RASTime and CASTime are consecutive. The CASTime can be followed by concurrent Precharge
and BusRelease times.

not_WE0-1

Constant high for reads

Constant high for reads

Read data
latch time

Address bus

Start of cycle

RASTime CASTime PrechargeTime

Row Column

RASe1Time RASe2Time

CASe1Time CASe2Time

CASe1Time

Bus release
time

Data inData bus (read)

1 phase

Data out

Data drive delay

Data bus (write)

ReadnotWrite

not_OE (read)

not_CAS0-1

not_Ras0-1

STi5500 l

72/28772/289 7110597 A

Thus for DRAM, these times are used for RAS address latching, CAS address latching, RAS pre-
charge and output driver tristate times respectively. For consecutive access to the same bank of
DRAM, RASTime will only occur when there is a page miss. The next access will not commence
until the PrechargeTime for a previous access to the same bank has completed. During the RAS-
Time, a transition can only be programmed on the RAS strobes.

During the CASTime the CAS strobes and either the byte-enable or not_OE strobes are active.
The address is output on the address bus without being RAS shifted. Write data is valid during
CASTime. Read data is latched into the interface at the point defined by the LatchPoint bit in the
EMIConfigData3 register for the bank being accessed.

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime.
A PrechargeTime will occur, and the active not_Ras strobe will be taken high if:

• the next access is to the same bank but to a different row address.

• the next access is to a different bank.

Having two sub banks doubles the page size of the bank.

The BusReleaseTime runs concurrently with the PrechargeTime and will occur if:

• the current cycle is a read and the next cycle is a write.

• the current cycle is a read and the next cycle is a read from a different bank.

The BusReleaseTime is provided to allow an accessed device to float to a high impedance state.

Page mode

DRAM pages are delineated using the RASBits configuration parameter. These bits are used as
an address mask for comparison with the previous DRAM address. If an access is requested by an
internal subsystem of the STi5500 to a DRAM bank while a DRAM access is in progress, the new
address is compared to the current access address. If the row addresses are the same, the access
may proceed as a page mode access. There is no specific configuration bit to select pagemode
DRAM. If all the RASBits are set to 0, then no page hits will be caused and normal DRAM RAS/
CAS cycles will always be produced.

A page mode access does not include the RASTime period. The not_Ras strobe is not taken high
before commencing the page mode access. If the current access is a read and the page mode
access is due to be a write, a BusReleaseTime is inserted as shown in Figure 10.3. The not_Ras
strobe is held low during this period.

STi5500

73/2897110597 A

Figure 10.3 Read followed by page mode write

If the bank has been sub-decoded, the sub-bank selection address bits must be included in the
comparison, so the RASBits corresponding to these addresses must be set.

For example, if the DRAM bank is composed of two 256k × 16 devices, the sub-bank selection
address bit is A19, so the RASBits corresponding to address bits A19-A10 must be set.

When page mode is active, the RASe2time must be programmed to zero. Future upgrades may
relax this constraint; it is not considered essential now.

Refresh

DRAM banks are periodically refreshed at intervals specified by the RefreshInterval configuration
parameter.

The not_Cas strobes are taken low at the beginning of the refresh time. The position of the RAS
falling edge (RASedge) is programmable and the minimum width of the CAS pulse is the sum of
the RASTime and CASTime values specified for random access. If there is more than one bank of
DRAM the refresh configuration will then be taken from the lowest numbered bank configured as
DRAM.

Sub-banks Sub-bank size Sub-bank selection pin RAS strobe selection

2

256K
1M
4M

16M

Adr19
Adr21
Adr23
Adr25

0 = not_Ras0
1 = not_Ras1

Table 10.3 Address decoding

not_Ras

not_Cas

not_OE

not_WE

Data

CAStimeRAStime

RAS e1 time

CAS e1 time

RAS e2 time

CAS e2 time

BusRelease time

PrechargeTime

Read data
latch point

CAS e2 timeCAS e1 time

CAStime

Read data Write data

Row Column M Column NAddress

STi5500 l

74/28774/289 7110597 A

All sub-banks are refreshed in the same access and a cycle is inserted between each sub-bank in
order to spread current peaks. If no DRAM has been programmed for a bank then no transitions
occur on the relevant RAS or CAS strobes and all unused RAS and CAS strobes (i.e. strobes not
used due to the choice of bank/byte mode and sub-banks) will remain inactive during a refresh
cycle.

Figure 10.4 Generic refresh access

The EMI ensures that not_Cas and not_Ras are both high for the required time before every
refresh cycle by inserting a PrechargeTime in the last bank being accessed and ensuring all Pre-
chargeTimes are complete.

No refreshes will take place until 1 is written to the EMIDRAMinitialize register.

10.1.3 SRAM or peripheral access cycles

A generic SRAM/peripheral type of access is provided, which is suitable for direct interfacing to a
wide variety of SRAM, ROM, EPROM, Flash and peripheral devices. No internal sub-decoding is
provided with banks in this configuration. All of the named times shown in Figure 10.5 together with
other parameters such as bank size and bank size dependent shifts are programmable to suit a
wide variety of device types. For details of the configuration of the EMI see section 10.2.

Name Programmable value

PrechargeTime 1 - 8 cycles

RefreshInterval (1 - 16) × 128 cycles

RefreshRASedgeTime 1 or 2 cycles after start of refresh

Table 10.4 Refresh parameters

not_Cas0-1

not_Ras0

not_Ras1

RAStime + CAStime

RefreshRASedgeTime

1 cycle

Start of refresh
End of refresh

2 sub banks

2 sub-banks only

PrechargeTime

No sub banks

STi5500

75/2897110597 A

Figure 10.5 Generic peripheral access

10.1.4 Wait

MemWait is provided so that external cycles can be extended to enable variable access times, for
example, shared memory access. MemWait is only effective during accesses to SRAM / peripheral
banks and is ignored during accesses to DRAM banks. The STi5500 can only accept synchronous
MemWait signals. Synchronous MemWait allows wait states to be inserted at precise times during
the access. The MemWait signal can be enabled on a per bank basis.

MemWait has the effect of freezing the state of the strobes for the duration of the cycles in which it
was sampled high. Any strobe transitions occurring on the sampling edge or the falling edge imme-
diately after this will not be inhibited. However transitions on the rising and falling edges of the fol-
lowing cycle will not occur. Figure 9.4 and Figure 9.5 show the extension of the external memory
cycle and the delaying of strobe transitions.

Read data
latch point

BusRelease
time

Data drive delay

CSe1 time CSe2 time

OEe1 time

WEe1 time WE e2 time

AccessCycleTime

Address

notMemCS

not_OE

not_WE

Data (write)

Data (read)

OEe2Time

ReadnotWrite Write

Constant high for reads

Constant high for reads

STi5500 l

76/28776/289 7110597 A

Figure 10.6 Strobe activity without MemWait

Figure 10.7 Strobe activity with MemWait

10.2 EMI Configuration

The EMI configuration is held in memory-mapped registers. The function of the registers is to elim-
inate external decode and timing logic. Each EMI bank has several parameters which can be con-
figured. The parameters define the structure of the external address space and how it is allocated
to the four banks and the timing of the strobe edges for the four banks.

Each EMI bank has 64 bits of configuration data which is held in four 16-bit configuration registers
In addition there is a EMIConfigLock register for each bank, a EMIConfigStatus register and a
EMIDRAMInitialize register. For safe configuration, each of the four banks should be configured
after reset and then have their configuration locked by writing to the EMIConfigLock register
before any access to an external bank is made.

ProcClkOut

MemWait

Strobe1

Strobe2

Strobe3

ProcClkOut

MemWait
asserted

Wait
cycle

MemWait

Strobe1

Strobe2

Strobe3

STi5500

77/2897110597 A

11 System services
System services includes all the necessary logic to initialize and sustain operation of the device
and also provides support for diagnostic facilities. Alternative diagnostic facilities may be available
through the Diagnostic Control Unit (DCU); please consult your local STMicroelectronics field
application engineer if you require assistance.

11.1 Reset and initialization

The STi5500 has a notRST pin which initializes the entire chip to a known state when asserted
(low) for a period during or after power-up.

notRST initializes the device and causes it to enter its boot sequence unless overridden by the
Diagnostic Control Unit. notRST must be asserted (low) at power-on, and may be asserted at
other times.

When notRST is asserted (low), all modules are forced into their power-on reset condition. The
clocks are stopped. When notRST is de-asserted, internal logic allows the clocks to stabilize
before the chip begins its initialization sequence.

11.2 Debug

To select OS-Link operation, hold the pin Brm0/Oslink_Sel low via a resistor during reset. To
select DCU operation, hold the pin Brm0/Oslink_Sel high via a resistor during reset.

11.2.1 Pinout

During OS-Link operation, PIO3<0-4> have these re-assigned functions:

A 1kΩ pull-down resistor is needed on the ErrorOut (PIO3<4>) pin for correct OS-Link operation.

11.2.2 CPUReset

CPUReset is provided as a functional reset which is quicker to reboot as the PLL is not reset. In
other respects the effect is the same as notRST.

Standard (PIO) function Re-assigned function

PIO3<0> OS-Link data in

PIO3<1> OS-Link data out

PIO3<2> CPUReset

PIO3<3> CPUAnalyse

PIO3<4> ErrorOut

Figure 11.1 Pins used during OS-Link operation

STi5500 l

78/28778/289 7110597 A

11.2.3 CPUAnalyse

If CPUAnalyse is taken high when the STi5500 is running, the STi5500 will halt at the next
descheduling point. CPUReset may then be asserted. When CPUReset comes low again the
STi5500 will be in its reset state, and information on the state of the machine when it was halted by
the assertion of CPUAnalyse, is maintained permitting analysis of the halted machine.

An input link will continue with outstanding transfers. An output link will not make another access to
memory for data but will transmit only those bytes already in the link buffer. Providing there is no
delay in link acknowledgement, the link will be inactive within a few microseconds of the STi5500
halting.

If CPUAnalyse is taken low without CPUReset going high the processor state and operation are
undefined.

11.2.4 Errors

Software errors, such as arithmetic overflow or array bounds violation, can cause an error flag to be
set. This flag is directly connected to the ErrorOut pin. The STi5500 can be set to ignore the error
flag in order to optimize the performance of a proven program. If error checks are removed any
unexpected error then occurring will have an arbitrary undefined effect. The STi5500 can alterna-
tively be set to halt-on-error to prevent further corruption and allow postmortem debugging. The
STi5500 also supports user-defined trap handlers.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is
saved for the duration of the high-priority process and restored at the conclusion of it. Status of
both flags is transmitted to the high-priority process. Either flag can be altered in the process with-
out upsetting the error status of any complex operation being carried out by the pre-empted low pri-
ority process.

In the event of a processor halting because of HaltOnError, the links will finish outstanding trans-
fers before shutting down. If CPUAnalyse is asserted then all inputs continue but outputs will not
make another access to memory for data. Memory refresh will continue to take place.

11.3 Bootstrap

The STi5500 can be bootstrapped from external ROM or from a link. To boot from a link, hold
Brm1/BootFromRom low via a resistor during reset. To boot from external ROM, hold Brm1/
BootFromRom high via a resistor during reset.

11.3.1 Booting from ROM

When booting from ROM, the STi5500 starts to execute code from the top two bytes in external
memory, at address #7FFFFFFE which should contain a backward jump to a program in ROM.

11.3.2 Booting from link

When booting from a link, the STi5500 will wait for the first bootstrap message to arrive on the link.
The first byte received down the link is the control byte. If the control byte is greater than 1 (i.e. 2 to
255), it is taken as the length in bytes of the boot code to be loaded down the link. The bytes follow-
ing the control byte are then placed in internal memory starting at location MemStart. Following
reception of the last byte the STi5500 will start executing code at MemStart. The memory space
immediately above the loaded code is used as work space. A byte arriving on the bootstrapping

STi5500

79/2897110597 A

link after the last bootstrap byte, is retained and no acknowledge is sent until a process inputs from
the link.

11.3.3 Peek and poke

Any location in internal or external memory can be interrogated and altered when the STi5500 is
waiting for a bootstrap from link.

When booting from link, if the first byte (the control byte) received down the link is greater than 1, it
is taken as the length in bytes of the boot code to be loaded down the link.

If the control byte is 0 then eight more bytes are expected on the link. The first four byte word is
taken as an internal or external memory address at which to poke (write) the second four byte
word.

If the control byte is 1 the next four bytes are used as the address from which to peek (read) a word
of data; the word is sent down the output channel of the link.

Figure 11.2 Peek, poke and bootstrap

Note, peeks and pokes in the address range #20000000 to #3FFFFFFF access the internal periph-
eral device registers. Therefore they can be used to configure the EMI before booting. Note that
addresses that overlap the internal peripheral addresses (#20000000 to 3FFFFFFF) can not be
accessed via the link.

Following a peek or poke, the STi5500 returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the STi5500 will commence
reading its bootstrap program.

1 n

where n is 2 to 255

Control byte

Poke 0 address data

Peek 1 address

reply data

Bootstrap n bootstrap

STi5500 l

80/28780/289 7110597 A

12 Diagnostic controller
The Diagnostic Controller Unit (DCU) provides a means for booting the CPU, and for the control
and monitoring of all systems on the chip, via the standard IEEE 1194.1 Test Access Port. The Test
Access Port is described in Chapter 13. The DCU includes on-chip hardware with ICE (In Circuit
Emulation) and LSA (Logic State Analyzer) features to facilitate verification and debugging of soft-
ware running on the on-chip CPU in real time. It is an independent hardware module with a private
link from the host to support real-time diagnostics.

12.1 Diagnostic hardware

The on-chip diagnostic controller assists in debugging, while reducing or eliminating the intrusion
into the target code space, the CPU utilization, and impact on the application. As shown in
Figure 12.1, the DCU and TAP provide a means of connecting a diagnostic host to a target board
with a suitable JTAG port connector and interface.

Figure 12.1 Debugging hardware

The diagnostic controller provides the following facilities for debugging from a host:

• control of target CPU and subsystems including CPU boot;

• hardware breakpoint, watchpoint, datawatch and single instruction step;

• complex trigger sequencing and choice of subsequent actions;

• non-intrusive jump trace and instruction pointer profiling;

• access to the memory of the target while the device is powered up, regardless of the state
of the CPU;

• full debugging of ROM code.

When running multi-tasking code on the target, one or more processes can be single-stepped or
stopped while others continue running in real time. In this case, the running threads can be inter-
rupted by incoming hardware interrupts, with a low latency.

Host

Host
interface Test

access
port

Diagnostic
controller

ST20Logic
state

analyzer

STi5500

81/2897110597 A

The host can communicate with the DCU via a private link, using the 5 standard test pins.

Target software also has access to the diagnostic facilities and access through the DCU to the host
memory.

A logic state analyzer can be connected to the TriggerIn and TriggerOut pins. The response to
TriggerIn and the events that cause a TriggerOut signal can be controlled by the host or by target
software.

The diagnostic controller provides debugging facilities with much less impact on the software and
target performance. In particular it gives:

• non-intrusive attachment to the host system;

• no intrusion into the performance of the CPU or any subsystems;

• no intrusion into the code space, so the application builder does not need to add a debug-
ging kernel;

• no intrusion into any on-chip functional modules, including any communications facilities;

• no functional external connection pins are used.

The connections between the diagnostic controller and other on-chip modules and external hard-
ware may vary between ST20 variants.

12.2 Access features

12.2.1 Access to target memory and peripheral registers from host

Full read and write access to the entire on-chip and external memory space and the register space
is available via the TAP. This is independent of the state of the CPU.

12.2.2 Access from target CPU process

The CPU itself can program its own diagnostic controller. Further access may be explicitly pre-
vented by the lock mechanism so that the application being debugged cannot interfere with the
breakpoint and watchpoint settings. When the breakpoint or watchpoint match occurs, then the
diagnostic controller may release the lock according to settings in the control register.

12.2.3 Access to host memory from target

If the target CPU accesses any address in the top half of the DCU memory space, then these
accesses are mapped on to host memory via the TAP as target initiated peek and poke messages.
Peek accesses and poke accesses are specifically enabled by separate property bits.

12.3 Software debugging features

12.3.1 Control of the target CPU including boot

Various state information about the target CPU may be monitored and the CPU may be controlled
from the diagnostic controller via the TAP. The control of the CPU extends to stalling, forcing a trap
and booting.

12.3.2 Non-intrusive Iptr profiling

A copy of the Iptr is visible as a read-only register in the diagnostic controller. This register may be
read at any time. Reading this register is not intrusive on the CPU or its memory space.

STi5500 l

82/28782/289 7110597 A

12.3.3 Events

Support is provided by the diagnostic controller to trigger actions when certain predefined events
occur.

Breakpoint

The function of the breakpoint is to break before the instruction is executed, but only if it really was
going to be executed. A 32-bit comparator is used to compare the breakpoint register against the
instruction pointer of the next instruction to be executed. The matched instruction is not executed
and the CPU state, including all CPU registers, is defined as at the start of the instruction. The pre-
vious instruction is run to completion.

Breakpoint range

The function of a breakpoint range is equivalent to any single breakpoint but where the breakpoint
address can be anywhere within a range of addresses bounded by lower and upper register val-
ues.

Watchpoint

The function of a watchpoint is to trigger after a memory access is made to an address within the
range specified by a pair of 32-bit registers. The CPU pipeline architecture allows for the CPU to
continue execution of instructions without necessarily waiting for a write access to complete. So, by
the time a watchpoint violation has been detected, the CPU may have executed a number of
instructions after the instruction which caused the violation. If the subsequent action is to stall the
CPU or to take a hardware trap, then the last instruction executed before the stall or trap may not
be the instruction which caused the violation.

Datawatch

The function of a datawatch is to trigger after a data value specified in one 32-bit register is written
to a memory word address specified in another 32-bit register. The subsequent action is equivalent
to a watchpoint.

Choice of subsequent actions

Following a watchpoint match, or any other condition detectable by the diagnostic controller, the
subsequent action may be programmed to be one of the following:

• stall the CPU, i.e. inhibit further instructions from being executed by the CPU;

• wait until the end of the current instruction, then signal a hardware trap;

• signal an immediate hardware trap;

• continue without intrusion.

In addition, the diagnostic controller may take any combination of the following actions:

• signal on TriggerOut to a logic state analyzer;

• send a triggered message via the TAP to the host;

• unlock access by the target CPU.

STi5500

83/2897110597 A

12.3.4 Hardware single instruction step

The function of single stepping one CPU instruction is performed by using a breakpoint range over
the code to be single stepped. The DCU includes a mechanism to prevent the breakpoint trap han-
dler single-stepping itself. By selecting an inverse range, the effect of single stepping one high level
instruction can be achieved.

12.3.5 Jump trace

Jump tracing monitors code jumps, where a jump is any change in execution flow from the stream
of consecutive instructions stored in memory. A jump may be caused by a program instruction, an
interrupt or a trap.

When the jump occurs, a 32-bit DCU register is loaded with the origin of the jump. This value points
to the instruction which would have been executed next if the jump had not occurred. The CPU may
not have completed the instruction prior to the change in flow. The diagnostic controller can be set
to trace the origin of each jump, the destination, or both.

The DCU copies the details of each jump to a rolling trace buffer in memory. The trace buffer may
be located in host memory, but using target memory will have less impact on performance. The
tracing facility has two modes:

• Low intrusion. In this mode the DCU uses dead memory cycles to write the trace into the
buffer. This means that the CPU is not delayed, but some trace information may be lost.

• Complete trace. In this mode, the CPU is stalled on every jump to ensure the data can be
written to the buffer. This means that no trace information is lost, but the CPU performance
is affected.

12.3.6 Logic state analyzer (LSA) support

Two signals, TriggerIn and TriggerOut, are provided to support diagnostics with an external LSA.
The action by the DCU on receiving a TriggerIn signal is programmable. The selection of internal
events which trigger a TriggerOut signal is also programmable.

12.3.7 Trigger combinations and sequences

Complex trigger conditions can be programmed. For example:

• the 5th time that breakpoint 3 is encountered;

• enable a watchpoint when a breakpoint occurs.

There is no software intrusion imposed by this mechanism.

STi5500 l

84/28784/289 7110597 A

12.4 Controlling the diagnostic controller

This section gives a summary of host communications with the diagnostic controller.

The diagnostic controller has direct access to:

• the instruction pointer,

• a selection of CPU state control signals,

• the memory bus,

• memory-mapped peripheral configuration registers.

This access does not depend on the state of the CPU. Access to non-memory-mapped peripheral
configuration registers is via the CPU, and for this the CPU must be active and running the appro-
priate handler.

The host can give two commands to the diagnostic controller: peek and poke. Peek reads memory
locations or configuration registers, and poke writes to memory locations or configuration registers.
The diagnostic controller responds to a peek command with a peeked message, giving the con-
tents of the peeked addresses.

The diagnostic controller has registers, which are accessed from the host using peek and poke
commands. The registers are used to control breakpoints, watchpoints, datawatch, tracing and
other facilities.

The target CPU can also access these registers using the normal load and store instructions, so
the target software running on the CPU can program its own diagnostic controller. A lock is pro-
vided to prevent CPU access, which can be released by the diagnostic controller when a break-
point or watchpoint match occurs.

In addition, the target CPU can peek and poke the host via the diagnostic controller by reading or
writing addresses in the top half of the memory space of the diagnostic controller. This facility can
be disabled.

Various different types of CPU events can be selected as trigger events. When an trigger event
occurs, the diagnostic controller can send a triggered message.

The four types of message are summarized in Table 12.1. The messages are distinguished by the
two least significant bits of the message header byte.

Messages may be initiated from either the host or the target. Target initiated messages, which con-
stitute asynchronous or unsolicited messages, can be enabled by a property bit.

Messages are composed of a header byte followed by zero or more data bytes, depending on the
type of message. The formats for the four message types are shown in Figure 12.2.

Message type Direction Bit 1 Bit 0 Meaning

poke Command. 0 0 Write to one or more addresses.

peek Command. 0 1 Read from one or more addresses.

peeked Opposite to peek command. 1 0 The result of a peek command.

triggered DCU to host. 1 1 A trigger event has occurred.

Table 12.1 Types of diagnostic controller message

STi5500

85/2897110597 A

:

Figure 12.2 Message formats

12.5 Peeking and poking the host from the target

The target CPU can peek and poke the host via the diagnostic controller. This is done by reading or
writing a single word to a block of addresses within the DCU register block. The DCU will then send
a peek or poke message to the host. After a host peek, the target CPU will wait until the host
responds with a peeked message, which the DCU returns to the CPU as memory read data.

Peeking and poking the host from the target can be enabled or disabled. After reset, these bits are
cleared, so peek and poke from the target are disabled.

Poke

Command messages

Response messages

Address First data word Second data word

Peek
Address

Peeked
First data word Second data word Third data word

Triggered
Header

Header

Header

Header

STi5500 l

86/28786/289 7110597 A

13 Test access port
The STi5500 Test Access Port (TAP) conforms to IEEE standard 1149.1 in all respects except that
there is no Boundary Scan register.

The TAP consists of five pins: Tms, Tck, Tdi, Tdo and notTrst. Tdo can be overdriven to the
power rails, and Tck can be stopped in either logic state.

The instruction register is 5 bits long, with no parity, and the pattern “00001” is loaded into the reg-
ister during the Capture-IR state.

There are two defined public instructions, see Table 13.1. All other instruction codes are reserved.

There are two test data registers; Bypass and Identification. These registers operate according to
1149.1.

The identification code for revisions DA, DB etc. is #M51D9041, see Table 13.2.

Instruction code a

a. MSB ... LSB; LSB closest to Tdo.

Instruction Selected register

0 0 0 1 0 IDCODE Identification

1 1 1 1 1 BYPASS Bypass

Table 13.1 Instruction codes

bit 31 bit 0 a

a. Closest to TDO.

Mask
rev

b

b. 0 indicates STMicroelectronics part, 1 indicates customer part.

ST20
family

Variant
STMicroelectronics
manufacturers id

c

c. Defined as 1 in IEEE 1149.1 standard.

0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

M 5 1 D 9 0 4 1

Table 13.2 Identification code

STi5500

87/2897110597 A

14 Serial link interface (OS-Link)
The STi5500 has an OS-Link based serial communications subsystem. The OS-Link is used to
provide serial data transfer and its main function is for booting the device and debugging during
software development.

The OS-Link is a serial communications engine consisting of two signal wires, one in each direc-
tion. OS-Links use an asynchronous bit-serial (byte-stream) protocol, each bit received is sampled
five times, hence the term oversampled links (OS-Links). The OS-Link provides a pair of channels,
one input and one output channel.

The OS-Link is used for the following purposes:

• Bootstrapping - the program which is executed at power up or after reset can reside in ROM
in the address space, or can be loaded via the OS-Link directly into memory.

• Diagnostics - diagnostic and debug software can be downloaded over the link connected to
a PC or other diagnostic equipment, and the system performance and functionality can be
monitored.

14.1 OS-Link protocol

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed
by a one bit followed by eight data bits followed by a low stop bit (see Figure 14.1). The least signif-
icant bit of data is transmitted first. After transmitting a data byte the sender waits for the acknowl-
edge, which consists of a high start bit followed by a zero bit. The acknowledge signifies both that a
process was able to receive the acknowledged data byte and that the receiving link is able to
receive another byte. The sending link reschedules the sending process only after the acknowl-
edge for the final byte of the message has been received. The link allows an acknowledge to be
sent before the data has been fully received.

Figure 14.1 OS-Link data and acknowledge formats

14.2 OS-Link speed

The OS-Link data rate is 19.98 Mbits/s, but it will operate correctly when connected to 20 Mbits/s
OS-Links.

0 1 2 3 4 5 6 7

Data Ack

H H L LH

STi5500 l

88/28788/289 7110597 A

14.3 OS-Link connections

Links are TTL compatible and intended to be used in electrically quiet environments, between
devices on a single printed circuit board or between two boards via a backplane. Direct connection
may be made between devices separated by a distance of less than 300 mm.

For longer distances a matched 100 ohm transmission line should be used with series matching
resistors (RM), see Figure 14.3. The value of RM to match a 100Ω transmission line is 75Ω. When
this is done the line delay is less than 0.4 bit time to ensure that the reflection returns before the
next data bit is sent.

Figure 14.2 OS-Links directly connected

Figure 14.3 OS-Links connected by transmission line

Figure 14.4 OS-Links connected by buffers

Figure 14.5 OS-Links connected by buffersOS-Links connected by buffers

OSLinkOut

OSLinkIn OSLinkOut

OSLinkIn

STi5500 STi5500

OSLinkOut

OSLinkIn OSLinkOut

OSLinkIn
RM Zo = 100 Ω

RMZo = 100 Ω

STi5500 STi5500

OSLinkOut

OSLinkIn OSLinkOut

OSLinkIn
Buffers

STi5500 STi5500

OSLinkOut

OSLinkIn OSLinkOut

OSLinkIn
Buffers

STi5500 STi5500

STi5500

89/2897110597 A

Part C Video and audio

STi5500 l

90/28790/289 7110597 A

15 Data flow
This chapter describes the normal data flow through the STi5500 from the incoming transport
stream to the outgoing analog video and PCM audio. It shows how the picture and sound modules
of the part are used together. The individual modules are described in the appropriate chapters.

15.1 On-chip modules

The STi5500 reads in an MPEG-2 transport stream, demultiplexes it, decodes the audio and video
elementary streams and creates a video picture and audio PCM.

Demultiplexing extracts video and audio MPEG streams plus other PES data such as teletext and
DVB subtitles. Hardware modules are provided on-chip for decoding the MPEG video and audio.
The data before decoding is called compressed data (CD), and digital video data after decoding is
called pixel data.

The on-chip modules processing the compressed data streams from the incoming transport stream
to the decoders are shown in Figure 15.1.

Figure 15.1 Compressed data modules

The on-chip modules processing the decoded data from the decoders to the video and audio out-
put are shown in Figure 15.2.

Hardware
transport
stream

CD unit:
PES parser

and

Video PES

Audio PESExternal
DRAM

EMI

Sub-picture
decoder

Video
decoder

Audio
decoder

MPEG and display
memory interface

Video bit buffer

Audio bit buffer

Transport

External
SDRAM

CD FIFOs

64
32

ST20
bus

MPEG
bus

Teletext
DMA

stream

Other PES

demultiplexor

STi5500

D
M

A

STi5500

91/2897110597 A

Figure 15.2 Decoded data modules

15.2 Video data flow

The data flow for MPEG-2 video streams is summarized in Figure 15.3. Rectangular boxes repre-
sent processing modules, and rounded boxes represent buffers and FIFOs.

Figure 15.3 MPEG-2 video data flow

The compressed data (CD) is read in as a transport stream by the hardware transport stream
demultiplexor, as described by Chapter 16. This module demultiplexes the stream, extracting the
required packets.

Sub-picture
decoder

Video
decoder

Audio
decoder

Display
unit

(DENC)

PAL/NTSC
encoder

Digital PCM
audio

Analog
video

Video frame store

OSD

Teletext interface

STi5500

MPEG
bus

On-the-fly

MPEG and display
memory interface

External
SDRAM

Transport
demux Video

PES
parser

Video Video

buffer
Video

frame
stores

FIFO
Display

DENC

Analog video

unit

Compressed data stream

Teletext

OtherExternal
External

External

decoder

buffer

Video

On-the-fly

PES
CD

DRAM

bit

SDRAM
SDRAM planesTransport

stream

128 bytes

Pixel stream

CD unit

STi5500 l

92/28792/289 7110597 A

Any selected video stream PES packets are sent on by the transport demultiplexor DMA engine.
The stream can be either:

• written into a circular video PES buffer in external DRAM by the transport demultiplexor
DMA and then read into the CD unit by an MPEG DMA or

• sent directly to the CD unit by the transport demultiplexor DMA.

The high speed MPEG DMA engines are described in Chapter 17. Like the transport demultiplexor
DMA, these DMA engines require very little intervention by the CPU.

Video data enters the CD unit through the PES parser, which passes the data to the video CD
FIFO. The video CD FIFO holds 128 bytes and writes 512-bit bursts into the video bit buffer in
external SDRAM.

The video decoder (described in Chapter 18) reads 1024-bit bursts from the video bit buffer. It
decodes the compressed bit stream and produces a pixel stream. I-frames and P-frames must be
written into video frame stores, while B-frames may be either written into a frame store or sent ‘on-
the-fly’ directly to the display unit.

The display unit is described in Chapter 21. It converts the blocks of pixels into rows and performs
filtering and pan/scan. It then mixes the video with the other display planes and sends a pixel
stream to the on-chip PAL/NTSC encoder (DENC).

The DENC is described in Chapter 23. It converts the pixel streams into analog signals for output
from the device. Teletext can be inserted into the output signals.

15.3 Audio data flow

The data flow for audio streams is summarized in Figure 15.4. Rectangular boxes represent pro-
cessing modules, and rounded boxes represent buffers and FIFOs.

Figure 15.4 Audio data flow

As for video, the compressed audio data is read in as a transport stream by the hardware transport
stream demultiplexor. This module demultiplexes the stream and extracts the required audio PES
packets, which are sent on by the transport demultiplexor DMA engine. The stream can be either:

• written into a circular audio PES buffer in external DRAM by the transport demultiplexor

Transport
demux

PES
parser

Audio Audio

bufferFIFO

Compressed data

SDRAM

bit

Digital
audio

AC-3
interface

CD

Transport
stream AC-3

PCM

128 bytes

PES
parser

FIFO Audio
decoderAudio

External

buffer
PES

DRAM CD unit

Audio decoder unit

STi5500

93/2897110597 A

DMA and then read into the CD unit by an MPEG DMA or

• sent directly to the CD unit by the transport demultiplexor DMA.

If the audio data is in the form of MPEG-2 packetized PES, then the data must be sent directly to
the audio CD FIFO, in which case it will not pass through the PES parser in the CD unit. Otherwise,
whole PES audio data interleaved with whole PES video data should be sent on the video route
through the PES parser. The PES parser will separate out any audio packets and route them to the
audio CD FIFO. The audio CD FIFO writes 512-bit bursts into the audio bit buffer in external
SDRAM. The CD unit is described in Chapter 18.

The audio decoder (described in Chapter 20) unit includes its own FIFO and PES parser. It reads
from the bit buffer into its FIFO, and then the data may be either:

• passed to the PES parser, which passes the data on to the audio decoder for decoding into
PCM data for output or

• passed to the AC-3 interface to send to an external Dolby AC-3 decoder.

STi5500 l

94/28794/289 7110597 A

16 Hardware transport stream demultiplexor

16.1 Introduction

The Hardware Transport Stream Demultiplexor for the STi5500 chip accepts as input a constrained
DVB or DSS transport stream or a DVD program stream. It extracts from the stream the (possibly
scrambled) compressed data bytes of a set of Packet Elementary Streams (PES) belonging to one
user-selected program to be decoded and presented.

In addition, service data bytes from Section Streams are extracted from the bit stream and stored
in appropriate buffers to be used by the decoder control unit.

A high speed digital interface allows transfer of transport packets between the Integrated Receiver
Decoder box (IRD) and external units, either for recording or playback purposes.

This Simplified Digital Audio Video (SDAV) interface provides full support for an external IEEE1394
Link IC.

A National Renewable Security System (NRSS) interface is also integrated into the Transport
Stream Demultiplexor to allow external descrambling for DSS, DVB, or DVD packets.

Figure 16.1 Hardware transport stream demultiplexor block diagram

AF filtering Transport i/f Address decoder Transport I/F DMA

NRSS output

NRSS input

TPp FRAM
480x32 bytes

SECp XFERp FIFO
16 bytes

SDAV splitter

A-RAM 64 bytes

FIFO 20 bytes FIFO 64 bytes

NRSS I/F

SDAV
interfaceDescrambler

DVB / DSS

ST20 data bus (31:0)

SDAV/1394 I/Os

SDAV/1394 input
FEC serial input

Transport I/F data bus (7:0)

External descrambler

FRC

Command lines

registers

STi5500

95/2897110597 A

16.1.1 MPEG-2 and DSS systems layers

Two layers are defined:

• PES packets (or Sections for Program Specific Information (PSI)) layer.

• Transport Packets (TP) layer.

The Transport Stream Demultiplexor performs complete processing at the TP layer and possibly at
the PES or Section layer, in accordance with Table 16.1.

16.1.2 System general description

The Transport Stream Demultiplexor for the STi5500 chip is used to interface the MPEG decoders
and the CPU with the incoming data stream. It is composed of the following units:

• Acquisition RAM (AR) and NRSS interface;

• Descramblers (DESCR);

• SDAV-1394 interface;

• Filter RAM (FRAM);

• Processor units:

• transport processor;

• section processor;

• transfer processor;

• Adaptation field filtering;

• Clock recovery;

• DMA engine.

16.1.3 Input interface (NRSS interface and acquisition RAM)

Signals at the FEC interface and Transport Stream Demultiplexor system clock are asynchronous.

TP bytes, provided by the serial-parallel converter, are buffered in the Acquisition RAM (AR), which
is a FIFO memory.

The processing of a packet has to be started before a programmable level of the AR is reached,
and at least a few bytes before the AR is full.

16.1.4 Descrambling

Both DVB and DES descramblers are implemented. For DVB, TP and PES level descrambling are
supported.

Function Layer DVB Layer DSS

Acquisition TP TP

Descrambling TP or PES TP

H/W Filtering

(PSI for DVB, CA for DSS)
Section TP

Table 16.1 PES and Section layers

STi5500 l

96/28796/289 7110597 A

For DSS the scrambling is only done at TP level. Up to 8 different key sets can be used to descram-
ble up to 32 streams. The keys for descrambling are located in the FRAM. They are automatically
loaded after the PID filtering.

If the payload in an acquired TP is scrambled, the descrambler is set up to handle descrambling
and to return descrambled bytes. If the payload is not scrambled, payload bytes are sent directly.

16.1.5 SDAV interface

A high speed bidirectional digital interface is used to transfer TP between the IRD and an external
unit.

The SDAV bus is a point-to-point connection. It only allows one source on any bus segment at a
time. As the input is 40MHz and the rate on the SDAV bus is 49.1Mbit/s, some buffering is required
not to run out of data.

The IEEE 1394 standard provides a single I/O interface with a simple connector that can handle
numerous devices through a single port. It allows simultaneous transmissions at data rates up to
400Mbit/s.

Because of the complexity of the IEEE 1394 standard and the cost of its implementation, the
STi5500 includes a single SDAV interface which provides full support for an external IEEE 1394.
This block takes an incoming packet stream and reformats it for the SDAV/1394 bus. It also takes
incoming SDAV/1394 bus information and regenerates the corresponding packet stream.

A dedicated MPEG DMA engine is also provided, as described in Chapter 17.

SDAV or IEEE 1394 mode, input or output mode are selected by software.

16.1.6 PID filtering

This block contains a filter to receive the TPs of only one program. It extracts the transport packets
of up to 32 streams from the incoming bit stream.

16.1.7 Section filtering

A second filter function is applied to all section type data. For each stream there can be up to 32
targets to which the incoming section header can be compared. The maximum length of the targets
is 16 bytes for DSS and 14 bytes for DVB. Each bit of each target can be masked individually. For
one target byte, two bytes of RAM are needed. The total number of target bytes is defined by the
size of the filter RAM array that is used.

16.1.8 Adaptation field filtering

Filtering is performed to extract PCR informations or to discard any undesired data contained in the
extracted TP.

STi5500

97/2897110597 A

16.2 Detailed description

16.2.1 Input interface (NRSS interface and acquisition RAM)

Figure 16.2 Input interface

The Transport Stream Demultiplexor receives the TP through the input interface section; it is a fully
asynchronous FIFO buffer (64 bytes) that uncouples read and write clocks.

Data are latched on the falling edge of F_B_Clk. The four signals of this interface have different
names and meanings in different modes. They are always inputs. Table 16.2 gives the signal
names for the different modes.

DVB/DSS mode

The F_P_Clk is active high during the significant bits of the packet (188 x 8 for DVB, 130 x 8 for
DSS). On this pin, the rising edge is detected and the internal FIFO counter is reset.

The F_Error signal should be active high for an entire packet if there is an error somewhere in the
packet. These packets will not be written into the AR. This signal should only change value at the
rising edge of F_P_Clk.

DVD mode

With the F_P_Start signal, active during the first bit of the first byte of a packet, the Transport
Stream Demultiplexor detects the beginning of a packet.

On this pin, the rising edge is detected and the internal FIFO counter is reset.

The F_D_Valid signal will be active during a burst transmission (data are transferred in a burst of at
least 8 bits long).

There can be a gap of one or more clock cycles between bytes but no gaps within the 8 bits of a
byte.

Type DVB/DSS DVD

I F_Data

I F_B_Clk

I F_P_Clk F_D_Valid

I F_Error F_P_Start

Table 16.2 Input interface signal names

NRSS
interface

NRSS card
From FEC

From SDAV/1394 I/F

Acquisition RAM

Rest of the Transport Stream Demultiplexor

STi5500 l

98/28798/289 7110597 A

After a rising edge transition on F_P_Start and after serial/parallel conversion (MSB first), data
bytes are latched into the FIFO when F_D_Valid is high (see Figure 16.3).

Figure 16.3 Serial input interface from Channel IC or Link IC

Input and output data rates

The input interface is a serial interface with a maximum peak data of 60Mbit/s (from the Link IC) or
60.54Mbit/s (from the Channel IC).

The Transport Stream Demultiplexor block is specified at 60Mbit/s. The maximum input data rate is
59.5Mbit/s or 7.43Mbytes/s (7/8 of 68Mbit/s).

The maximum output data rate is 15 Mbyte/s.

NRSS interface

NRSS can be used when input is FEC or SDAV (see Figure 16.1, Figure 16.3 and Figure 16.4).
The NRSS interface makes it possible to descramble the channel off chip.

Clocks Description Value

SYS_CLK Descrambler clock 60MHz

F_B_Clk Bit clock signal up to 59.5MHz

Table 16.3 Data rates

Bit 1

F_B_Clk

F_Data

F_P_Clk
F_D_Valid

F_Error

F_P_Start

Bit 2 Bit 3 Bit n Bit 1 Bit 2 Bit 3 Bit n

Micro is activating
output Burst transmission Burst transmission

STi5500

99/2897110597 A

Figure 16.4 Input interface details

The existing paths are the following:

FEC → AR
FEC → NRSS → AR
SDAV → AR
SDAV → NRSS → AR

Two separate mux controls are used: one to control the top mux that selects if the input is coming
from the FEC interface or the SDAV input and a second signal to control whether NRSS is used or
not. The data can pass through without going out to the NRSS. The other FEC signals pass
through this block to make sure that proper timing is maintained.

Serial to parallel conversion is performed after NRSS (see Figure 16.4). The BIT_ORDER register
is used to select MSB or LSB first in the serial-parallel converter.

When input is FEC, the Nrss_Clk coming from the Transport Stream Demultiplexor is discontinu-
ous. Consequently the data has to be maintained at the end of each byte to work properly.

When input is SDAV, the Nrss_Clk is discontinuous. The SDAV block synchronizes the incoming
data again to the Sys_Clk and sends the data with a F_B_Clk and F_D_Valid signal (if the data
was already at the Sys_Clk rate then the Nrss_Clk should be continuous).

In both cases, the inputs to the NRSS block are shifted from a serial bit stream into a serial to par-
allel converter shift register using the incoming clock. In the case of the FEC, this is F_B_Clk (FEC
clock) and in the case of the SDAV it is the SDAV clock (usually 49.152MHz). The parallel byte is
then loaded into a register and a single bit is generated that toggles on each new byte. That signal
is then sampled with the Sys_Clk. This asynchronous sampling takes a couple of clock cycles. The
byte is then loaded into the output shift register for the NRSS interface and is shifted out using the
Sys_Clk. If the Sys_Clk is faster than the incoming clock then there will be Sys_Clk cycles where
there is no data available to shift out. When there is no available data, the Nrss_Clk output is
forced to remain low for that clock cycle. This mechanism can be broken by making the FEC clock
(F_B_Clk) faster than Sys_Clk.

S/P

S/P

S/P

P/S

SDAV mode

1

0

1

0

1

0

1

2 3

FEC I/F

SDAV I/F
TAPE in

NRSS in

NRSS mode

NRSS mode or
SDAV mode

NRSS out

A-RAM

STi5500 l

100/287100/289 7110597 A

Normally the AR has all four of the FEC input signals (F_B_Clk, F_Data, F_P_Clk, and F_Error).
Since the NRSS interface has only clock and data there is no indication of the beginning of a
packet. Within the NRSS interface the Transport Stream Demultiplexor looks for the sync_byte
(0x47) coming from the NRSS card to indicate the beginning of a packet and uses that to generate
a packet_clock. In DVB the sync_byte is already there but in DSS the Transport Stream Demulti-
plexor adds it to the beginning of the packet and then strips it back off when it comes back from the
NRSS card.

NRSS interface timing

Figure 16.5 and Table 16.4 show the timing in DVB/DSS mode. The data is output on the rising
edge of Nrss_Clk, as shown in Figure 16.5.

Figure 16.5 NRSS interface timing in DVB/DSS mode

Name Min (ns) Max (ns) Comment

Tpd 0 3 Propagation delay

Tsetup 5 Set up data to clock

Thold 2 Hold clock to data

Twh 9 Clock width high

Twl 9 Clock width low

T 20 Clock period

Table 16.4 NRSS timing (DVB and DSS)

Nrss_Clk

Twh Twl
T

Tsetup Thold

Tpd

Nrss_In
(to STi5500)

Nrss_Out
(from STi5500)

STi5500

101/2897110597 A

Size of the FIFO (AR)

The internal FIFO counter is reset by the rising edge of the packet_clock signal in DVB/DSS mode
or by the rising edge of sector_start in DVD mode. When the following packet arrives, the last
bytes of the packet in process have to be read. To ensure this, the upper limit of this FIFO is pro-
grammable by software so that the last byte of a packet is written as high as possible in the FIFO
(see Figure 16.6).

Figure 16.6 Acquisition RAM

The optimized AR size is different for each mode:

• DSS: 44 (2*44 + 42 = 130)

• DVB: 63 (2*63 + 62 = 188)

• DVD: 53 (38*53 + 52 = 2066) for DVD mode
or 58 (43*58 + 54 = 2548) for CD mode

16.2.2 Descrambler

The Transport Stream Demultiplexor includes two descramblers which conform to the DVB/DES
descrambler specifications.

Note: Byte # 1 = 1st byte of the TP.
Bit(7) = MSB Descrambler DVB.

Scrambling control bits MSB LSB (if MSB = 1)

DVB TP Level
Byte # 4

Bits(7:6)

1: scrambled

0: non-scrambled

1: odd key

0: even key

DVB PES Level
Byte # 11

Bits(5:4)

1: scrambled

0: non-scrambled

1: odd key

0: even key

DSS
Byte # 1

Bits(5:4)

1: non-scrambled

0: scrambled

1: odd key

0: even key

Table 16.5

1st byte of a packet

FIFO
(64 bytes)

Last byte
DVB = 62

Upper limit = 44

B
yt

es
 1

 to
 4

4
(4

4)

B
yt

es
 4

5
to

 8
8

(4
4)

B
yt

es
 8

9
to

 1
30

 (
42

)

B
yt

es
 1

 to
 6

3
(6

3)

B
yt

es
 6

4
to

 1
26

 (
63

)

B
yt

es
 1

27
 to

 1
88

 (
62

)

Last byte
DSS = 42

Upper limit = 63

STi5500 l

102/287102/289 7110597 A

Figure 16.7 TP header

Figure 16.8 PES header

Description

The scrambling algorithm operates on the payload of a TP in the case of TP-level scrambling. A
structuring of PES packets is used to implement PES level scrambling with the same scrambling
algorithm. The scrambling of MPEG-2 sections is at TP level.

PES level scrambling

The PES scrambling method requires that the PES packet header shall not be scrambled (ISO/IEC
13818-1).

The DVB standardization requires the following, as shown in Figure 16.9:

• the header of a scrambled packet shall not span multiple TP - Recommendation 2

• the TP containing parts of a scrambled PES packet shall not contain an Adaptation Field
(with the exception of the TP containing the end of the PES packet) - Recommendation 3

• the TP carrying the start of a scrambled PES packet is filled by the PES header and the first
part of the PES payload - Recommendation 3

0x47

Scrambling
TP level

Payload
184 bytes

Sync byte PID (13 bytes)

Payload unit start indicator (byte 6)

Scrambling control (bytes 7:6)
(scrambling + odd/even)

Byte 1/188

CC bytes (3:0)

AF control bytes (5:4)

Scrambled at TP level if scrambling control (1) = 1

Scrambling
PES level

PES header length
Scrambling control

PES header

Scrambled at PES level if scrambling control (1) = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 9+N

...N

Payload

(bytes 5:6)

STi5500

103/2897110597 A

In this way, the first part of the PES packet payload is scrambled exactly as a TP with a similar pay-
load. The remaining part of the PES packet payload is split in super-blocks of 184 bytes. Each
block is scrambled exactly as a TP payload of 184 bytes.

• the end of the PES packet payload is aligned with the end of the TP by inserting an Adapta-
tion Field of suitable size (as required in ISO/IEC 13818-1).

If the length of a packet is not a multiple of 184 bytes, the last part of the PES packet payload (from
1 to 183) is scrambled exactly as a TP with a similar payload.

Figure 16.9 PES level scrambling (DVB recommendations)

16.2.3 SDAV interface

This block is used to send a single stream out to a high speed serial digital bus or playback a
stream from that bus. There are two bus formats supported (SDAV and IEEE1394). The bus for-
mats are described below. The time stamp, which is used to maintain proper packet placement, is
the value of the LSBs of a continuously running 27MHz clock. This time stamp is added for SDAV
bus and optionally for IEEE 1394 bus in tape-out mode, but it is simply discarded when received
from these busses in tape-in mode. The 12 reserved bits are added from the EXTRA_BITS_REG.

SDAV format

The method of transmission on the SDAV is using a 49.152MHz bit rate in a non-return-to-zero
(NRZ) encoding method. The signals that are used are the following:

• strobe_tx, data_tx, direction.

The signals strobe_tx and data_tx are reversed for transmit and receive. That means the signal
strobe_tx acts as the data signal in receive mode and strobe in transmit mode. And the signal
data_tx acts as the strobe signal in receive mode and data in transmit mode. The signal direction
controls the mode. When direction is high, the mode is transmit and the other two signals are out-
puts (see Figure 16.10).

PES header

PES header

PES data

PES data (scrambled)

PES data

PES dataAF

TS packets

STi5500 l

104/287104/289 7110597 A

The functionality of the clock pin Sdav_Clk is changed according to the register bits SDAV_1394,
EXT_CLK in the SDAV_CONF_REG and DVD_MODE and PCM_MODE in the MODE_REG.

IEEE 1394 format

For IEEE 1394 bus operation, the STi5500 must be used in conjunction with an IEEE 1394 IC that
will interface to the physical bus. This section describes the interface between the STi5500 IC and
the IEEE 1394 IC. The signals that are used are the following:

• clock,

• data,

• data_valid (packet clock).

All three signals are outputs for tape-out mode and inputs for tape-in mode. The clock is continuous
and the data_valid is active for the entire packet without gaps between the bytes (see
Figure 16.11).

Figure 16.10 Format for DSS and DVB in SDAV

Figure 16.11 SDAV interface processing

12 bits
reserved

20 bits
time stamp

10 byte
stuffing

130 byte
DSS packet

12 bits
reserved

20 bits
time stamp

188 byte
DVB packet

188 byte
DVB packet

130 byte
DSS packet

12 bits
reserved

20 bits
time stamp

10 byte
stuffing

12 bits
reserved

20 bits
time stamp

Optional Optional

Optional

STi5500

105/2897110597 A

16.2.4 Packet formatting for SDAV and IEEE 1394

If an external IEEE 1394 chip is connected, the format on the SDAV bus is modified (see
Table 16.7). The NRZ encoding and decoding do not take place in IEEE 1394 mode.

HEADER if SDAV or (1394 and header_enable) and not (PCM or DVD).

PADDING if incomplete DMA and not (PCM or DVD).

STUFFING if DSS and (SDAV or (1394 and header_enable)).

Note: PACKET_CLOCK (valid data) is active during the TP packet. IN or OUT for IEEE 1394 mode.

Bus Mode
Incom-
plete
DMA

Header_
Enable

Stuffing
_ Enable

Header
Bytes

Tp Bytes
Padding

Bytes
Stuffing
Bytes

 TOTAL

SDAV DVB 0 X X 4 188 192

SDAV DVB 1 X X 4 X 188-X 192

SDAV DSS 0 X X 4 130 10 144

SDAV DSS 1 X X 4 Y 130-Y 10 144

1394 DVB 0 0 X 188 188

1394 DVB 0 1 X 4 188 192

1394 DVB 1 0 X X 188-X 188

1394 DVB 1 1 X 4 X 188-X 192

1394 DSS 0 0 0 130 130

1394 DSS 0 0 1 130 10 140

1394 DSS 0 1 0 4 130 134

1394 DSS 0 1 1 4 130 10 144

1394 DSS 1 0 0 Y 130-Y 130

1394 DSS 1 0 1 Y 130-Y 10 140

1394 DSS 1 1 0 4 Y 130-Y 134

1394 DSS 1 1 1 4 Y 130-Y 10 144

Table 16.6

Signals
1394 SDAV

Direction Description Direction Description

DATA I/O Data I/O DATA_TX/STROBE_RX

DATA_CLOCK I/O Clock I/O STROBE_TX/DATA_RX

PACKET_CLOCK/DIRECTION I/O PACKET_CLOCK(1) O Direction

Table 16.7 External interface

STi5500 l

106/287106/289 7110597 A

16.2.5 Data Path

The maximum input rate is about 7.5Mbytes/s (7/8 x 68Mbits/s). The data are sent to the SDAV
interface either scrambled or not. It should be noticed that the descrambler works up to 60Mbits/s.
Null packets are not transmitted to the digital bus. Packets concerning other programs and any
unwanted information are also discarded. In such cases, packets may be generated by software
and transmitted by DMA transfer, for example. Those packets must be isochronous with the pack-
ets extracted from the original multiplex. Some tables (PAT, PMT) may be modified by S/W to create
new program guides for use in playback mode

16.2.6 Tape-In

In Tape-in mode the SDAV interface serves as a data source similar to and instead of the FEC
input. The data will be received from the interface and sent to the NRSS block and into the acquisi-
tion RAM. The data can be sent directly or resynchronized to Sys_Clk. Any header or stuffing if
enabled are stripped from the packet and discarded with the exception of the 12 reserved bits in
the header. These reserved bits are latched in the EXTRA_BITS_REG. If these bits differ from the
contents of the register prior to the latching, an interrupt is generated.

The SDAV_OVERFLOW interrupt is generated to indicate to the CPU that some extra bits are
available. Both fields (SDAV_OVERFLOW and SDAV_UNDERFLOW) are set in the
LINK_STAT_FIFO. This Interrupt is maskable by EXTRA_BITS_REG.EBM and is generated only
when the incoming extra_bits change value.

Pin IEEE 1394 SDAV

Dir Name Dir Description Dir Description

In

I/O DATA I DATA_IN (No NRZ Decoding) I
STROBE_RX (49.1MHz) (NRZ
Decoding) (Only Header + Payload)

I/O CLK I Continuous (Up to 60MHz) I DATA_RX (NRZ Decoding)

I/O PACK_CLK_DIR I Data Valid (Packet Clock) O Direction (Tape In)

Out

I/O DATA O DATA_OUT (No NRZ Encoding) O DATA_TX (NRZ Encoding)

I/O CLK O Continuous (60MHz) O
STROBE_TX (49.1MHz) (NRZ
Encoding) (Only Header + Payload)

I/O PACK_CLK_DIR O Data Valid (Packet Clock) O Direction (Tape Out)

Table 16.8 Use of the three I/O pins

EXTRA_BITS_REG Comment

12:1 EXTRA_BITS_INPUT

12:5 Playback Rate Control

4:1 Copy Guard Information

0 EXTRA_BITS_IRQ_MASK

Table 16.9 Format of register EXTRA_BITS_REG

STi5500

107/2897110597 A

16.2.7 Tape-out

In tape-out mode the SDAV block receives data from either the acquisition RAM or from the
descrambler. The Transport Stream Demultiplexor system clock (Sys_Clk) will be used as CLK_IN
(60 MHz). The output clock will be the interface clock (49.1 for SDAV, up to 60 MHz for IEEE 1394).
The input data stream speed will vary with the speed of the incoming FEC data or it will be at what-
ever speed the DMA engine can provide.

The data are latched (at the CLK_IN frequency) into a single port RAM to guarantee the output of
one complete packet at the corresponding clock frequency. It means that the SDAV block will
receive about one byte every 8 clock cycles (CLK_IN). As soon as there is enough information in
the RAM (not to run out of data before the end of the packet), the SDAV Interface generates the
header information and then converts the data to the SDAV bus serial format.

16.2.8 CPU generated packets

The CPU can create custom program guide packets for insertion into the bitstream and DMA the
packets to the SDAV block.

The packets will be inserted in the out-going stream where possible. When a DMA is set up to send
data to the SDAV block, it is always set up to transfer 32-bit words. Before enabling the DMA, the
CPU must set the value of the FIRST_BYTE_POSIT and LAST_BYTE_POSIT fields in the
SDAV_DMA_EN_REG register.

The FIRST_BYTE_POSIT should be loaded with the two least significant bits of the address of the
first byte to be transferred. The LAST_BYTE_POSIT should be loaded with the two least signifi-
cant bits of the address of the last byte to be transferred. If the data that is being sent starts at
address 0x40001000 and ends at address 400010FF, the value of FIRST_BYTE_POSIT is 00 and
the value of LAST_BYTE_POSIT is 0x11. If the data to be sent starts on an odd boundary such as
0x40001001, the DMA should start with the address 0x40001000 but the FIRST_BYTE_POSIT
should be loaded with 01. Similarly if the data to be sent ends on an odd boundary such as
0x400010FE, the DMA should transfer the entire 32 bit word starting at address 0x400010FC but
the LAST_BYTE_POSIT should be loaded with 10.

First and last bytes for DMA transfer to the SDAV interface block

See Figure 16.12.

SDAV Input SDAV Output

SDAV_OVERFLOW EXTRA_BITS_IRQ SDAV_OVERFLOW

SDAV_UNDERFLOW when both = 1 SDAV_UNDERFLOW

Table 16.10

STi5500 l

108/287108/289 7110597 A

Figure 16.12 TP and PES headers

16.3 FRAM

16.3.1 RAM (480x32 bit)

The FRAM is a dual port RAM of 480 x 32 bits that holds the complete information of the Transport
Stream Demultiplexor. This includes the filter information, the stream configurations, the keys for
the descrambler and the IRQ words, as shown in Figure 16.13.

Figure 16.13 FRAM organization

Valid Valid Valid Valid

Valid Valid Valid

Valid Valid

Valid

First byte

[31:24] [23:16] [15:8] [7:0]

In SDAV_DMA_EN_REG: FIRST_BYTE_POSIT

11

10

01

00 Valid Valid Valid Valid

Valid Valid Valid

Valid Valid

Valid

Last byte

[31:24] [23:16] [15:8] [7:0]

In SDAV_DMA_EN_REG: FIRST_BYTE_POSIT

00

01

10

11

32 bit
UC bus

32 bit
To FRAM
control

PID filtering (32 x 32 bit)

Section filtering

Key memory (32 x 32 bit)

Stream configuration #1 (32 x 32 bit)

Stream configuration #2 (32 x 32 bit)

Stream configuration #3 (32 x 32 bit)

IRQ registers (32 x 32 bit)

for up to 8 scrambled streams

(288 x 32 bit)

RAM array (480 x 32 bit)

0x000

0x020

0x140

0x160

0x180

0x1A0

0x1C0

STi5500

109/2897110597 A

One port is used by the micro to initialize the RAM. The other port is used by the processors, the fil-
ter and the descrambler. After the PID is filtered, the stream number is used to generate the
address for the stream initialization. This configuration determines further processing of the
stream, such as section, error code and filtering.

In order to save power, the FRAM is only enabled when an access from one of the processors
occurs. This happens whenever there is PID filtering, AF filtering, section filtering, the loading of
the stream configuration, the saving of the stream configuration at the end of the packet (section
length if section is over 2 TP, CC...) and the IRQ status word read and write operations.

16.3.2 Filtering

The filtering is done by precalculating the result. The byte to be filtered is used to generate the
address in the FRAM. A '1' at an address means a match. For an 8-bit value, this would give 256
bits in the RAM (see Figure 16.14).

Figure 16.14 Basic principle of filter mechanism

To reduce the RAM size, the filtering is done in four steps per incoming byte. In each step, two bits
of the incoming byte plus a 2-bit pointer generate the address in the RAM. This needs 16 bits of
RAM for one filter byte.

Each bit of the byte to be filtered can be masked individually as described below (see Table 16.11).

As the RAM is 32 bits wide, we can filter on 32 targets in parallel. However it is also possible to filter
on less then 32 targets. In this case the multiplexor at the output of the FRAM allows selection of
only a part of the data. With each new byte to be filtered, the address of this multiplexor changes
(by adding the filter number) and therefore selects a different part of the output data.

Therefore, the lowest bit of the filter match register holds the result of the filter process. For exam-
ple, if only one target is filtered, the LSB of the register holds the result.

16.3.3 Error Procedures

On the input of the STi5500, the packet stream can be erroneous. Several error mechanisms are
applied depending on error that occurs. Table 16.11 is a list of the possible errors and the applied
mechanisms (see Table 16.12).

0 255.........

RAM array of 256 x 1 for each filtered byte

F byte (8 bit)

Result

In this case the filter byte gives directly the address in the RAM array

STi5500 l

110/287110/289 7110597 A

See also not-equal filtering mode.

The CC error code insertion can also be switched on or off for each stream individually by the
stream configuration.

Table 16.14 summarizes the CC processing for DVB.

Filter Mask Value in FRAM Filter Mask Value in FRAM

01101100

11111111
0100 0010 0001 1000 ...

0110110

11111110
0100 0010 0001 1100

01101100

00000010
1111 1111 1111 1100

01101100

11111101
0100 0010 0001 1010

01101100

00000001
1111 1111 1111 1010

...
01101100

 00000000

1111 1111 1111 1111

All Input Bytes Are Valid

Table 16.11

Error Mode Description

FEC
DVB

DSS
This signal is delivered by the Link IC and signals a packet error. In this case
the transport packet is not processed, it is not written into the AR.

SYNC_BYTE DVB If the sync_byte in the packet header is not correct (≠ 0x47), the TP is rejected.

TRANSPORT_ERROR
_INDICATOR

DVB
This bit belongs to the TP header; if it is set the TP is rejected. This is done
with the filter process.

CC
DVB

DSS
If the received CC does not match the expected one, different mechanisms
are applied according to the stream type.

Table 16.12

Event Action

Suspend = '0' No CC error generated

CC Error and ERROR_PATT = '1' and not (only AF) and
PES

Error code is generated: B4 00 00 01 B4

CC Error for a Section Stream
If section is active, the stream is disabled and IRQ is
generated (see below)

Table 16.13

STi5500

111/2897110597 A

1 This will create a CC error for the next packet on this PID.

2 If the discontinuity indicator is set (in the AF) and if an error code was inserted, this code must be
removed.

16.4 Not-equal filtering

A special mode allows filtering on a not-equal condition (defined in Stream_conf_1). The byte to
which this is applied is programmable. It can also be done in parallel to up to 8 different targets.
When not-equal filtering, one additional byte has to be filtered after the not-equal byte.

After the section length, the SEC_F_INV_REG is loaded. It cannot be loaded with 111. The func-
tion is activated with the SEC_F_INV signal (see Figure 16.15).

Figure 16.15 Section filtering example

AF Payload Event Transport Stream Demultiplexor processing

0 0 CC is incremented or not Skipped TP - dummy transfer

1 0
CCn = CCn-1 End of CC processing

CCn ≠ CCn-1 CCstored is modified by the Transport Stream Demultiplexor.1

0 1

CC is incremented End of CC processing

CCn = CCn-1 Duplicated TP: dummy transfer

CC is not incremented
and CCn ≠ CCn-1

• Section + suspend = 1: stream disabled.

• Section + suspend = 0: nothing

• PES + suspend = 1: insert error code

• PES + suspend = 0: nothing

1 1 Same processing as previous combination (2)

Table 16.14 CC processing for DVB

Table id

Section length

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Not equal mode
available for one
of these 6 bytes

SEC_F_INV_REG

100
011
010
001
000

Sec_f_count = 100
(from Stream_conf_1)

Not equal mode
Result available (1 byte later)

These bytes can be written into the FIFO (16 bytes).
This means that up to 14 bytes
(Maximum filter length) can be filtered.

STi5500 l

112/287112/289 7110597 A

One byte of each target can be checked to be different from a specific value. At the beginning, all
sections can be received. This is done by masking the specified byte (the FRAM is initialized with
0x00 in not_equal mode). After each section has arrived, the filter for the specified byte can be writ-
ten into the FRAM (see Table 16.15).

Note: 0 means the bit is masked
1 means the bit is not masked

16.5 DMA

MPEG audio, video and system data can be transferred to any location in the ST20 address space
(internal SRAM, external SDRAM or DRAM, MPEG decoders) via a DMA controller.

The DMA transfers the data from the Transport Stream Demultiplexor to a destination address
which can be set individually for each stream.

Filter Mask Value in FRAM Equal mode Not-equal mode

01101100

 11111111
0100 0010 0001 1000 01101100 valid

All Valid Except

 01101100

01101100

 01101100
0100 0010 0001 1100

01101100 and

 01101101 valid

All valid except

 01101100 and

 01101101

01101100

 10011111
1100 1010 0001 1010

01101100 and

 00101100 and

 01001100 and

 00001100 valid

All valid except

 01101100 and

 00101100 and

 01001100 and

 00001100 valid

...

01101100

 00000000
1111 1111 1111 1111 All bytes valid No byte valid

01101100

 ????????

0000 0000 0000 0000

At least 1 nibble = 0000
No byte valid All bytes valid

Table 16.15

Register Bit field Bits Circular buffer

Stream_conf_2

BUFFER_SIZE 30:28 CIRCULAR_BUFFER_SIZE

STOP_ADDR 27:18 DMA_STOP_ADDR (14:5)

START_ADDR 17:11 DMA_START_ADDR (18:8)

DMA_BANK_ADDR 10:7 DMA_ADDRESS (31:28)

DMA_HIGH_ADDR 6:0 DMA_ADDRESS (21:15)

Stream_conf_3 DMA_LOW_ADDR 26:12 DMA_ADDRESS (14:0)

Table 16.16 DMA configuration

STi5500

113/2897110597 A

Figure 16.16 DMA address

16.5.1 DMA Description

At the beginning of the packet, the DMA is initialized by Stream_conf_2 and Stream_conf_3.
There are two basic modes of the DMA - incremental and non-incremental. For DVD, incremental
mode has two sub-modes - circular and linear.

At the end of the packet, the current address of the DMA can be stored back to the FRAM. It will be
reloaded by the Transport Stream Demultiplexor when the next packet on this stream arrives. The
address write-back is not done in DVD mode.

If the increment bit of Stream_conf_2 is set to '1', and the DISABLE_FINAL_BURST bit of
MODE_REG is set to '0', the last transfer will be a burst transfer where the not used bytes are filled
with dummy data. If the increment is set to '0', or the DISABLE_FINAL_BURST is set to '1', the
exact number of bytes is transferred (MPEG decoders).

However, the address counter will keep the value of the last valid byte that is transferred. Two buff-
ers are used in the DMA (two times 4x32 bits). While one buffer is transferred the second one is
filled. This allows data to be read from the Transport Stream Demultiplexor even if the DMA has to
wait for the ST20 bus.

The address pointer which will normally increment every time something is transferred, has to be
limited in order not to destroy information from other buffers or program code. To this end circular
buffers are implemented.

For all buffers:

END_ADDR = START_ADDR + SIZE - 1

CURRENT_ADDRESS = first byte to be written
= the value in Stream_conf_3 at the end of packet

STOP_ADDRESS = last byte read

31 28 21 15 14 0

DMA bank
address

[3:0]

DMA high
address

[6:0]

Current address [14:0]

Address stored in FRAM

STi5500 l

114/287114/289 7110597 A

The circular buffer (incremental mode)

To stop properly the transfer when the circular buffer is full, the CPU writes the STOP_ADDR in the
Transport Stream Demultiplexor.

• In this case when the transfer pointer (START_ADDR) reaches this value, the DMA can be
aborted. This will prevent overwriting of data which has not been processed.

• The CPU updates the STOP_ADDR each time it has finished processing data.

• A START_ADDR(2:0) and a STOP_ADDR(9:0) are specified. The meaning of these bits
depends on the BUFFER_SIZE(2:0), as shown in Figure 16.17 and Figure 16.18).

• When the transfer address reaches the top of the circular buffer, it is reset to the bottom of
the circular buffer and the transfer continues.

• If the transfer is aborted (if STOP_ADDR is reached), the DMA engine generates a DMA
overflow. When this occurs, the rest of the packet is discarded. The DMA buffer is flushed to
its destination and the Stream_conf_3 is saved back to the FRAM. The stream is automat-
ically disabled. The DMA_overflow bit is set with the STREAM_NUMBER in the status
word, which is written into the LINK_STAT_FIFO.

BUFFER_SIZE (2:0) Buffer size (bytes) Stop precision (bytes)

000 256 32

001 512 32

010 1024 32

011 1536 32

100 2048 32

101 3072 32

110 4608 32

111 8192 32

Table 16.17 DMA buffer sizes

STi5500

115/2897110597 A

Figure 16.17 Buffer size definition

The DVD buffer (linear mode)

In DVD mode, the DMA can be incremental or non-incremental, but if it is incremental, the circular
buffer is not used. The address, starting from DMA_LOW_ADDR, is incremented after each
access, independently from the start and the stop addresses if the increment bit is set to '1'. If the
increment bit is set to '0', all the data is written to the address specified by the DMA_HIGH_ADDR
and the DMA_LOW_ADDR.

The non-incremental buffer

This mode is used when addressing the CD FIFOs. The CURRENT_ADDRESS(1:0) is incre-
mented by 1 after each access.

11111111startend

BUFFER_SIZE

0 0 0

Size

256 bytes

DMA_BANK_ADDR Not used DMA_HIGH_ADDR

31 30 29 28 27 26 25 24 19 18 17 1623 22 21 20 15 14 13 12 11 10 9 8 3 2 1 07 6 5 4

DMA_LOW_ADDR = CURRENT_ADDRESS

Stream_conf_2(10:7) Stream_conf_2(6:0) Stream_conf_3(26:12)

11111111start + 1end

11111111start + 11end

11111111start + 101end

11111111start + 111end

11111111start + 1011end

11111111start + 10001end

11111111start + 11111end

0 0 1 512 bytes

0 1 0 1024 bytes

0 1 1 1536 bytes

1 0 0 2048 bytes

1 0 1 3072 bytes

1 1 0 4608 bytes

1 1 1 8192 bytes

00000000start

00000

STOP_ADDR = 10 bits

stop

START_ADDR = 7 bits

STi5500 l

116/287116/289 7110597 A

Figure 16.18 Circular buffer diagram

16.6 Clock recovery

This block helps the control unit to perform the clock recovery and clock synchronization pro-
cesses. It uses local counters clocked with the video clock (27MHz).

The value of these counters can be latched in four different registers that can be read by the control
unit.

PCR_EXT_REG(8:0) and PCR_REG(31:0) are updated with the local time counters when a new
packet occurs. If an AF with PCR is found (if PCR flag is present in AF byte #0), a sample of the
27Mhz clock is latched and the first 8 bytes of the incoming Adaptation Field are stored in
AF_REG[1:0]. It allows the controller unit to synchronize the decoder clock reference (27MHz). A
new PCR cannot be latched if the current PCR (AF_REG1) has not been read by the CPU.

Buffer Circular buffer DVD buffer Non-incremental Buffer

BUFFER_SIZE

See Table 16.16

See Table 16.16

Not usedSTOP_ADDR
Not used

START_ADDR

DMA_BANK_ADDR

Used to initialize the DMA.DMA_HIGH_ADDR

DMA_LOW_ADDR

Table 16.18 DMA address

1

Not yet read

2

Not accessible

Not accessible

Not accessible

Not accessible

dma_low

stop

start

bottom

top

end

0x7FFF

0x0000

32
 K

by
te

s

1

2

1

Not yet read

2

Not accessible

Not accessible

end

dma_low

stop

bottom

top

start

0x7FFF

0x0000

32
 K

by
te

s

1

33

Not accessible

2

1, 2 and 3 are locations that are writable

STi5500

117/2897110597 A

When a rising edge is detected on the latch from the video decoder or audio decoder, the appropri-
ate Transport Stream Demultiplexor register, V_PTS_REG or A_PTS_REG respectively, is
updated with the local time Counter(31:0). The latches are reset by the clock recovery entity after
the register has been read by the control unit.

A counter(19:0) is also required to generate the time stamp used for the SDAV header. The time
stamp value is updated at the beginning of each packet.

Figure 16.19 Clock recovery

16.7 Interrupts

Table 16.19 shows the interrupt sources specified for each stream.

Number Interrupt Maskable Stream disabled

1 AR Overflow no no

2 DMA Overflow no yes

3 Bad Section no yes

4 End of Section Filtering yes no

5 End of Section Transfer yes no

6 Incomplete Filtering yes no

7 AF yes no

8 SDAV Underflow no no

9 SDAV Overflow no no

Table 16.19 Interrupt sources

Counter (8:0) / 300

PCR_EXT_REG

Counter (19:0)

TIME_STAM_REG

9

20

Counter (31:0)

PCR_REG

V_PTS_REG

A_PTS_REG

32

Video decoder latch

Audio decoder latch

AND

Packet clock
(from FEC or SDAV/P1394)

PCR latch (pulse)
PCR latch enable (from AF block)

PCR latch

27 MHz

STi5500 l

118/287118/289 7110597 A

16.7.1 IRQ FIFO

Global Mechanism

Each interrupt source has a corresponding status bit in the status word LINK_STAT_FIFO. If the
interrupt is enabled (mask=1) and the corresponding status bit is set, an interrupt event is gener-
ated.

Successive interrupts generate successive status words LINK_STAT_FIFO that are stored, in
chronological order, in a 32-word FIFO. This is useful if multiple interrupts occur within a packet
(multiple sections per packet). The FIFO is implemented as a circular buffer in the FRAM.

LINK_STAT_FIFO

In the status word, the STREAM_NUMBER field and interrupt status bits of the status word are
always applicable. The TARGET_MATCH and OTHER_MATCH bits are only valid on EOF and
INCOMPLETE_FILTER interrupts. In addition, the FILTER_OFFSET field is only valid on
INCOMPLETE_FILTER interrupts.

LINK_STAT_REG

The FIFO_NOT_EMPTY field of the LINK_STAT_REG register indicates if interrupts are pending.
Each time a status word is written to (or read from) the FIFO, a write (or read) pointer is incre-
mented in LINK_STAT_REG. The FIFO is read by the software through the LINK_STAT_FIFO reg-
ister. When a word is read, it is removed from the FIFO.

The software should check the LINK_STAT_REG for FIFO emptiness or overflow before reading
the LINK_STAT_FIFO. The software should not read the FIFO if it is empty.

When at least one status word is present in the LINK_STAT_FIFO, the interrupt line to the CPU is
set active, and kept active as long as the FIFO is not empty. The interrupt line becomes inactive
when the last word is read from the FIFO.

If the FIFO is full and new interrupt events occur, no further status word is written to the FIFO and
the FIFO_OVERFLOW bit of the LINK_STAT_REG register is set. This bit is reset when the soft-
ware reads a word out of the FIFO.

16.7.2 AR Overflow

IRQ Generation

An AR overflow occurs if at least one of the following condition is true:

• a new packet has started being stored in the AR and its processing has not started as
AR_timeout bytes have been stored.

• the write pointer of the AR reaches the read pointer.

This can happen if the Transport Stream Demultiplexor hangs or if the ST20 bus traffic prevents
data to be output fast enough.

IRQ Processing

The stream is not disabled.

When such an AR overflow occurs, the current packet processing is aborted. All packet data which
have not already been passed to the DMA write buffer are discarded. The DMA write buffer is
flushed to its destination.

STi5500

119/2897110597 A

An internal reset signal is generated to put the whole Transport Stream Demultiplexor into a state
where it expects a new packet to arrive:

• if a start of packet is present in the AR, data input is not stopped and overwrites the dis-
carded data.

• if a start of packet is already present in the AR, its processing starts immediately.

The Stream_conf_3 of the aborted packet is not saved back to FRAM. Therefore appropriate error
processing will be performed due to CC discontinuity on the next packet of the same PID.

The AR_OVERFLOW bit is set along with the STREAM_NUMBER in the status word and the sta-
tus word is written into the LINK_STAT_FIFO.

16.7.3 Storage Buffer Overflow

IRQ Generation

A DMA overflow interrupt occurs when the write pointer of the DMA transfer reaches the stop value
stored in Stream_conf_2.

IRQ Processing

The stream is disabled.

The rest of the packet is discarded. The DMA buffer is flushed to its destination.

Stream_conf_3 is saved back to FRAM.

The DMA_overflow bit is set along with the STREAM_NUMBER in the status word and the status
word is written into the LINK_STAT_FIFO.

16.7.4 Bad Section

IRQ Generation

When saving a section to memory, the Transport Stream Demultiplexor counts the section length
and knows therefore the end of the section.

The following conditions will generate a bad section interrupt:

• The PUS of the current packet is set and the pointer_field at the beginning of the packet
does not correspond to the number of remaining bytes in the currently transferred section.

• The CC of the current packet has the wrong value on a section packet when a section is
being processed.

• The PUS is not set and the bytes following the current section are not stuffing bytes (FF).

IRQ Processing

The stream is disabled.

In such condition, the bad_sec bit is set along with the STREAM_NUMBER in the status word and
the status word is written into the LINK_STAT_FIFO.

(Note that the CC is checked on PES streams if the error_patt bit of the Stream_conf_1 is set. But
no IRQ is generated there.)

STi5500 l

120/287120/289 7110597 A

16.7.5 End of Section Filtering

IRQ Generation

• DSS/DVB mode

An eof interrupt is generated if the eof_irq bit is set for the current stream and a filtering
operation has been completed with a match.

• DVD mode

An eof interrupt is generated if the eof_irq bit is set for the stream 0 and the DMA engine
has been initialized with the parameters stored in FRAM.

IRQ Processing

Normal processing continues.

• DSS/DVB mode

The eof_flag is set along with the STREAM_NUMBER in the status word.

The values of target_match and other_match are stored in the status word which is pushed
into the LINK_STAT_FIFO.

This information can be useful for the application software.

• DVD mode

The eof_flag is set along with the STREAM_NUMBER in the status word.

16.7.6 End of Section Transfer

IRQ Generation

• DSS/DVB mode

An eos interrupt is generated if the eos_irq bit is set for the current stream number and a
section has been completely transferred by the DMA controller to memory.

• DVD mode

An eos interrupt is generated if the eos_irq bit is set for the stream 0 and the DMA engine
has finished the transfer of a packet.

IRQ Processing

Normal processing continues.

• DSS/DVB mode

The eos_flag is set along with the STREAM_NUMBER in the status word. The status word
is written into the LINK_STAT_FIFO.

• DVD mode

The eos_flag is set along with the STREAM_NUMBER in the status word.

STi5500

121/2897110597 A

16.7.7 Incomplete Filtering at End of Packet

IRQ Generation

An incomplete filtering interrupt is generated if the incomplete_irq bit is set, a section filtering oper-
ation is not complete at the end of a packet and at least one temporary match is pending.

 The filtering is considered as successful and the section transfer starts.

IRQ Processing

Normal processing continues.

The values of TARGET_MATCH and OTHER_MATCH are stored in the status word and the
INCOMPLETE_FILTER bit is set along with the STREAM_NUMBER and FILTER_OFFSET in the
status word and pushed into the LINK_STAT_FIFO.

The application software can use this information to complete the section filtering.

16.7.8 Adaptation Field reception

IRQ Generation

An AF interrupt is generated if:

• the AF_IRQ bit is set for the current stream number and

• an AF with at least one flag set is present in the packet and

• the previous one has been read by the CPU.

The first 8 bytes of the AF are stored into the AF_REG1-0. If the AF is less than 8 bytes, some pay-
load bytes are written in the AF buffer. If the AF length is zero, there is no match and no storage.

IRQ Processing

Normal processing continues. Once Adaptation Field information has been written into the
AF_REG registers, PCR counters value is latched and no new AF information can overwrite it until
the CPU has read the register AF_REG1. If another AF is received before the previous one has
been read by the CPU, it is simply discarded. The AF flag is set in the status word with the
STREAM_NUMBER and an interrupt is generated.

16.7.9 SDAV Underflow Error

IRQ Generation

A SDAV underflow is generated if a SDAV packet has started to be output to the SDAV port and no
more data is present in the SDAV block to be sent.

IRQ Processing

The stream is not disabled. The output packet is corrupted and further data belonging to that
packet is discarded. Since the SDAV operates independently from the rest of the Transport Stream
Demultiplexor, the STREAM_NUMBER present in the status word may not be relevant. When such
a SDAV underflow error occurs, the SDAV_UNDERFLOW bit is set along with the
STREAM_NUMBER in the status word and the status word is written into the LINK_STAT_FIFO.

STi5500 l

122/287122/289 7110597 A

16.7.10SDAV Overflow Error

IRQ Generation

A SDAV underflow is generated if the SDAV buffer is full and new data is presented at the input of
the buffer to be stored.

IRQ Processing

The stream is not disabled.

Meanwhile, a new packet has possibly started being processed by the Transport Stream Demulti-
plexor. Note that the SDAV block is supposed to accept data as delivered by the rest of the Trans-
port Stream Demultiplexor and can in no way suspend Transport Stream Demultiplexor operation.
When this occurs, the output of the current packet is aborted and all remaining data belonging to
that packet is discarded. The read and write pointers are reset. If a new packet_start is already
present, data input is not stopped and overwrites the discarded data. The read pointer points now
to the first byte of this new packet.

Since the SDAV operates independently from the rest of the Transport Stream Demultiplexor, the
STREAM_NUMBER present in the status word may not be relevant. When such a SDAV overflow
error occurs, the SDAV_OVERFLOW bit is set along with the STREAM_NUMBER in the status
word and the status word is written into the LINK_STAT_FIFO.

16.8 Memory and register map

The total address space for the Transport Stream Demultiplexor block is 4 kbyte, arranged as1024
words of 32 bits. The block is in the peripheral space of the memory map, with base address Trans-
portDemuxBase, whose value is given in the Chapter 8. All addresses in this chapter are hexadec-
imal byte offsets from TransportDemuxBase in the range 0x000 - 0xFFF.

All the resources are accessed as 32-bit words and all the addresses point to bytes.

16.8.1 Global address map

Figure 16.20 and Table 16.20 show the locations of the FRAM and registers in the Transport
Stream Demultiplexor block.

Figure 16.20 Transport stream demultiplexor address map

Transport stream demultiplexor registers

FRAM

0x000

0x780

0xF00

0xFC8

Not used

Not used

TransportDemuxBase

STi5500

123/2897110597 A

16.8.2 FRAM contents

Descrambling keys

Eight different descrambling key sets are stored in FRAM, numbered 0 to 7. Each key set contains
2 keys of 64 bits each. They are mapped as following:

Stream configuration words

The tables in this section define the stream configuration words Stream_conf_1-3.

Address range Size Resource Type

0x000 - 0x77C 480 Words FRAM R/W

0x780 - 0xEFC 480 Words Not Used

0xF00 - 0xFC4 51 Words Registers R/W

0xFC8 - 0xFFC 15 Words Not used

Table 16.20 Transport stream demultiplexor address map

Address Size Resource Type

0x000 - 0x4FC 320 words Filter data R/W

0x500 - 0x57C 32 words Descrambling keys R/W

0x580 - 0x5F0 32 words Stream configuration #1 R/W

0x600 - 0x67C 32 words Stream configuration #2 R/W

0x680 - 0x6FC 32 words Stream configuration #3 R/W

0x700 - 0x77C 32 words IRQ registers R/W

Table 16.21 FRAM address map

Address Key set Key Parity Key bits Type

0x500

0

Even 31:0 (LSW) R/W

0x504 Even 63:32 (MSW) R/W

0x508 Odd 31:0 (LSW) R/W

0x50C Odd 63:32 (MSW) R/W

0x510

1

Even 31:0 (LSW) R/W

0x514 Even 63:32 (MSW) R/W

0x518 Odd 31:0 (LSW) R/W

0x51C Odd 63:32 (MSW) R/W

...

0x578
7

Odd 31:0 (LSW) R/W

0x57C Odd 63:32 (MSW) R/W

Table 16.22 Descrambling keys

STi5500 l

124/287124/289 7110597 A

Stream_conf_1 contains the filter configuration, the behavior for each stream and the interrupt
generation scheme, as shown in Table 16.23. SEC_F_INV_REG cannot be loaded with 111. The
interrupts are generated if mask = 1.

Bit Signal Name Comment Type

31 EOF_IRQ
DVB IRQ Mask on end of Section Filtering
DSS End of Conditional Filtering
DVD Configuration Has Been Loaded

R/W

30 EOS_IRQ
DVB IRQ Mask on end of Section
DSS End of Packet
DVD End of Sector

R/W

29 AF_IRQ DVB IRQ Mask on af IRQ R/W

28 OUTPUT_PACKET
1 Send Packet to SDAV
0 Ignored by SDAV

R/W

27 STREAM_TO_BUFFER
1 Enable Transfer to DMA Buffer
0 Bytes are Only Read for SDAV

R/W

26 ERROR_PATT
1 Insert Error Pattern on CC Error
0 No Insertion of Error Code

R/W

25 PES_DES_EN
1 Enables PES Level Descrambling
0 No PES Level Descrambling

R/W

24 PES_NSEC
1 Stream PES
0 Stream SECTION

R/W

23 SEC_F_INV
1 Not Equal Mode
0 Equal Mode

R/W

22:20 SEC_F_INV_REG Offset in filter for ‘Not Equal’ Filter R/W

19:16 FILTER_LENGTH Size of filters R/W

15:10 FILTER_NB Number of filters R/W

9:0 FRAM_ADDRESS Filter start address in FRAM R/W

Table 16.23 Stream configuration word Stream_conf_1

Bit Signal Name Comment Type

31 INCREMENT
1 DMA increment (memory)
0 no DMA increment (MPEG)

R/W

30:28 BUFFER_SIZE DMA circular buffer size R/W

27:18 STOP_ADDR DMA stop address(14:5) R/W

17:11 START_ADDR DMA start address(14:8) R/W

10:7 DMA_BANK_ADDR DMA address(31:28) R/W

6:0 DMA_HIGH_ADDR DMA address(21:15) R/W

Table 16.24 Stream configuration word Stream_conf_2

STi5500

125/2897110597 A

Stream_conf_3 is defined in Table 16.25. This word contains the DMA low address for each
stream.

16.8.3 Register map

Table 16.26 lists all the Transport Stream Demultiplexor registers with their addresses as offsets
from TransportDemuxBase. The contents of the registers are given in the STi5500 Register Man-
ual.

Bit Signal Name Comment Type

31:28 CC_COUNTER_IN Current Continuity Counter Value R/W

27 SUSPEND

DVB - PES:

1 Bypass first CC check
0 CC check takes place

DVB - SEC:

1 Section cut
0 No section cut

DSS:

1 Hunt mode
0 No hunt mode

R/W

26:12 DMA_LOW_ADDR DMA address(14:0) R/W

11:0
TRANSFER_LENGTH
 (XFER_COUNT_REG)

DVB - PES (when PES scrambling): remaining bytes of the PES header if
the header exceeds 184 bytes

DVB - SEC: remaining bytes in current section

DSS: Bit 0 = HD[1] (Toggle bit)

R/W

Table 16.25 Stream configuration word Stream_conf_3

Address Bits Name Access Reset value

0xF00 - 0xF7C 0:0 STREAM_EN_REG[31:0] R/W 0x0

0xF80 20:0 LINK_STAT_REG R/W bit 2 = 0

0xF84 31:0 LINK_STAT_FIFO R -

0xF88 11:0 PACKET_LENGTH_REG R/W 0xBC

0xF8C 5:0 TIME_OUT_REG R/W 0x38

0xF90 9:0 MODE_REG R/W 0x001

0xF94 5:0 PCR_STREAM_REG R/W 0x0

0xF98 31:0 AF_REG0 R -

0xF9C 31:0 AF_REG1 R -

0xFA0 31:0 V_PTS_REG R -

0xFA4 31:0 A_PTS_REG R -

0xFA8 31:0 PCR_REG R -

0xFAC 8:0 PCR_EXT_REG R -

Table 16.26 Transport stream demultiplexor registers

STi5500 l

126/287126/289 7110597 A

16.8.4 Register contents

The register contents are given in the STi5500 register manual.

16.9 Glossary

AR Acquisition RAM

ARAM Acquisition RAM

FRAM Filter RAM

IRD Integrated Receiver Decoder box

NRSS National Renewable Security System

PES Packet Elementary Streams

PSI Program Specific Information

SDAV Simplified Digital Audio Video

TP Transport Packets

0xFB0 5:0 AR_SIZE_REG R/W 0x3E

0xFB4 26:0 SDAV_CONF_REG R/W bits 22, 15, 14, 12 = 0

0xFB8 5:0 SDAV_DMA_EN_REG R/W bit 0 = 0

0xFBC 31:0 SDAV_DATA_REG R/W -

0xFC0 0:0 EN_LINK_REG R/W 0x0

0xFC8 12:0 EXTRA_BITS_REG R/W bit(0) = 0

0xFCC - 0xFFC Not used

Address Bits Name Access Reset value

Table 16.26 Transport stream demultiplexor registers

STi5500

127/2897110597 A

17 MPEG DMA controllers
The on-chip MPEG Audio and MPEG Video Decoders are memory-mapped, and contain Com-
pressed Data (CD) FIFOs for audio (in the Audio Decoder) and one each for video and sub-picture
(in the Video Decoder). Some applications require data to be transferred to these FIFOs using a
dedicated MPEG DMA controller.

There are two such MPEG DMA controllers MPEGDMA0-1 available on the STi5500, which are
time-shared by the three CD FIFOs. MPEGDMA0-1 can each be configured for transferring blocks
of compressed data to any of the FIFOs. The DMA will remain dedicated to that FIFO until the com-
plete block of data has been sent (i.e. cannot be interrupted).

A third MPEG DMA controller MPEGDMA2 is provided for transferring data to the SDAV interface
of the Hardware Transport Stream Demultiplexor. MPEGDMA2 must be configured to send to the
SDAV interface.

The MPEG DMA transfer is initiated by the CPU, using a channel as described in Appendix A. Con-
trol registers can be set to define the characteristics of each DMA transfer burst in response to a
request, or to suspend the transfer. The base address for the output buffer in the memory space
and the size of transfer in bytes are set by the out (output) instruction from the CPU to the MPEG
DMA controller channel. For channel mapping refer to the Memory Map.

17.1 MPEG DMA transfers

To perform a DMA transfer to an MPEG decoder, the MPEG DMA controller must first be initialized
and then an output to the MPEG DMA channel be executed by the CPU.

The control registers are described in section 17.2.

The MPEGBurstSize register controls the number of bytes transferred each time the DMA control-
ler samples the notCDREQ signal active. This should be programmed with a burst size appropriate
for the MPEG decoder fifo.

After sampling the notCDREQ signal active the signal is ignored until the burst size in bytes has
been transferred, the last write cycle of the burst has completed, and the hold-off time programmed
in the MPEGHoldoff register in cycles has expired from the last write cycle completion. If the notC-
DREQ signal is active after this time then the DMA controller will transfer another burst of data.

The MPEGSuspend register bit must be set to ‘1’ before a transfer is initiated, otherwise the trans-
fer will not start.

The MPEGBurstSize and MPEGHoldoff registers are not altered by transfer operations and only
have to be reset when changing to another decoder.

The final stage of initializing the DMA transfer is to execute an output to the MPEGDMA channel
which sets up the source base address and the DMA transfer size. This also deschedules the soft-
ware until the transfer is complete.

The maximum transfer size is 65535 bytes.

STi5500 l

128/287128/289 7110597 A

The DMA module will only transfer data when the appropriate notCDREQ input is active after the
output to the DMA channel. The DMA then transfers the programmed burst size in bytes of data to
the location set for the FIFO buffer in memory. Note, if there are less than BurstSize bytes left to
transfer then only these bytes will be transferred.The FIFO buffer address is not incremented.

The MPEG DMA controller fetches words from the source address whenever possible and buffers
these to perform word writes to the destination address whenever possible.

During a transfer DMA operations can be suspended by setting the MPEGSuspend register bit to
a ‘0’. Note that although no new write transfers will be started after this bit has been set to ‘0’, soft-
ware must wait for a time long enough for the current write transfer to finish before assuming that
no DMA writes are being performed. Transfers will start again when the MPEGSuspend register
bit is set to ‘1’.

When the number of bytes programmed in the out instruction have been transferred the channel
output is acknowledged to the CPU and the software rescheduled.

The destination address for the data is programmable in real time in the MPEG DMA0-1 controller
registers, and thus can be directed to any of the three decoder FIFOs via the MPEGDecoderSel
register. For MPEGDMA2 this register must be set to send to the SDAV interface.

The register base addresses for the MPEG DMA controllers are given in the Memory Map chapter.

17.2 MPEG control registers

MPEGBurstSize MPEGDMA base address + #00 Write only

Bit Bit field Function

4:0 BurstSize4:0

DMA transfer burst size in response to notCDREQ0-3.

BurstSize4:0 Transfer
00000 32 bytes per burst
00001 1 byte per burst
00010 2 bytes per burst
... ...
11111 31 bytes per burst

7:5 RESERVED. Write 0

Table 17.1 MPEGBurstSize register format

MPEGHoldoff MPEGDMA base address + #04 Write only

Bit Bit field Function

4:0 Holdoff4:0

DMA transfer holdoff time from the end of one burst to re-sampling notCDREQ0-3.

Holdoff4:0 Holdoff time in system clock cycles
00000 32 cycles
00001 1 cycle
00010 2 cycles
... ...
11111 31 cycles

7:5 RESERVED. Write 0

Table 17.2 MPEGHoldoff register format

STi5500

129/2897110597 A

The meaning of the MPEGDecoderSel register differs between the MPEGDMA controllers, since
the outputs are connected to different destinations.

On STi5500 for MPEGDMA0-1, the hardware is configured such that the Decoder Select values
correspond to the MPEG CD FIFOs given in Table 17.5.

MPEGSuspend MPEGDMA base address + #08 Write only

Bit Bit field Function

0 Suspend
Suspend DMA operations

 0 suspend DMA
1 enable DMA (normal operation)

7:1 RESERVED. Write 0

Table 17.3 MPEGSuspend register format

MPEGDecoderSel MPEGDMA base address + #0C Write only

Bit Bit field Function

1:0 DecoderSelect1:0

Select Decoder (controls polling of notCDREQ and FIFO base address) for DMA
transfer

 00 select notCDREQ0
 01 select notCDREQ1
 10 select notCDREQ2
 11 select notCDREQ3

7:2 RESERVED. Write 0

Table 17.4 MPEGDecoderSel register format for MPEGDMA0-1

MPEGDecoderSel Request Signal FIFO buffer address MPEG module

00 notCDREQ0 #00001800 Video

01 notCDREQ1 #00001A00 Audio

10 notCDREQ2 #00001C00 Sub-picture

11 notCDREQ3 #00001E00 not defined

Table 17.5 MPEG modules and write addresses

MPEGDecoderSel MPEGDMA base address + #0C Write only

Bit Bit field Function

1:0 SDAVSelect1:0

Select Destination for DMA transfer

 00 Reserved
 01 Reserved
 10 Reserved
 11 SDAV

7:2 RESERVED. Write 0

Table 17.6 MPEGDecoderSel register format for MPEGDMA2

STi5500 l

130/287130/289 7110597 A

18 MPEG video decoder
This chapter describes the STi5500 MPEG video decoder. The video decoder decompresses a
MPEG 2 bit-stream and constructs a picture. The registers to control the decoder are described in
the STi5500 Register Manual and the display functions are described in Chapter 21.

18.1 Decoder operation

The video decoder is a picture decoder; it decodes a whole picture and then stops until instructed
to decode the next picture present in the video bit-stream.

Normally, the decoding of a new picture commences in response to the start of display of a new
picture. The registers whose contents can change from picture to picture are double-banked and
are updated automatically when decoding starts. The bit-stream is read from the bit buffer into the
variable-length code decoder (VLD), and picture reconstruction can commence. Any predictors
required are fetched from the appropriate area of the external memory, and the reconstructed pic-
ture is written back into the area of this memory assigned to the decoded picture.

While a picture is being decoded the start code detector is used to locate the start of the next pic-
ture header, which the CPU then reads in order to set up the double-banked registers for the
decoding of the next picture.

All of these tasks can be synchronized using interrupts generated on start code hits and vertical
sync signals.

18.1.1 Start code search

The video decoder is able to decode in its entirety a video bit-stream from the slice layer down-
wards. The higher layers (i.e. picture and upwards) are decoded by the driver in order to extract the
information needed for decoding and set up the appropriate video decoder registers and quantiza-
tion tables. Since the header information is byte-aligned and requires minimal interpretation, this
task represents only a small load on the CPU.

The start code detector parses the bit-stream stored in the bit buffer and locates start codes corre-
sponding to picture layer and above. When one of these start codes has been found, the start code
detector stops and raises an interrupt.

The CPU is then able to read the header data following the start code. The start code detector
starts automatically whenever the decoding of a new picture starts and on user command. In nor-
mal operation, start code parsing is performed one picture in advance of decoding.

18.1.2 Operation in bandwidth reduction mode

In bandwidth reduction mode the decoder requires the use of three frame buffers in external mem-
ory. This is the normal mode of operation, where I, P and B-frames are decoded into and displayed
from frame buffers in external memory. This mode is highly optimal in terms of memory bandwidth
usage.

18.1.3 Operation in reduced memory mode

In reduced memory mode the decoder requires the use of only two frame buffers in external mem-
ory. The bidirectional frames are decoded and displayed on-the-fly.

STi5500

131/2897110597 A

As the display is interlaced the B-frames must be decoded twice, once for each field. This requires
the decoder to be able to loop back in the bit-buffer and re-decode an image.

This is controlled by the driver in conjunction with the start code detector and is described further in
section 18.4.1.

18.2 Resets

Hard reset is a global signal and is described in the System Services chapter.

The following types of soft reset can be used for the video decoder:

• A total soft reset is generated by setting and resetting bit VID_CTL.SRS and register
AUD_RES. They must be set for a duration of at least 540ns.

• The sub-picture subsystem may be soft reset by setting and resetting VID_CTL.SPR.

• A pipeline reset is generated by setting and resetting bit VID_CTL.PRS. It must be set for a
duration of at least 40ns.

After a soft reset, all processes concerning decoding and bit buffer control are reset. Any data
remaining in the bit buffer, the compressed data FIFO and the start code detector FIFO are lost.

The interrupt unit is reset. All registers maintain their contents and the display process is not dis-
turbed. A soft reset would normally be used when the decoding of the current bit-stream must be
terminated and it is required to restart on a new sequence.

After a hard or a soft reset or a video soft reset, the first task performed by the pipeline when it has
been enabled will always be a search for the beginning of a new sequence. The bit buffer data is
flushed until the first picture start code following a sequence start code is detected by the pipeline,
at which time it stops. At this point normal picture decoding behavior is resumed. After a hard or a
soft reset, the first search performed by the start code detector in response to the first DSYNC will
always be a search for a sequence start code, after which it stops. After this, the start code detec-
tor operates normally.

A pipeline reset terminates the decoding of the current picture. The remaining bits of the picture
are flushed from the bit buffer until the next picture start code is detected by the pipeline. At this
point normal behavior is resumed, i.e. the pipeline waits for the next picture decoding instruction.
No other part of the circuit is affected by a pipeline reset. A pipeline reset would normally be used
as part of a manual error recovery procedure. A pipeline reset has no effect if the decoding pipeline
is in its idle state.

18.3 Bit buffer and start code detection (video)

18.3.1 Bit buffer

The transfer of compressed data is carried out using the MPEG DMA engines described in Chapter
17. Compressed data can be taken from any memory space visible to the CPU and transferred to
the relevant elementary stream decoder.

18.3.2 Start code detection

The start code detector operates in parallel with the decoding pipeline. The purpose of this unit is
to allow external access to the header data which follows start codes in the input bit-stream. Com-

STi5500 l

132/287132/289 7110597 A

pressed data is read twice from the bit buffer- once into the pipeline, and once into the start code
detector through the 128-byte header FIFO. The transfer of data into the header FIFO does not
affect the bit buffer level; only the data transfer into the pipeline can reduce the bit buffer level.

Start code detection is initiated in two ways:

• Automatically whenever the internal event DSYNC occurs. DSYNC is derived from VSYNC
as described in section 18.8.1. A DSYNC is generated every time the pipeline starts a new
picture decoding task.

• By software writing to the VID_HDS register with bit VID_HDS.HDS set.

When start code detection has been started, data is read continuously from the bit buffer into the
header FIFO and parsed by the start code detector, which receives the FIFO output data. When a
start code is detected, the data scanning stops and the status bit VID_STA.SCH becomes 1. When
a start code has been detected, it can be identified by reading the VID_HDF register. The start
code detector detects all start codes other than the codes from 0x00000102 through to
0x000001AF. The first slice start code 0x00000101 can be optionally detected to help driver devel-
opment.

The register VID_HDF should always be read twice to return a 16-bit value. The most significant
byte is read first. After detection of a start code, VID_HDF will return one of the 16-bit values shown
in Figure 18.1.

Figure 18.1 States of VID_HDF after detection of a start code

The first step is to examine the first byte read from VID_HDF. If this contains 0x01, then the start
code can be identified by a second read at the same address. If the first byte is not 0x01 then it
must be the last byte of the start code and the second byte is the first byte of the header data. In
both cases subsequent reads from VID_HDF will give access to the header data which follows the
start code.

Scanning for start codes will recommence on the next DSYNC or a write to VID_HDS.HDS. When-
ever a start code has been detected, the VID_HDF register must be read in order for the start code
detector to restart correctly. The number of reads before a manual or automatic (DSYNC) restart
must always be even.

The first start code search after a hard or soft reset will be a search for a sequence header start
code; all other start codes will be ignored. When this start code has been read, all subsequent
searches will look for any start codes other than slice start codes.

VID_HDF Last byte of Start Code First header byte

VID_HDF 01 Last byte of Start Code

First read Second read

Header data

First header byte

Third read

STi5500

133/2897110597 A

The two status bits VID_STA.HFE (header FIFO empty) and VID_STA.HFF (header FIFO full) indi-
cate the state of the header FIFO. Reading from HDF must never be performed if VID_STA.HFE is
1. VID_STA.HFF is set whenever the header FIFO contains at least 66 bytes.

The start code detector can also be programmed to stop on the first slice of the picture. This allows
the use of the start code search even after reception of the picture start code. All header data that
is not used by the application can then be skipped without risk, in order to jump to the next picture
start code.

This mode is enabled by setting bit VID_HDS.SOS. To differentiate between first slice start code
(00 00 01 01) and other start codes, it is possible to detect at which position (MSB or LSB) the Last
Byte of Start code is positioned in the VID_HDF register. Register bit VID_HDS.SCM when set
indicates that the Last Byte of Start code is held by the MSB of VID_HDF; it is zero otherwise.

18.4 Video decoding pipeline control

The pipeline is the core of the decoder. It is that part of the circuit which converts the compressed
bit-stream data for each picture into a decoded (or reconstructed) picture. These pictures can be
frame or field pictures. The operation of the pipeline is controlled picture-by-picture. The decoding
of a new picture can potentially start on every VSYNC, but usually the rate of decoding is faster
than the VSYNC rate.

The pipeline is controlled by the pipeline controller. When the pipeline controller starts the decod-
ing pipeline a DSYNC signal is issued and VID_STA.PSD is set.

This signal is also sent to the start code detector. When the pipeline has completed its decoding
operation, a completion signal is sent to the pipeline controller, which is then able to launch another
decoding operation, either immediately or when the next VSYNC occurs.

The pipeline controller interprets certain bits of the decoding instruction, which must be set up by
the user before the start of each new task. The remaining bits of the instruction define the decoding
task itself.

The pipeline receives its compressed data from the bit buffer. This data is first processed by the
variable length decoder (VLD) which regenerates the run/level coded DCT coefficients and the
motion vectors (if present) for each macroblock. The picture data is reconstructed by passing the
run/level data through the inverse quantizer and inverse DCT blocks.

This is then added to the predictors which have been fetched from the memory taking into account
the macroblock prediction modes and motion vectors.

Finally, the decoded picture is written back into the memory, from where it can be accessed by the
display unit for output.

STi5500 l

134/287134/289 7110597 A

The pipeline is also able to skip through picture data for various reasons. The different possibilities
are:

• Skip to Next Sequence. This occurs unconditionally on the first instruction execution after a
hard or soft reset (see section 18.2). Compressed data is skipped until the first picture start
code following a sequence start code is found. The pipeline then indicates task completion
and waits for a new instruction.

• Skip to Next Picture. This occurs either after a pipeline reset (see section 18.2) or when the
decoding instruction specifies that one or two pictures should be skipped (see section
18.8.1). In the first case compressed data is skipped until the next picture start code is
found, after which the pipeline indicates task completion and waits for a new instruction. In
the second case, after the skipping operation the decoding of the following picture is started
immediately.

• Skip to Next Slice. This occurs after automatic error concealment (see section 18.8.2).
Compressed data is skipped until the next slice start code in the picture is found, after
which normal decoding resumes.

Before starting to decode a sequence, certain static parameters must be set up. These are:

• MPEG-1 or MPEG-2 mode selection. Bit VID_TIS.MP2 must be set for an MPEG-2
sequence, reset for an MPEG-1 sequence.

• Decoded picture size. Register VID_DFW must be set up with the picture width in macrob-
locks, and register VID_DFS must be set up with the number of macroblocks in the picture.

Decoding is enabled by setting bit VID_CTL.EDC.

18.4.1 Decoder / display sequencing

The decoder has two main modes of operation:

• Bandwidth reduction mode (normal mode)

• Memory reduction mode

The modes can be selected on a frame by frame basis. The user can decide for each frame how it
is decoded by setting or clearing the bit OTF in the VID_PPR1 and FLY in VID_DCF for each pic-
ture. The bit FNF in VID_DCF must also be correctly set depending on the type of picture to be
decoded. If a picture is decoded on-the-fly then, in general, it has to be decoded twice to allow the
display of both fields. To decode the picture twice, the bit DC2 in VID_TRF has to be set and 1 must
be written to the register VID_DC2 during the first decode so that the pipeline will loop back to the
start of the frame as soon as the first decode is complete.

In normal usage the decoder will be configured in one mode or the other at the start of decode.
This is important because the phasing of the decoding and display processes is not the same in
the two modes. Figure 18.2 shows the required phasing for each of the decode modes. It can
clearly be seen that there is a full-field phase difference between the two display sequences this
makes switching between the two modes of decode during decoding difficult.

STi5500

135/2897110597 A

Figure 18.2 Phasing required for decoder modes

If memory reduction mode is selected then the main difference in the decoder control sequencing
comes in the decoding of the B-frames. When the start code detector stops on a picture and the
picture type is identified as a B-frame then the current position of the bit-buffer read pointer must be
stored so that the pipeline can loop back to the beginning of the B-frame to re-decode the picture
for display of the second field. The current position of the bit-buffer pointer can be stored by setting
then resetting bit 0 in the VID_LDP register while the start code detector is aligned at the start of
the picture required to be re-decoded. At the same time that this is carried out the temporal refer-
ence of the image to be re-decoded must be programmed in VID_TRF. This is important because
the resolution of the jump back is large and may jump back to a preceding picture therefore the
temporal reference is required to make sure the correct picture is re-decoded.

18.5 Quantization table loading

The two quantization matrices (intra and non-intra) used by the inverse quantizer must be initialized
by the user. There are no built-in quantization matrices. Therefore, they must be loaded either with
default matrices or with those extracted from the bit-stream by the ST20.

The quantization tables are double-buffered. This enables one or both tables to be updated without
disturbing the decoding task in progress.

The video decoder maintains two bits which record whether one or both of the tables have been
modified. A modified table is automatically brought into operation at the start of the next decoding
operation, i.e. when the next DSYNC occurs.

After a hard reset, the same pair of tables is always selected. The data previously loaded into the
tables is not affected. Other types of reset have no effect on the quantization tables.

The quantization tables are written at the address held in the register VID_QMW. Bit
VID_HDS.QMI is used to select the Intra or Non-Intra quantization table; when it is set, the Intra
table is selected; when clear the Non Intra table is selected.

I P B1 B2

I-top I-bot B-top B-bot B-top B-bot

I P B1 B2B1 B2

I-top I-bot B-top B-bot B-top B-bot

EnotO

Normal
decode

Display

On-the-fly
decode

Display

1 field phase difference

STi5500 l

136/287136/289 7110597 A

18.6 Memory mapping of data

18.6.1 Video decoder memory (SDRAM) addressing

The locations in an SDRAM are addressed row by row, bank A then bank B, as shown in
Figure 18.3.

Figure 18.3 Standard addressing in a SDRAM (16-bit words)

18.6.2 32-bit word addressing for the CPU

The CPU accesses the SDRAM by using a 19-bit address for each 32-bit word. It is the task of the
SDRAM memory controller to remap the logical address space of the CPU onto the SDRAM
address space.

The logical address map seen by the CPU is different from the one described in section 18.6.1. For
each row, both banks are used. The addresses seen by the CPU through the SDRAM interface are
counted in the following order:

Bank A, row0

Bank B, row0

Bank A, row1

Bank B, row1

etc...

When using a second SDRAM chip, addresses continue in a similar way, starting from the next
address above the first SDRAM. A maximum of two SDRAM chips is supported. This is shown in
Figure 18.4.

Row

0x80000

Bank B

0xFFFFF

Row

0x000FF

Bank A

0x7FFFF

0

STi5500

137/2897110597 A

Figure 18.4 32-bit word addressing, as seen by the CPU

18.6.3 64-bit word addressing for FIFO processes

The video decoder uses circular buffers mapped into external SDRAM which act as software
FIFOs. The processes pertaining to these circular buffers are managed with a 64-bit granularity.
The memory mapping for these buffers is similar to that of the CPU and is shown in Figure 18.5.

When using a second SDRAM chip, addresses continue in a similar way, starting from the next
address above the first SDRAM. A maximum of two SDRAM chips is supported.

0x80000
Bank B

Row n

Bank A

0xFFFFF

0x7FFFF

Row n

0xFF

Bank B

Row n

0x7F
Bank A

0

Row n

0x800FF

0x80

0x1FF
0x2FF

SDRAM 0

SDRAM 1

The system supports up to 2 SDRAM chips

STi5500 l

138/287138/289 7110597 A

Figure 18.5 64-bit word addressing for FIFO processes

18.6.4 Memory segments

The circular buffer start and end pointers are programmed by the user in segments, where each
segment is 256 bytes. The values in the configuration registers are numbers of segments. For
example a value of 4 means 4 x 256 bytes = 1kbyte or 128 x 64-bit words. This would result in a
pointer pointing to a 64-bit word address of 128 (0x80). This address would be physically mapped
to the first word in the second row of bank A of SDRAM 0, as shown in Figure 18.6.

Figure 18.6 SDRAM segments as seen by the user

0x40000

Bank B

Row n

Bank A

0x7FFFF

0x3FFFF

Row n

Bank B

Row n

0x3F
Bank A

0

Row n

0x4007F

0x40

0xFF

SDRAM 0

SDRAM 1

0x7F

0x80

3 2

7 6

1 0

5 4

8

Address = 0x80

Bank B Bank A

STi5500

139/2897110597 A

18.6.5 Arrangement of pixel pairs inside a luma SDRAM row

Every SDRAM row in a luma frame contains 256 16-bit words and can store up to two luma mac-
roblocks. Every 16-bit word contains a pair of horizontally adjacent luma pixels. The row itself
stores a pair of horizontally adjacent luma macroblocks. The pixel pairs are arranged in line order;
the first 16 words store the first line of pixels for the two macroblocks, the next 16 words the second
line and so on, as shown in Figure 18.7.

Figure 18.7 Arrangement of pixel pairs in a luma SDRAM row

18.6.6 Arrangement of pixel pairs inside a chroma SDRAM row.

Every SDRAM row in a chroma frame contains 256 16-bit words and can store up to four chroma
macroblocks. Every 16-bit word contains a pair of horizontally adjacent 8-bit chroma pixels.

The row stores pixel pairs in line order for macroblocks 0 and 1 and then macroblocks 2 and 3. The
Cb and Cr words are interleaved two by two in the linear addressing order, as shown in
Figure 18.8.

16-bit word addresses
 in SDRAM row 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Arrangement of
luma pixel pairs

Y =
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

16-bit word addresses
 in SDRAM row F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Arrangement of
luma pixel pairs Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Macroblock 0 Macroblock 1

2 pixels

STi5500 l

140/287140/289 7110597 A

Figure 18.8 Arrangement of pixel pairs in a chroma SDRAM row

18.7 Using picture pointers

Before the decoding of each picture the following frame buffer pointers must be set up:

• VID_RFC, VID_RFP - reconstructed frame pointers for chroma and luma;

• VID_FFC, VID_FFP - forward prediction frame pointers for chroma and luma;

• VID_BFC, VID_BFP - backward prediction frame pointers for chroma and luma.

A fourth pair of pointers, VID_DFC, VID_DFP, the displayed frame pointers, is described in section
21.2.1.

VID_RFP and VID_RFC define the memory buffer to which the decoded picture is written.
VID_FFP, VID_FFC, VID_BFP and VID_BFC define the areas in memory from which the predictors
are fetched.

The rules governing the use of the prediction frame pointers are given below.

Pictures are always stored as frames of interleaved lines, and thus to access a field (top or bottom),
the starting address of the frame must be defined.

16-bit word addresses
 in SDRAM row 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Arrangement of
luma pixel pairs

Cb =
Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

16-bit word addresses
 in SDRAM row 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

Macroblock 0 Macroblock 1

2 pixels

16-bit word addresses
 in SDRAM row 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

16-bit word addresses
 in SDRAM row F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

Macroblock 2 Macroblock 3

STi5500

141/2897110597 A

P-Frame picture (frame, field or dual-prime prediction)

VID_FFP and VID_FFC are set to the address of the predictor frame (in which the two predictor
fields lie). VID_BFP and VID_BFC are not used.

B-Frame picture (frame or field prediction)

VID_FFP and VID_FFC are set to the address of the forward predictor frame (in which the two pre-
dictor fields lie). VID_BFP and VID_BFC are set to the address of the backward predictor frame (in
which the two predictor fields lie).

P-Field picture (field, 16 x 8 or dual-prime prediction)

When decoding either field, VID_FFP and VID_FFC are set to the address of the previous decoded
I or P frame. VID_BFP and VID_BFC are not used.

B-Field picture (field or 16 x 8 prediction)

VID_FFP and VID_FFC are set to the address of the frame in which the two forward predictor fields
lie. VID_BFP and VID_BFC are set to the address of the frame in which the two backward predic-
tor fields lie.

I-Pictures

For I-picture decoding, no predictors are necessary, but VID_FFP and VID_FFC must be set to the
address of the last decoded I- or P-picture for use by the automatic error concealment function.

18.8 The video pipeline

18.8.1 Decoding task control

A task is a single picture decoding operation. A task is specified by the task description or instruc-
tion, which is set up before the decoding of each picture. A task commences when the internal sig-
nal DSYNC is generated. A task completes (the pipeline becomes idle) when the picture header of
the following picture is detected by the pipeline and the picture is entirely reconstructed in the
memory. The instruction is double buffered, so that during execution of a decoding task, the
instruction for the next task can be set up by the CPU. When the next instruction is activated, a
DSYNC can be generated, and the next decoding task started. The buffering mechanism is illus-
trated in Figure 18.9. Note that some instruction bits are latched by VSYNC, others by a signal from
the pipeline controller “new instruction”.

The instruction is written into registers VID_PPR1 and VID_PPR2. If a new instruction is not writ-
ten, the task descriptor will be the same as the previous one.

STi5500 l

142/287142/289 7110597 A

Figure 18.9 Instruction buffering

“New instruction” or VSYNC

From
CPU

Task
description

Instruction
register

Slave
register

VID_PPR1, VID_PPR2, VID_TIS.SKP[1:0]

STi5500

143/2897110597 A

Normally, it is a VSYNC that starts the execution of a new instruction, and thus the generation of
DSYNC. If however, a VSYNC occurs before task completion (i.e. before the pipeline becomes
idle), the start of the next task will be delayed until the present one is completed. In this way the
decoding of a picture can be allowed to extend beyond the nominal period allotted to it, usually one
or two VSYNC periods.

Three status bits (and thus interrupts) are associated with pipeline control:

• VID_STA.PSD indicates the occurrence of a DSYNC. VID_STA.PII indicates that the pipe-
line is idle.

• VID_STA.DEI PID indicates that the decoder is idle, i.e. the pipeline is idle and the next pic-
ture start code has been found.

The operation of the pipeline controller is shown in the state diagram of Figure 18.10. The mean-
ings of the abbreviations for the state transitions are given in Table 18.1.

Abbreviation Meaning

ERC Automatic error concealment.

EXE.FIS Both VID_TIS.EXE and VID_TIS.FIS are set.

EXE.Vsync Bit VID_TIS.EXE set when external VSYNC occurs.

DEI Pipeline idle interrupt generated.

PSC Picture start code.

PSD Pipeline start decode interrupt generated.

SEQ Sequence start code

Skip and decode VID_TIS = EXE | SKP[01] and VSYNC occurred.

Skip and stop VID_TIS = EXE | SKP[11] and VSYNC occurred.

Skip twice and decode VID_TIS = EXE | SKP[10] and VSYNC occurred.

Table 18.1 State transition abbreviations

STi5500 l

144/287144/289 7110597 A

Figure 18.10 Task control state diagram

The instruction bits which affect state transitions are VID_TIS.EXE and VID_TIS.FIS. The events to
which the controller responds are:

• VSYNC, which could be a VSYNC top or a VSYNC bottom and

• IDLE representing the idle state of the pipeline.

18.8.2 Error recovery and missing macroblock concealment

There are four levels of error detection and recovery available in the video decoder:

• bit-stream syntax error detection with the option of automatic missing macroblock conceal-
ment;

• bit-stream semantic error detection with the option of automatic concealment or skip to the
next picture;

• pipeline overflow or underflow error detection;

• user-initiated skip to next sequence using soft reset.

Syntax error detection and concealment

In normal operation of the STi5500, error concealment must always be enabled, i.e. VID_CTL.DEC
should be reset.

If the VLD detects a syntax error in the bit-stream, the pipeline will copy macroblocks from the pre-
vious picture using the motion vectors reconstructed for the previous row of macroblocks in the cur-
rent picture, while scanning the bit-stream until a slice start code is detected. At this point normal
decoding resumes. If the slice in which the error occurred was the last one in the picture, conceal-
ment will continue until the end of the picture, at which time the pipeline stops normally (assuming
that the following picture start code is intact).

Reset state

Seeking SEQ

IDLE

Skipping

Skipping twice

Skipping once

Waiting for data Decoding picture

Error
concealment

(then stop)

Reset
EXE.Vsync
OR EXE.FIS

PSD
Found first PSC

after SEQ
DEI

OR EXE.Vsync
EXE.FIS

PSDBit buffer empty

New data input

End of ERCSyntax error

Found next PSC

Skip once and decode
End of decode
and PSC found

PII

DEI

PSD
Found next PSC

PSD

Skip twice and decode

Skip and stop
Found next PSC

STi5500

145/2897110597 A

Concealment of macroblocks is carried out by using the vectors of the macroblock immediately
above the lost macroblock. The pipeline is able to store one row of such information, for a decoded
picture size of up to a maximum of 46 macroblocks. Two vectors are stored for each macroblock in
the row.

The concealment macroblocks are accessed using the pointers VID_FFP and VID_BFP. Lost mac-
roblocks in the first row are copied directly from the previous pictures (i.e. as P-macroblocks with
zero motion vectors). If an intra picture is coded with concealment motion vectors, these will be
used. If not, then the concealment will be a simple copy from the previous picture using zero vec-
tors. Even in intra pictures, the pointer VID_FFP must be set up.

Table 18.2 shows the rules that are used for fetching concealment macroblocks.

If an error is detected in the bit-stream before it enters the parser, then an error start code can be
inserted into the bit-stream in order to initiate concealment. However, when doing this there are
certain restrictions on the placement of the error start code in order to avoid emulation of other start
codes. An Application Note is available on this topic.

Overflow or underflow error

An overflow error occurs whenever the pipeline reconstructs more macroblocks than are defined
by the decoded picture size, VID_DFS. This can occur when the input data to the decoder contains
undetected errors. This condition is signalled by bit VID_STA.SER. Decoding is automatically
halted when this error is detected. In order to restart decoding a pipeline reset must be performed.

An underflow error occurs whenever the pipeline reconstructs less macroblocks than are defined
by the decoded picture size, VID_DFS. This condition is signalled by bit VID_STA.PDE. Decoding

Picture type Macroblock type Fetch rule

I-picture
I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

P-picture

I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

P-macroblock Copy using stored vector.

P-field-macroblock Copy in field mode using both vectors.

Skipped macroblock Copy with zero vector.

Dual-prime macroblock Copy using stored vector.

B-picture

I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

Forward macroblock Copy using stored vector.

Backward macroblock Copy using stored backward vector.

Bidirectional macroblock
Only the forward vectors are stored, concealed as forward macrob-
lock.

Skipped macroblock
Copy in frame mode using the same mode and vectors as the previous
macroblock.

Table 18.2 Rules for fetching concealment macroblocks

STi5500 l

146/287146/289 7110597 A

is automatically halted when this error occurs. In order to restart decoding a pipeline reset must be
performed.

Soft reset

The effect of this last resort action is described in section 18.2.

18.9 PES Parser

18.9.1 Overview

The block is situated between the MCU interface and the compressed data FIFOs of the video/
audio core.

• Bit rate: 100 Mbits/sec (maximum burst).

• Input streams allowed:

• MPEG-2 packetized PES, to ISO 13818-1;

• MPEG-1 system layer, to ISO 11172-1.

The STi5500 accepts PES streams in the same way as pure audio or video streams are accepted.
The interface remains unchanged; a common data and address bus with separate request and
data strobes for compressed audio and video data. In the case of packetized elementary stream
data demultiplexed from an MPEG-2 transport stream, the data stream consists of concatenated,
incomplete packets of audio and video PES. To handle this configuration the STi5500 contains two
separate parsers one for the audio and one for the video data. Each parser is activated by one of
the compressed data strobe signals. As the audio or video data is input it is demultiplexed by each
parser and the audio/video streams placed in their respective buffers.

In the case of program stream data or MPEG-1 systems stream data the audio and video packets
are complete so that a single parser (and compressed data strobe) can be used the packets being
internally separated into video and audio streams. If desired the two parsers can still be used but
the packets must be separated outside the STi5500. For more details refer to Figure 18.11.

Figure 18.11 System parser internal architecture

Mode

Video
FIFO

MPEG-2 PES parser
and

MPEG-1 system parser

Audio
FIFO

Video
core

Audio
coreMode

Mode

Audio
strobe

VIDSTR

VIDREQ

AUDSTR

AUDREQ

Parser
(audio)

STi5500

147/2897110597 A

When the device is configured to accept PES, the audio/video strobe and request signals will refer
to packetized audio/video PES streams. The parser will extract audio and video bit-streams in
accordance with the programmed stream ID contained in PES_CF1 for the audio stream and
PES_CF2 for the video stream. Any audio or video packets which are not selected for decode
(because their stream IDs do not match the programmed values) are discarded. When used for
decoding program streams or MPEG-1 system streams a single strobe can be used to input all
data. The audio, video and system level data are automatically separated internally to the decoder.
Support is provided for time stamp association by the decoder.

Decode or display time stamps (DTSs or PTSs, selected by PES_CF1.SDT) are stored in an inter-
nal FIFO during parsing. When the image corresponding to these time stamps is decoded (or
about to be decoded in the case of video) the corresponding time stamp is made available and a
flag or interrupt is given. A global view of the parser and ancillary blocks is shown in Figure 18.12.

Figure 18.12 PES parser block diagram

18.9.2 Functional modes

The parsers are enabled by setting PES_CF2.SS for the video parser and AUD_ISS[2:0] for the
audio parser. Depending on the required mode one or both of the parsers will be required. When
either of these registers is reset the subsequent decoder will accept either pure audio or video
streams.

Four different modes can be configured with the two mode bits contained in PES_CF2[7:6]:

• Mode 0: Automatic configuration.The parser will examine the incoming stream and self-
configure for decode. The mode selected can be read back from PES_TM2[1].

• Mode 1: MPEG-1 system stream decode. Single data strobe input format.

• Mode 2: MPEG-2 PES decode. Twin data strobe input format. This corresponds to the most
common mode of entry of data into the circuit.

System parser

Compressed data FIFO

128-byte
audio

128-byte
video

DTS
FIFO

DTS/
CD count

Audio
packets

Elementary
video stream

To audio
bit buffer

To video
bit buffer

To video
decoder

VIDSTR VIDREQ D[7:0] AUDREQ AUDSTR

STi5500 l

148/287148/289 7110597 A

• Mode 3: MPEG-2 whole PES audio/video packets. Single data strobe input format. This can
be used to decode MPEG-2 program streams.

These modes are summarized in Table 18.3 and Table 18.4.

For modes using a single data input strobe, VIDSTR is used.

Note 1. This mode only works with MPEG-1 and MPEG-2-PES; it cannot be used with packetized PES.

Mode Required PES_CF2_MOD AUD_ISS [2:0] Data Strobes

Automatic Mode1 00 101 1 or 2

MPEG-1 System 01 001 1

MPEG-2 PES 10 100 2

Program Stream 11 100 1

Table 18.3 PES Modes

Strobes
AUDSTR VIDSTR

Bits SS/MOD

PES_CF2.SS = 0
Audio Elementary stream
Packet MPEG1 PES

Video Elementary Stream

PES_CF2.SS = 1
PES_CF2.MOD = 00

Depending on detection see MOD = 01
or MOD = 10

Automatic Mode (MOD = 01 or MOD = 10)

PES_CF2.SS = 1
PES_CF2.MOD = 01

Not used MPEG1 System Stream

PES_CF2.SS = 1
PES_CF2.MOD = 10

Audio Elementary stream
Packet MPEG1 PES

Program Stream PES

PES_CF2.SS = 1
PES_CF2.MOD = 11

Not used Program Stream

Table 18.4 PES Strobes

STi5500

149/2897110597 A

19 Sub-picture decoder

19.1 Introduction

A hardware sub-picture decoder is integrated in the STi5500. The sub-picture bit-buffer that con-
tains sub-picture units (SPU) is integrated in SDRAM external memory and has a programmable
size. Its position and size can be randomly chosen in multiples of 2 Kbytes. The sub-picture bit
buffer is set up at power up reset. During player operation, its size and location are constant.

Compressed data is input into the bit-buffer using a DMA or by a CPU write. Once control is given
to the sub-picture decoder it is autonomous until stopped by software control. The sub-picture
decoder can decode complete sub-picture units consisting of a sub-picture unit header, com-
pressed pixel data and the display control sequence table without any interaction from the ST20.

Figure 19.1 shows the architecture of the sub-picture decoder.

Figure 19.1 Sub-picture unit architecture

19.2 Buffer management and pointers

There are four programmable registers to control the sub-picture bit buffer read and write pro-
cesses, as shown in Figure 19.2:

• Bit buffer base address (VID_SPB). This is an offset relative to the ST20 SDRAM base
address. It is programmed in units of 2 Kbytes.

• Bit buffer end address (VID_SPE). This address is an offset relative to the ST20 SDRAM
base address. It is programmed in units of 2 Kbytes.

• Bit buffer read pointer (VID_SPRead). It is set by software for each sub-picture unit. This is
done before control is given to the sub-picture hardware decoder. This register is double
buffered. The shadow register is updated with each field VSYNC event. This pointer is an
offset relative to the ST20 SDRAM base address. It is programmed in units of 64-bit words
(see Figure 19.1).

DCSQ parser

Sub-picture bit
buffer

Highlight
area detect

Sub-picture
area detect

8 x PCI
area detect

Run length
decoder

Area
prioritization
logic

8 x line control
LUTs

Color
and

contrast
mux

Mixing
unit

Sub-picture
LUT

Highlight
LUT

Main
LUT

STi5500 l

150/287150/289 7110597 A

• Bit buffer write pointer (VID_SPWrite). It is set by the ST20 before transferring each sub-
picture unit into the bit buffer. This pointer is an offset relative to the ST20 SDRAM base
address. It is programmed in units of 64 bit words.

Figure 19.2 Buffer management

19.3 Operation

Each sub-picture unit data buffer start position is programmed using the register VID_SPWrite.
Subsequently the sub-picture header, the pixel data, the display control sequences are sent via
fifos to the sub-picture decoder. Write into fifos is done by DMA or by CPU write. Only data belong-
ing to the sub-picture unit (SPUH, PXD, DCSQT) are transferred int the sub-picture bit buffer. Sub-
picture pack headers are removed by the software demultiplexor.

The decoder reads the header of the first packet (see Figure 19.3) and jumps to the first display
control sequence using the command pointer.

Figure 19.3 Sub-picture unit structure

The instructions found in the DCSQ packets enable the sub-picture unit to program the palettes,
set mixing factors etc. for each region. The DCSQ packets also contain a time stamp which indi-
cates to which image the sub-picture information refers.

SPUH (Header)

Unused SPU1 SPU2 SPU3 SPUn

Bit buffer
base address
(VID_SPB)

Read pointer
(VID_SPRead)

Write pointer
VID_SPWrite)

Bit buffer
end address
(VID_SPE)

64-bit boundary

PXD (Pixel Data) DCSQT (Display Control Sequence Table)

SPUn (cont.)

PXD Position
DCSQ Position

Wrap around

H Sub-picture bit map DCSQ DCSQ

Sub-picture
data start position

Bit map start Next PTS held
in a register

STi5500

151/2897110597 A

This information is related to a local time for this sub-picture unit. The micro should enable a given
sub-picture unit at the right global time via some registers: data buffer start position, start sub-pic-
ture unit status bit.

The overall control of the sub-picture decoder is performed by software.

The final information in the DCSQ packet is the region size (rectangle) and the relative position, in
bytes, of the bit-map start.

A key point here is that the sub-picture decoder must read beyond the end of the DCSQ packet in
order to verify the next PTS. With this information held in a register, the sub-picture decoder knows,
in advance, when to change the DCSQ or bit-map information. The sub-picture unit simply exe-
cutes the same DCSQ until the image corresponding to the next time-stamp is reached.

This is done at the beginning of every field so that the sub-picture decoder can load all the relevant
information from DCSQ before the first sub-picture pixel is required.

The sub-picture region declaration is held in registers in the decoder so that the sub-picture
decoder is turned on and off at the correct position on the screen (refer to Figure 19.4). The bit-
map start pointer indicates where, in the bit map data, to start decoding. When the correct image,
corresponding to the local time stamp contained in the DCSQ, should be displayed the sub-picture
controller enables the sub-picture decode for that image.

Figure 19.4 Sub-picture region declaration

A pause mode is defined in the sub-picture decoder. As explained previously, the sub-picture
decoder is autonomous within a sub-picture unit.

This means that the DCSQ switching is timed automatically using an internal 90kHz clock. During
video trick modes, where the video stream may be frozen or slowed down the same thing should
be possible with the sub-picture decoder in order to maintain the synchronization between the two
streams.

A pause mode is implemented for the sub-picture decoder which stops the 90kHz counter and
therefore pauses the sub-picture decoder. This is controlled using the P field in the SPD_CTL1 reg-
ister and is synchronized to the VSYNC signal. This control bit can therefore be used as a pause
and a single step control bit.

SPD_SYD0
Maximum 8 regions per line

Minimum
8 pixelsSPD_SXD0

SPD_SYD1

SPD_SXD1

STi5500 l

152/287152/289 7110597 A

The sub-picture decoder registers are put together in the sub-picture memory map except:

• sub-picture software reset (bit VID_CTL.SPR),

• sub-picture pause mode (VID_DCF.SPP bit),

• sub-picture FIFO full (bit 18 of VID_ITS and VID_STA register).

19.4 Sub-picture display

19.4.1 Look-up tables

There are 11 look-up tables inside the sub-picture decoder:

• 1 highlight LUT (2 bits to 4 bits mapping)

• 1 sub-picture LUT (2 bits to 4 bits mapping)

• 8 PCI LUTs (2 bits to 4 bits mapping)

• 1 main LUT (4 bits to 24 bits mapping)

The sub-picture and PCI LUTs are automatically supplied by the decoder itself (sub-picture com-
mands contained in the SPU). The highlight and main LUTs need to be loaded by the ST20
(SPD_HCN, SPD_HCOL, SPD_LUT registers).

The output of the sub-picture main LUT is mixed with the MPEG video. The contrast value between
these two sources is set by the SET_CONTR DCSQ command, by the PCINFs of a
CHG_COLCON command or by a highlight color information (the highlight LUT has the highest pri-
ority, followed by the PCI LUTs. The sub-picture LUT has the lowest priority).

The mixed video is a 24 bits Y, Cr, Cb video where:

YMIXED = [YMPEG x (16 - k) + YSUBP x k] / 16

CrMIXED = [CrMPEG x (16 - k) + CrSUBP x k] / 16

CbMIXED = [CbMPEG x (16 - k) + CbSUBP x k] / 16

k = 0 if contrast value from high light, sub-picture, PCI LUTs = 0

k = contrast value + 1 if contrast value > 0

19.4.2 Sub-picture areas

The active sub-picture decoding area can be 720 x 576 or 720 x 480 pixels. In order to align the
sub-picture decoding area with the video decoding area, the upper left corner of the active sub-pic-
ture decoding area has to be set by software, using the registers SPD_XD0 and SPD_YD0. The
same semantics have been defined as for the video decoder, as shown in Figure 19.5. The active
sub-picture display area is defined in a similar manner, using the SPD_SXD0, SPD_SYD0,
SPD_SXD1 and SPD_SYD1 registers.

The highlight area is defined through SPD_HLSX, SPD_HLSY, SPD_HLEX, SPD_HLEY registers
and is set by software.

STi5500

153/2897110597 A

Figure 19.5 Sub-picture areas

Vertical blanking intervalSPD_YD0
SPD_XD0

H
or

iz
on

ta
l b

la
nk

in
g

in
te

rv
al

Sub-picture
display area

Sub-picture
decoding area

SPD_SYD0
(0,0)

SPD_SYD1

SPD_SXD1

(0,575 or 479)
(0,624 or 524)

(0,863)

SPD_SXD0

(0,0)

STi5500 l

154/287154/289 7110597 A

20 MPEG audio decoder with AC-3 interface
The audio decoder receives compressed data from an audio bit-buffer which is integrated in the
external SDRAM.

When the external AC-3 interface is used, the compressed/PCM data also goes through the audio
bit-buffer. The audio bit-buffer is memory mapped into the register/compressed data address space
in the same way as the video and sub-picture decoders. Data is transferred either using a com-
pressed data DMA engine or CPU writes.

The audio decoder is completely autonomous, needing no interaction from software during decod-
ing, apart from exceptions such as error conditions and ancillary data in the audio stream.

20.1 PCM output

20.1.1 Interface and output formats

The decoded audio data is output in serial PCM format.

The interface consists of the following signals:

• PCMDATA - PCM serial data output

• SCLK - PCM clock output

• LRCLK - Left/right channel select output

• PCMCLK - PCM clock input.

Output precision is selectable to be either 16 bits/word or 18 bits/word by setting the output preci-
sion select register, AUD_P18. In 16-bit mode, data may be output either with the most significant
bit first or least significant bit first, selected by the output order select register, AUD_ORD. When
18-bit data is selected, 32 bits are output for each channel. The data-in-front register, AUD_DIF, is
used to position the 18 data bits either at the beginning or at the end of each 32-bit frame. The
AUD_FOR register is used to select standard or I2S-compatible format when 18-bit precision is
selected.

Figure 20.1 shows the five different output formats which are possible. AUD_ORD only has signifi-
cance in 16-bit mode, while AUD_DIF only has significance in 18-bit mode. AUD_FOR only has
significance in 18-bit mode and when AUD_DIF = 1. The last option shown in Figure 20.1 is com-
patible with the I2S format.

STi5500

155/2897110597 A

Figure 20.1 PCM output formats

The polarity of the PCM serial output clock, SCLK, and the left/right channel selection, LRCLK, are
selected by the 1-bit registers AUD_SCP and AUD_LRP respectively.

Figure 20.2 shows the two polarities of SCLK. Normally, the DAC will sample LRCLK and PCM-
DATA on the rising edge of SCLK in the first case, and on the falling edge of SCLK in the second.
The first option (AUD_SCP = 0) is the one normally used in I2S systems.

Figure 20.2 SCLK polarity

16 cycles 16 cycles

32 cycles 32 cycles

18 bits 18 bits

18 bits

18 bits 18 bits

18 bits

LRCLK

LRCLK

PCMDATA

PCMDATA

AUD_P18 = 0

AUD_P18 = 1

AUD_ORD = 0

AUD_ORD = 1

AUD_DIF = 1
AUD_FOR = 1

AUD_DIF = 0

AUD_DIF = 1
AUD_FOR = 0

0 0

0

0

0

0

0

1 bit

MS LSMSLS

MSLSMS LS

MSLSMS LS

MS LSMS LS

MS LSMSLS

SCLK

AUD_LRP = 0 AUD_LRP = 1

LRCLK,
PCMDATA

STi5500 l

156/287156/289 7110597 A

Figure 20.3 shows how the polarity of LRCLK is selected. The second option (AUD_LRP = 1) is
compatible with the I2S format.

Figure 20.3 LRCLK polarity

20.1.2 PCM clock generation

The PCM serial clock SCLK is derived from the clock input PCMCLK. The frequency of PCMCLK
may be equal to the PCM output bit rate or it may be an integer multiple of this, allowing the use of
oversampling D-A converters. In many applications PCMCLK is externally synchronized to the
compressed audio bit stream.

SCLK is derived by dividing PCMCLK by the contents of the divider register, AUD_DIV. This num-
ber, in the range 0 to 63, defines the ratio of the frequency of the PCM bit clock SCLK, to that of
PCMCLK, according to the relationship:

For example, AUD_DIV is loaded with 0, the frequency of SCLK is one half of the frequency of
PCMCLK, while if AUD_DIV is loaded with 63, the frequency of SCLK is 1/128th of the frequency
of PCMCLK.

The value of AUD_DIV = 16 is reserved. If this number is loaded, the divider is bypassed and the
frequency of SCLK is equal to the frequency of PCMCLK.

AUD_DIV must be set up before the output of SCLK starts. This can be done by first disabling the
PCM outputs by de-asserting the MUTE and PLAY commands and then writing to the AUD_DIV
register. Once the register is set up, the MUTE or PLAY or both commands can be asserted.
AUD_DIV cannot be changed “on the fly”.

The frequency of LRCLK is given by:

for 16-bit PCM output

for 18-bit PCM output

LRCLK

LRCLK

Left Right

AUD_LRP = 0

AUD_LRP = 1

fSCLK

fPCMCLK

2 AUD_DIV 1+()×
---=

fLRCLK

fSCLK

32
--------------=

fLRCLK

fSCLK

64
--------------=

STi5500

157/2897110597 A

20.1.3 Interrupts associated with PCM output

There are two interrupts associated with the PCM output. These are:

• interrupt 8, indicating PCM buffer underflow. This is generated (unless masked) when a
new output sample is required and the PCM buffer is empty. The PCM buffer, which con-
tains up to 64 samples (i.e. 64 word-pairs in stereo), receives the decoded outputs from the
DSP core. If the buffer is empty the output sample will have the value zero, but decoding
will not stop. If the PCM buffer becomes full, decoding will stop, but PCM output will not be
affected.

• interrupt 14, indicating output of a new frame. This is generated (unless masked) whenever
the first bit of a frame appears at the PCM output.

20.2 Audio decoder control

20.2.1 Play and mute

Once initialized and configured, decoding and output of PCM data is controlled by the commands
PLAY and MUTE.

The command PLAY is asserted when the AUD_PLY register is written to. The command MUTE is
as The actions of the PLAY and MUTE commands are specified in Table 20.1.

20.2.2 Restart

The restart procedure is invoked when it is required to flush all buffers and restart decoding imme-
diately.

Restart is initiated by writing 0 or 1 to the AUD_RST register, after which it is automatically restored
to the 0 state. A restart initiates the following actions:

• The AUD_ITR and AUD_ITN registers are cleared.

MUTE PLAY Function

de-asserted de-asserted

No output or decoding.

SCLOCK, LRCLK, PCMDATA all move into their inactive state. LRCLK completes its
current cycle and stops, SCLK completes its last cycle in the second LRCLK frame and
stops.

Decoding stops when all internal buffers become full.

de-asserted asserted
Normal decoding and PCM output.

When PLAY is re-asserted, PCMDATA resumes where it left off, without data loss.

asserted de-asserted

PCM clocks only, no decoding.

PCMDATA becomes low after the output of the last complete sample. LRCLK and SCLK
are not stopped.

Decoding stops when all internal buffers become full.

When PLAY is re-asserted, PCMDATA resumes where it left off, without data loss.

asserted asserted

Decoding and muted output (soft mute).

PCMDATA gradually decays to zero.

Decoding continues normally. Data consumed as if output were playing.

Table 20.1 Mute and play functions

STi5500 l

158/287158/289 7110597 A

• All data buffers are cleared.

• The AUD_MUT, AUD_PLY and all others registers (except those mentioned above) remain
in their existing state.

• Register access is not disabled. However, compressed data input may be interrupted

• The AUD_RST register is cleared; compressed data input can restart.

20.2.3 Bit stream synchronization

The compressed input bit stream must be synchronized before the decompression step may begin.
This is done by looking for synchronization words inserted into the data stream at encoding. Syn-
chronization must be done both at the audio frame and at the system packet layer if present.
At the packet level, the audio decoder will look for a valid start code, doing a bit by bit search. Once
an audio packet is found, the decoder extracts the presentation time stamp (PTS) if present and
starts the audio synchronization described below.
At the audio frame level, there is a non-unique sync word at the beginning of the header. The
STi5500 attempts to find this sync word by doing a bit by bit search. When found the action taken
depends on the contents of the AUD_LCK and AUD_LAT registers.

20.2.4 Packet Level Synchronization

The complete algorithm is given in Figure 20.4.

To help the synchronization algorithm ignore an emulated packet synchronization word, it is possi-
ble to extend the packet start code to be matched. Depending to the content of registers
AUD_SYN, AUD_SID and AUD_IDE, synchronization can be made on the 24-bit
packet_start_code_prefix or can be extended to the stream_id field.
Synchronization mode depends on the type of packets received by the STi5500. The decoder can
receive either:

1 Multiplexed audio/video bitstream (AUD_SYN = 0)

In this case the STi5500 can receive both video and audio streams multiplexed together.
Packet synchronization is possible only on the 24-bit start code.
All packets are used by the synchronization algorithm but all non-audio packets and, if
AUD_IDE is set, all audio packets which have a stream_id which does not match the
AUD_SID register value, are not decoded.

2 Multiplexed audio bitstream (AUD_SYN = 1)

In this case, the STi5500 expects to receive only multiplexed audio streams. Synchroniza-
tion is performed on 27 bits (24 bits packet_start_code_prefix + 3 first bits of stream_id).
All packets are used by the synchronization algorithm but if AUD_IDE is set, all audio pack-
ets that have a stream_id which does not match the AUD_SID register value are not
decoded.

3 Single audio bitstream (AUD_SYN = 2, AUD_IDE =1)

Synchronization is performed on 32 bits.
All packets are used by the synchronization algorithm, and all audio packets that have a
stream_id which matches the AUD_SID register value are decoded.

The AUD_SCN register is also taken into account in the global synchronization algorithm.

STi5500

159/2897110597 A

If AUD_SCN = 1, after the first packet synchronization word is found the STi5500 is considered to
be synchronized. If AUD_SCN = 0, after the first packet synchronization word is found, the STi5500
must read the packet length and confirm synchronization by finding the next synchronization word
in the correct position.

STi5500 l

160/287160/289 7110597 A

Figure 20.4 Packet synchronization algorithm

Hard sync. process

Packet parser process

shift 1 bit

start code
(& stream_id)

shift 32 bits

startcode
(& stream_id)

search for PTS

store PTS

send audio
data

shift 32 bits

skip packet?

no

yes

no yes

noyes

AUD_SCN
1

0

no yes

Initial State

send byte to
audio parser

STR_SEL = 01?
yes

no

PTS present

yes

no

* on reset, packet parser goes to “Initial State”

skip packet
(fetch N bytes)

skip packet
(fetch N bytes)**

** skip video or audio packet that does not have valid stream_id

*

startcode
(& stream_id)

N = packet
length

N = packet
length

N = packet
length

STi5500

161/2897110597 A

Figure 20.5 Audio frame synchronization algorithm

Hard Sync. process

shift 1 bit

startcode
no

yes

no

Initial state

get PTS & write to DRAM

get 32 bits

start code

decrement AUD_LCK

AUD_LCK = 0

Locked state

get 32 bits

start code

yes

yes

no

no

* on reset audio parser goes to initial state

** on loss of packet sync audio parser goes to “Hard Sync” process

get PTS & write in DRAM

STR_SEL = 11

yes

no

yes

*

**

write invalid status
to DRAM

get frame length &
write to DRAM

store audio
frame in DRAM

write invalid status
to DRAM

get frame length &
write to DRAM

back annotate
one frame

back annotate
sync_lock frame

send bit to
decoder

store audio
frame in DRAM

STi5500 l

162/287162/289 7110597 A

20.2.5 Audio frame synchronization

The synchronization algorithm is given in Figure 20.5.

As the audio syncword can be emulated in the bit stream, it is useful to extend this audio start code
to avoid the detection of a false sync word. Each time the STi5500 detects a false sync word during
the synchronization process, the delay to reach the locked state increases.

The AUD_SYE register is used for this purpose. When no field of the AUD_SYE register is
enabled, the STi5500 saves the layer and sampling frequency information after synchronization is
achieved. This aids the task of resynchronization, should synchronization be lost owing to an error
in the audio data or the system layer. This internal register is disabled on AUD_RST or RESTART
and will not be reinitialized until the audio parser is synchronized.

The AUD_LCK register specifies how many valid synchronization words after the initial one have to
be found before entering the locked state. The highest value of AUD_LCK (i.e. 3) is assumed when
the AUD_SYE register has its default value. The definition of a valid synchronization word depends
on the AUD_LAT register value.

A valid synchronization word is a sequence of bits matching the expected word.

In free-format mode one additional register (AUD_FFL) can be used. The AUD_FFL register is a
way of specifying the length of an audio frame in free-format mode. This register is 16 bits long and
contains the length of the frame in bits.

20.2.6 Error recovery and concealment

The STi5500 audio decoder is able to recover from certain detectable errors. For this purpose it
has a number of user-selectable error concealment modes.

Detectable errors may be caused by a bad audio frame CRC or by loss of synchronization. Con-
cealment is similar, but may be selected independently by setting the AUD_CRC and AUD_SEM
registers.

The register AUD_CRC defines the action which will be taken upon detection of a CRC error in an
input frame.

The register AUD_SEM defines the action which will be taken upon detection of a synchronization
error, using the coding in Table 20.3.

Value Meaning

00 Disable CRC detection and error concealment

01 Mute on detection of CRC error

10 Illegal

11 Skip invalid frame

Table 20.2 AUD_CRC register coding

STi5500

163/2897110597 A

20.2.7 Ancillary data extraction

The ancillary data which may be held at the end of audio frames can be extracted and read from
the AUD_ANC register. This register constitutes a 32-bit FIFO. The first bit of ancillary data
received is stored in bit AUD_ANC[0].

The extraction of ancillary data in AUD_ANC is started by enabling interrupt 7. An interrupt 7 is
generated when either:

1 32 bits of ancillary data have been received from the bit stream and written into AUD_ANC,
i.e. when it is full, or

2 the end of a frame is reached.

Register AUD_ADA holds the number of bits available in the ancillary data buffer,
AUD_ANC[31:0].

When AUD_ANC[31:24] is read, interrupt 7 is cleared, ANC_ADA is cleared and the ancillary data
buffer is reinitialized.

Decoding stops if the STi5500 tries to write data into AUD_ANC when it is full. The normal
response would be to read AUD_ADA and then AUD_ANC. However, if interrupt 7 is disabled (by
resetting bit AUD_ITN[7]), decoding will continue and the registers AUD_ANC and AUD_ADA will
retain their contents until AUD_ANC[31:24] is read.

If AUD_ANC is not read at the end of the frame, and it is not full, ancillary data bits in the next
frame will be appended.

20.3 AC-3 interface

The interface to the off-chip AC-3 Audio Decoder is composed of two serial buses The I2C bus is
used for control and a synchronous serial interface for compressed data transfer.

Value Meaning

00 Ignore error

01 Mute on detection of synchronization error

10 Illegal

11 Skip invalid frame

Table 20.3 AUD_SEM register coding

STi5500 l

164/287164/289 7110597 A

20.3.1 Input / output description

The external AC-3 interface uses six signals. Four of these signals are multiplexed with the internal
MPEG-1 decoder output signals. The signals are described in Table 20.4.

A schematic of the interface along with timing is shown in Figure 20.6.

A_C_REQ is active when the AC-3 decoder is capable of accepting data and A_C_STB is used to
strobe the data into the audio decoder on the rising edge. The signal A_WORD_CLK is the
A_C_STB signal divided by 32. It is phased so that the transition coincides with a byte boundary.
This signal can be used as a framing signal for certain AC-3 decoders.

The A_PTS_STB is used to latch the value of a free running timer in the STi5500 for clock recov-
ery.

Signal Name/AC-3 Signal Name MPEG-1 Type Description

A_C_DATA PCM_DATA Out AC-3 packet data or PCM serial data

A_C_STB PCM_CLKOUT Out AC-3 packet strobe or PCM clock

A_C_REQ In AC-3 data request

A_WORD_CLK LRCLK Out AC-3 word clock or PCM L/R clock

A_PTS_STB In AC-3 PTS strobe

A_IRQ In AC-3 Interrupt request

PCM_CLKIN In PCM clock input from VCXO

Table 20.4 External AC-3 decoder interface

STi5500

165/2897110597 A

Figure 20.6 AC-3 interface detail

Parameter Minimum Maximum Units

Tcy 30 50 ns

Tcy 66 100 ns

Tsh 0 2 cycles

Ddsh 15 ns

Ddssu 15 ns

Table 20.5 AC-3 interface timing

MPEG-1
audio

decoder

Audio read
FIFO

1Data

64

A_C_REQ

A_C_Data

A_C_STB

A_WORD_CLK

A_C_STB

/32

Signal
mux

Signal mux

Waveforms

A_C_STB

A_WORD_CLK

Data, sync hold time Ddsh

Async rising edge of request

Min 30ns, max 50ns

Data, sync
set-up time
Ddssu

Tcy

A_C_REQ

Tsh

AC3_WORD_CLK

AC3_DATA

AC3_STB

Phased on a byte boundary

STi5500 l

166/287166/289 7110597 A

Part D Display

STi5500

167/2897110597 A

21 Display functions

21.1 Overview

The graphics and display subsystem reads, processes, overlays and mixes pixel data stored in var-
ious buffers in SDRAM, and produces a combined image for display on a TV. The buffers are called
the display planes.

The subsystem assumes three display planes as follows, overlaid in this order:

1 MPEG video plane (see section 21.2),

2 sub-picture plane (see section 21.3),

3 on-screen display plane (OSD) (see section 21.4).

The display planes are shown in Figure 21.1.

Figure 21.1 Display planes

Figure 21.2 is a simplified block diagram of the display unit. The mixing of the elements of the final
picture is described in section 21.5.

France

Decompressed
video

On-screen display

08:23pm

Replay Score Stats

France

08:23pm

Replay Score Stats

Sub-picture plane

France

08:23pm

Replay Score Stats

STi5500 l

168/287168/289 7110597 A

Figure 21.2 MPEG display architecture

21.2 MPEG video plane

The picture data is received either:

• from the display frame buffer area of the external memory, or

• directly from the MPEG video decoder in the case of B frames in memory reduction mode.

The data is passed through three FIFOs (one for luminance and two for chrominance) into the
video post-processor. The video post-processor generates a line-based raster from the frame
store, which is organized as MPEG macroblocks. It also performs the pan/scan operation and ver-
tical filtering of the decoded video. The pan/scan operation is described in section 21.2.3 and the
vertical filter is described in section 21.2.4.

The output of the video post-processor is fed to the sample rate converter (SRC). The SRC is an 8-
tap filter, which has two functions:

• up and down scaling of pel data when the displayed line length is greater or smaller than
the decoded picture width, and

• implementation of the fractional part of the pan-scan horizontal offset.

The outputs from the SRC are upsampled lines each having equal numbers of luminance and
chrominance samples. The SRC can be bypassed if desired.

The sample rate converter is described in section 21.2.2.

SDRAM EMI

Video
decoder

Block
move

engine

SDRAM bus
and arbiter DENC

Sub

Horizontal
SRC

OSD

Sub-picture
decoder

4:2:2

4:2:2

4:2:2

4:2:2

SDRAM

16

Mux
4:2:0

B on
the fly

mixer
picture

mixer
OSD

4:2:2

Vertical
processor

STi5500

169/2897110597 A

21.2.1 Setting up the Display

The VID_DFP and VID_DFC registers must be set up with the base address of the buffer contain-
ing the picture to be displayed. This register is double-buffered; when a new value is written it is
taken into account on the occurrence of a VSYNC. Thus it is possible to write a new value for this
pointer every field, although it would normally be updated only once per frame.

The picture stored in the buffer is always treated as a frame by the STi5500. If at any time no dis-
play is required, bit VID_DCF.EVD may be reset, in which case a constant black value is output.

The size and location of the display window is defined by the registers VID_XDO, VID_XDS,
VID_YDO and VID_YDS. The values loaded into these registers define the horizontal and vertical
boundaries of the displayed picture, as shown in Figure 21.3.

Figure 21.3 Display window positioning

The registers VID_MCH and VID_MLU must also be set up properly for display. The programming
details can be found in the register manual.

Register VID_YDO is loaded with the number of the last line of the upper border, where lines are
numbered in fields as shown in Figure 21.3. The first active line is therefore defined by:

First active line = VID_YDO + 1

The same VID_YDO value serves for both fields; the uppermost line of the picture display will be in
the top field. Register VID_YDS is loaded with a number defining the last line of the picture display
in a field, according to the relation:

Last active line = VID_YDO + (vertical_size / 2) = VID_YDS + 129

For example, with a 525/60 display, in which the vertical size of the decoded picture is 480 lines,
typical values of VID_YDO and VID_YDS could be:

VID_YDO = 21, VID_YDS = VID_YDO + 240 - 129 = 132,

and with a 625/50 display, in which the vertical size of the decoded picture is 576 lines, typical val-
ues of VID_YDO and VID_YDS could be:

VID_YDO = 22, VID_YDS = VID_YDO + 288 - 129 = 181

Decoded
picture
display

VID_YDO

VID_XDO

VID_XDS

VID_YDS

Black border

STi5500 l

170/287170/289 7110597 A

Register VID_XDO defines the number of PIXCLK cycles between the falling edge of the signal
HSYNC and the beginning of the picture display, according to the relation:

Cycles from HSYNC to start of picture = (2 x VID_XDO) + 40

The ITU-R 601 standard defines this number to be 264 27MHz clock cycles for a 625/50 display,
and 244 for a 525/60 display. The respective values of VID_XDO are thus 112 and 102.

The first picture data in a line is always a CB component. It is output in the 2VID_XDO + 41st PIX-
CLK cycle after the falling edge of HSYNC.

Since the external video generation circuitry will usually relate its Y/C phasing to the horizontal syn-
chronization signal, and has no knowledge of the value of VID_XDO, not all values of horizontal off-
set will be usable; some will cause incorrect interpretation of the color difference components. In
any given system, VID_XDO values will have to be either always odd or always even.

VID_XDS is loaded with a number defining the last active sample in each line, counted in units of
PIXCLK cycles from the falling edge of the signal HSYNC, according to the relation:

Last sample of active video = (2 x VID_XDS) + 28

Thus, if L is the number of pels per line of the displayed picture, then:

2VID_XDO + 40 + 2L = 2VID_XDS + 28, and thus

VID_XDS = VID_XDO + L + 6.

If L = 720, then VID_XDS = VID_XDO + 726.

The resolution to which the horizontal offset and end values can be defined is equal to two cycles
of PIXCLK. The VID_DCF.PXD bit is used to position the display window horizontally to a finer pre-
cision. When this bit is set, the active video is delayed by one PIXCLK cycle. Since the first active
video sample is CB, the Y/C phasing with respect to the horizontal synchronization signal will
change.

21.2.2 Sample rate converter

The purpose of the sample rate converter (SRC) is to allow up or down sampling of picture data in
order to increase or decrease the number of horizontal samples in a line. Upsampling is necessary
if the horizontal size of the display is greater than the decoded picture width. For example if it is
required to display a 720-pel wide 16:9 source image on a 4:3 display also of 720-pel width, then
540 pels selected from each source line must be upsampled to 720. Downsampling is required
when the resolution of the display is less than that of the decoded image. For example when
square pixels are required for an NTSC image the 720 pixel wide image decoded must be down-
sampled to 640 pixels.

To enable the SRC, bit VID_DCF.DSR must be reset. If this bit is set, the SRC is bypassed and the
horizontal resolution of the decoded picture is not changed. The sample rate converter can change
the sampling rate by a programmable factor. The upsampling ratio is limited to 8 and the downsam-
pling to less than or equal to a factor of 2. The same filter is used both for upsampling and down-
sampling. As either of these limits is approached artifacts may appear in the displayed image. The
SRC operates by directly interpolating samples required for the new sampling rate by using those
of the decoded picture data read from the display buffer. This is performed by an 8-tap interpolation
filter with the structure shown in Figure 21.4.

STi5500

171/2897110597 A

Figure 21.4 8-tap interpolation filter

The filter has three sets of delay registers multiplexed between the Y, CB and CR samples. It has 8
sets of coefficients, each set defining one of 8 sub-pel interpolation positions. Consider an upsam-
pling example, for sub-pel position 0, the output is aligned with stored sample “r4”, for sub-pel posi-
tion 1, the output corresponds to an interpolated pel position one eighth of the distance from
sample “r4” to sample “r5”, and so on. The number of inputs clocked into the SRC is equal to the
number of samples used in each line of the source image, and the number of outputs generated is
equal to the number of samples displayed. Thus the rate of generation of outputs will be greater
than the input data rate in the case of upsampling and less in the case of downsampling.

Operation of the SRC

The sample rate converter works in the following manner: The SRC takes block of M samples of
the input signal denoted as x(n'), n' = 0,1,2,3, M-1. and computes a block of L output samples
y(m'), m' = 0,1,2, .. L-1.

r7

c1

r6

c2

r5

c3

r4

c4

r3

c5

r2

c6

r1

c7

r8

c0

Σ

Input from display buffer (0, 1 or 2 samples)
X(n’)

D
el

ay
 r

eg
is

te
rs

New input

Output to
vertical filter

Y(m’)

STi5500 l

172/287172/289 7110597 A

For each output sample time m', m' = 0,1,2 . ., L-1 the 8 samples in the filter are multiplied with one
of the 8 sets of filter coefficients the products are accumulated to give the output y(m'). Each time
the quantity m'M/L increases by one, one sample from the input buffer is shifted into the filter.

The coefficient set used will depend on the position of the sample being generated relative to the
original samples of the source image. Thus after L output values are computed M input samples
have been shifted into the filter delay registers.

The SRC up/down sampling factor is set up in the VID_LSR register. The re-sampling factors for
the luminance and chrominance components are exactly the same. The resampling factor is equal
to L/M. The value programmed into VID_LSR is 256 × M/L. This value is used to determine both
the rate of input of data into the filters and the sequence of sub-pel interpolation positions. The
mechanism by which this is achieved is shown in Figure 21.5.

Figure 21.5 Up/down sampling filter control

Upsampling example

The example in Figure 21.6 illustrates the operation of the sample rate converter when the upsam-
pling ratio is 8:7. For every 8 samples clocked out of the filters, 7 samples are clocked in.

To illustrate the interpolation positions, at the right of Figure 21.6 are shown the outputs which
would occur with a simple linear interpolation (i.e.a 2-tap filter). The actual SRC output values are
the 8-tap filter outputs with coefficients appropriate to sub-pel positions 0, 7, 6, 5, 4, 3, 2, 1, 0 etc.
The SRC output is limited to lie within the range [1,254], so the codes 0x00 and 0xFF are never
output, giving compatibility with ITU-R 656.

10-bit adder

New input Sub-pel
position

Initialize

Start

LSR

STi5500

173/2897110597 A

Figure 21.6 SRC example for 8:7 upsampling

The VID_LSR value is added into an accumulator register at a rate equal to the filter output rate.
The top two bits indicate how many new inputs are to be loaded into the filter (0,1 or 2). The next
three bits of the accumulator register are used to select the sub-pel position. For example, with an
upsampling factor of 8:7, the VID_LSR value is (256/8) × 7 = 224. The sequence of values in the
accumulator register will be as shown in Table 21.1, assuming that it is initialized to zero.

Accumulator register New input Sub-pel position

0 yes 0

224 no 7

192 yes 6

160 yes 5

Table 21.1 Accumulator register sequence for upsampling example

A - Relation of input and output samples

Input

Output

Sub-pel position

0 7 6 5 4 3 2 1 0

B - Filter operation

n+7 n+3n+6 n+5

n+10

n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1n+8

n+9

n+11

n+12

n+13

n+14

n+7 n+3n+6 n+5 n+4 n+2n+8

n+9 n+7 n+3n+6 n+5 n+4n+8

n+10 n+9 n+7 n+6 n+5 n+4n+8

n+11 n+10 n+9 n+7 n+6 n+5n+8

n+12 n+11 n+10 n+9 n+7 n+6n+8

n+13 n+12 n+11 n+10 n+9 n+7n+8

n

n

r8 r7 r6 r5 r4 r3 r2 r1

Delay register contents
(One cycle per output clock cycle)

No input
sample read

3/4 (n+5) +1/4 (n+4)

5/8 (n+6) +3/8 (n+5)

1/2 (n+7) +1/2 (n+6)

3/8 (n+8) +5/8 (n+7)

1/4 (n+9) +3/4 (n+8)

1/8 (n+10) +7/8 (n+9)

n+10

n+3

7/8 (n+4) + 1/8 (n+3)

Output
(shown interpolated linearly)

STi5500 l

174/287174/289 7110597 A

The VID_LSR value thus defines a cycle of sub-pel positions as well as the rate of data input. If a
value of less than 32 is loaded into VID_LSR, i.e. an upsampling ratio of greater than 8 is defined,
there could be repeated values in the filter output. This may cause unacceptable display artifacts.

Downsampling example

The example shown in Figure 21.7 illustrates the operation of the sample rate converter when the
downsampling ratio is 9:8 (720:640).

Figure 21.7 SRC example for 9:8 downsampling

128 yes 4

96 yes 3

64 yes 2

32 yes 1

0 yes 0

Accumulator register New input Sub-pel position

Table 21.1 Accumulator register sequence for upsampling example

A - Relation of input and output samples

Input

Output

Sub-pel position

0 1 2 3 4 5 6 7 0

B - Filter operation

n+7 n+3n+6 n+5

n+10

n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1n+8

n+9

n+11

n+12

n+13

n+14

n+7 n+3n+6 n+5 n+4 n+2n+8

n+9 n+7 n+3n+6 n+5 n+4n+8

n+10 n+9 n+7 n+6 n+5 n+4n+8

n+11 n+10 n+9 n+7 n+6 n+5n+8

n+12 n+11 n+10 n+9 n+7 n+6n+8

n+13 n+12 n+11 n+10 n+9 n+7n+8

n

r8 r7 r6 r5 r4 r3 r2 r1

Delay register contents
(One cycle per output clock cycle)

1/4 (n+6) +3/4 (n+5)

3/8 (n+7) +5/8 (n+6)

1/2 (n+8) +1/2 (n+7)

5/8 (n+9) +3/8 (n+8)

3/4 (n+10) +1/4 (n+9)

7/8 (n+11) +1/8 (n+10)

n+11

n+3

1/8 (n+5) +7/8 (n+4)

Output
(shown interpolated linearly)

n+14 n+13 n+12 n+11 n+10 n+9 n+8n+15

STi5500

175/2897110597 A

The VID_LSR value required for a downsampling ratio of 9:8 is 256 x 9 /8 = 288.

At the start of a line, the 3 sets of delay registers r1, r2 and r3 are loaded with the black value
(Y=16, CB=CR=128).

The first output is thus derived from the inputs stored in registers r4 to r8. At the end of a line, the
last eight input samples are stored in registers r1 to r8.

The last valid interpolation is between the samples stored in r4 and r5. Correct Interpolation is not
possible beyond this except in the case where the next output is in sub-pel position 0. This output is
valid since coefficient C0 is zero for this position and the invalid sample beyond the end of the line
is ignored.

There is thus no valid interpolation possible between the last four input samples. This is illustrated
in Figure 21.8 in which 544 pels are upsampled to 721, in which the upsampling ratio is 4:3. The
VID_LSR register would be loaded with the value 192.

The number of valid outputs generated can be calculated as follows:

The ratio between the number of input and output samples is 256:VID_LSR. Given that the last
output sample cannot occupy a position beyond the fourth-last input sample, the following inequal-
ity is always true:

VID_LSR (N-1) ≤ 256 (M-4)

where N is the number of output samples and M is the number of input samples. The value of N is
thus given by:

N = 256 (M-4) / VID_LSR + 1

where x indicates the integer part of x.

The value programmed into the VID_XDS register must be such that all samples beyond the last
valid one are masked.

Accumulator register Number of inputs Sub-pel position

0 1 0

288 1 1

576 1 2

864 1 3

128 1 4

416 1 5

704 1 6

992 1 7

0 2 0

Table 21.2 Accumulator register sequence for downsampling example

STi5500 l

176/287176/289 7110597 A

Figure 21.8 Upsampling from 544 to 720

21.2.3 Pan/scan vectors

When the display window has a smaller horizontal dimension than the decoded picture, a vector
can be programmed in order to define the starting point of the displayed picture, as shown in
Figure 21.9. The vertical component must be macroblock aligned, so the line number must be a
multiple of 16.

Figure 21.9 Pan/scan vector

This vector defines the point in the decoded picture which corresponds to the top-left-hand corner
of the displayed picture. The displayed picture size and location is defined by the numbers pro-
grammed in registers VID_XDO, VID_XDS, VID_YDO and VID_YDS.

The pan/scan vector components are programmed into the registers VID_PAN, VID_LSO and
VID_CSO. These registers are double-buffered; when a new value is written it is taken into
account on the occurrence of a VSYNC. Thus it is possible to write a new value of the pan/scan
vector for every field.

The integer part of the horizontal component of the pan/scan vector is loaded into the VID_PAN
register, and the fractional part defines the contents of the VID_LSO and VID_CSO registers. The
relationship between these quantities is illustrated in Figure 21.10.

Input

Output

Start of line

1 2 3 4 5 6

1 2 3 4 5

Input

Output

End of line

717 718 719 720 721

538 539 540 541 542 543 544

Last valid output
(sub-pel position 0)

Decoded picture

Displayed
picture

Vector

STi5500

177/2897110597 A

Figure 21.10 Components of the pan/scan vector

The numbers loaded into the VID_LSO and VID_CSO registers are used to initialize the luminance
and chrominance upsampling control registers at the start of every line. VID_LSO is set up directly
with the value of the fractional part of the pan/scan vector horizontal component. VID_CSO is set
up with half of this number, plus 128 if the integer part is an odd number. The resolution to which
the horizontal component can be defined is 1/8 pel.

The STi5500 does not support vertical pan/scan components.

21.2.4 Vertical filter

Vertical processing is used for the following purposes:

• to double the number of chroma lines (4:2:0 to 4:2:2);

• for letterbox conversion (4 line to 3 conversion);

• to display half-resolution images on a full resolution display.

The STi5500 supports only intra-field vertical processing.

Table 21.3 lists the filter modes. The modes are shown in more detail in the figures which fol-
low.The different filter modes are programmed by writing the mode number in the bit field VFC[2:0]
in the VID_DCF register.

Mode Decode Display

0 Full resolution Full resolution display with chrominance interpolation

1 Full resolution Full resolution display with chrominance line repeat

2 Half resolution Full resolution display with luma interpolation and chroma line repeat

3 Full resolution Letterbox filtering

4 Half resolution Letterbox filtering

Table 21.3 Vertical filtering modes

Luma

Chroma

Decoded

Displayed

Chroma

Luma

VID_LSO

VID_PAN

VID_CSO

Pan vector

STi5500 l

178/287178/289 7110597 A

Mode 0

Figure 21.11 Mode 0 filtering

Mode 1

Figure 21.12 Mode 1 filtering

Luma derivation

*

*

*

*

*

*

*

*

1

1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

*

*

*

*

*

*

*

1

3/4

3/4

1

1/4

3/4

1/4

3/4

3/4

1/4

1/4

*
3/4

Chroma derivation

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1/4

1/4

1/4

Top field Bottom field Top field Bottom field

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Luma derivation

1 *

*

*

*

*

*

*

*

1

1
1

1
1

1
1

1 *

*

*

*

*

*

*

*

1

1
1

1
1

1
1

Chroma derivation

Top field Bottom field Top field Bottom field

STi5500

179/2897110597 A

Mode 2

Figure 21.13 Mode 2 filtering

Mode 3

Figure 21.14 Mode 3 filtering

Luma derivation

*

*

*

*

*

*

*

*

1

1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

*

*

*

*

*

*

*

*

1

1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1 *

*

*

*

*

*

*

*

1

1
1

*

*

*

*

*

*

*

*

1
1

1
1

1
1
1

1

1
1
1

1

Chroma derivation

Top field Bottom field Top field Bottom field

Luma derivation

*

*

*

*

*

*

1/2

3/4

1/4

1/4

3/4

1/4

1/2

3/4

1/2
1/2

1/4

3/4

*

*

*

*

*

*

1/2

3/4

1/4

1/4

3/4

1/4

1/2

3/4

1/2
1/2

1/4

3/4

1/2

1/2

*

*

*

*

*

*

1

1

1/2

1/2

1

1

1/2

1/2

*

*

*

*

*

*

1

1

1/2

1/2

1

1

Chroma derivation

Top field Bottom field Top field Bottom field

STi5500 l

180/287180/289 7110597 A

Mode 4

Figure 21.15 Mode 4 filtering

Vertical Filter Precision

The vertical filter calculation is performed in unsigned arithmetic with full precision and then the 10-
bit results are rounded to 8 bits for output. Different rounding rules are used for luminance and
chrominance. The rules are as follows:

• For luminance, the results are rounded towards zero, i.e. if the bottom two bits are 00, 01 or
10, the 10-bit number is truncated to 8, while if the bottom two bits are 11, one is added to
the truncated 8-bit number.

• For chrominance, the results are rounded towards 128, i.e. if the 10-bit number is larger
than 10000000002, the rule above is applied, while if the number is less than this, 102 is
added to the 10-bit number before truncation.

21.2.5 Degradation mode

In certain situations the system constraints may justify use of the STi5500 in a configuration where
the available bandwidth on the SDRAM interface is limited. There could be many reasons for these
constraints, such as a low clock frequency to use cheaper SDRAMS, or the processor making
heavy use of the SDRAM. MPEG decode and display, being a real-time process and also a heavy
user of SDRAM memory bandwidth will then require a graceful degradation mode.

A small piece of hardware is implemented in the decoder to measure the effective distance (in pix-
els) between the display process and the decode process. Under conditions of limited bandwidth
the decoder will become late and therefore may get caught by the real-time limited display process.

Degradation mode can be enabled and disabled using the register VID_PTH. A threshold or mini-
mum allowable distance between the decode and display processes can also be set. If this thresh-

Luma derivation Chroma derivation

1 *

*

*

*

*

*

1

1
*

*

*

*

*

*

1
1

1

1
1

1

1
1

1

1/2

1/2

*

*

*

*

*

*

1

1

1/2

1/2

1

1

1/2

1/2

*

*

*

*

*

*

1

1

1/2

1/2

1

1

Top field Bottom field Top field Bottom field

STi5500

181/2897110597 A

old is crossed the decoder will automatically insure that any bidirectionally predicted macroblock
access will result in only a single prediction access to external memory thus reducing the band-
width required by the decoder and allowing recovery.

21.3 Sub-picture plane

The sub-picture plane displays the output from the sub-picture decoder, described in Chapter 19.
The sub-picture is between the video plane and the OSD.

21.4 On-screen display (OSD)

The STi5500 has an integrated On-Screen Display (OSD) unit. This can be used to overlay the
video picture with graphics generated by software. The display priority puts the OSD in front of the
MPEG video mixed with the sub-picture. The OSD can be enabled or disabled. The OSD bit-map is
defined with respect to the display area and is independent of the decoded picture size and any
pan/scan offset. The output from the OSD is in 4:2:2 format.

The OSD of the STi5500 has the following special features:

• Linked list memory management;

• Selectable 2, 4 or 8-bits per pixel palette modes giving 4, 16 or 256 palette colors;

• 6-bit luma resolution and 4-bit chroma resolution per component;

• Programmable 4-bit mixing factor for each OSD region to blend the video plane and OSD
data;

• Half resolution mode.

These features are described in the following sections.

The OSD unit uses color look-up-tables (LUTs), also called palettes, with 2-bit, 4-bit or 8-bit input.
The LUT means that memory is used efficiently when only a few colors are needed. A 2-bit LUT
means that four colors can be used at once, and each pixel of the bit-map occupies only two bits of
memory. A 4-bit LUT gives 16 colors and an 8-bit LUT gives 256 colors. The palette of 4, 16 or 256
predefined colors is loaded into the SDRAM by software using the shared memory interface. The
palette modes are described in section 21.4.6.

The output from the LUT is in the form of 14-bit pixels (6-bit Y, 4-bit Cb, 4-bit Cr) plus one bit for
transparency control. The color modes are described in section 21.4.6.

The OSD can consist of a number of display regions, each with its own palette and characteristics.
The number of OSD regions resident in memory at any time is limited only by the amount of mem-
ory available. Each region has a specification, stored in memory, which contains a header, possibly
including a palette, and a bit-map. The specifications for the regions are linked in a list structure.
The bit-map data in each specification is contiguous with the palette information, as shown in
Figure 21.20. The bit-map refers to the 2-, 4- or 8-bit color definitions in the palette to create the
required picture.

During the display of an image a small state machine first picks up the palette from SDRAM and
loads it into the LUT then the OSD region start and stop addresses are read. When the display

STi5500 l

182/287182/289 7110597 A

reaches the OSD start position (defined in the bit-map) the bit-map is sent pixel by pixel to the LUT
and the display switches from video to the output of the LUT or a mixture of both.

This process continues until the defined stop position. Thus, for the defined OSD region, the video
display is overlaid by the colors which are defined by a combination of the LUT and the bit-map.

21.4.1 Using the OSD

The OSD is enabled if bit VID_DCF.EOS is set. The starting address in memory of the OSD speci-
fication for the top field is defined by register VID_OTP, and that for the bottom field is defined by
register VID_OBP.

The line numbers used to define the top and bottom of an OSD region are the internal (field) line
numbers defined in Figure 21.16. It is thus possible to share the same OSD specification for both
fields of a frame. In this case the VID_OTP and VID_OBP registers would be loaded with the same
address.

OSD specifications can be written into the SDRAM using the ST20 or the block move DMA. They
can be rapidly moved within SDRAM using the SDRAM block move function.

Figure 21.16 Internal line numbering

21.4.2 OSD regions

The OSD function can be used to display a user-defined bit-map over any part of the displayable
(i.e. non-blanked) screen, independent of the size and location of the active video area (defined by
VID_XDO, VID_XDS, VID_YDO, VID_YDS). This bit-map can be defined independently for each
field.

The OSD consists of one or more regions in the display. Each region is a rectangle, and can have
its own palette and other properties. Figure 21.17 shows examples of OSD regions. Region 3
shows that the OSD can be outside the active video area.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 90

Top field

Bottom field

B/T

HSYNC

B/T

HSYNC

STi5500

183/2897110597 A

Figure 21.17 OSD regions

No display line can be included in more than one active OSD region, so only one OSD region can
be active on a line. If two areas of OSD are required which include the same display line then one
region must be defined which includes both areas. For example, Figure 21.18 shows two areas,
marked A and B, with some display lines used in both areas. If these areas are to be active at the
same time then one region, marked C, must be defined, which includes both areas. The area of C
outside A and B can be defined as transparent.

Figure 21.18 Two display areas using the same display lines

21.4.3 OSD specification

An OSD specification is two linked lists of blocks of 64-bit words, stored in SDRAM. One list is for
the top field and one for the bottom, as shown in Figure 21.19. The order of the blocks in the list is
the order of the regions from top to bottom of the display. The last block in an OSD specification
must point to either:

Boundary of displayable area

Active video area
(X0, Y0)

(X1, Y1)

Region 1

Region 2 Transparent

Region 3

A

B

C

Areas of OSD

OSD region

Display lines
in both areas

STi5500 l

184/287184/289 7110597 A

• a null header line, which is a 64-bit line filled with zeros, or

• an invalid header line, which gives a starting line beyond the displayable area.

A null header line or an invalid header line will end the OSD.

Figure 21.19 Linked list structure for OSD data

Each block defines one field of one region and includes a header, an optional palette and a bit-
map. Each block must be aligned on a 32-bit boundary and the first block of each field must be
aligned on a 128-bit boundary. Figure 21.20 shows a linked list of two OSD blocks.

Figure 21.20 OSD specification

OSD1 top field block

OSD2 top field block

OSD3 top field block

OSD3

OSD2

OSD1

Decoded image

OSD1 bottom field block

OSD2 bottom field block

OSD3 bottom field block

Linked list of Linked list of

VID_OTP VID_OBP

 bottom field blockstop field blocks

Null block Null block

Header

Palette

Bit-map data

Region 1

Header

Palette

Bit-map data

Region 2

Null header line

STi5500

185/2897110597 A

Each region has associated with it a palette defining 4, 16 or 256 colors, used by the bit-map. If
required, one of these colors can be “transparent”, allowing the background to show through. Each
region may have its own palette, or if a sequence of regions uses the same palette then the palette
need only be defined in the first region of the sequence.

The header of each block contains a definition of the boundaries of the region, a pointer to the next
region and other control information. The format of the palette depends on the palette mode, as
described in section 21.4.6. The formats are given in section 21.4.8.

21.4.4 OSD region position

The position of each region of the OSD is defined in the header of the specification block. The posi-
tions of the left and right edge samples of an OSD region are defined as follows, in units of PIXCLK
cycles from the falling edge of HSYNC:

left edge position = (2 × X_left) + 9

right edge position = (2 × X_right) + 10

where X_left and X_right are the values defined in the header of the OSD region specification. This
is illustrated in Figure 21.21.

X_left must always have the same parity as the offset loaded into the VID_XDO register (i.e. both
must be even or both must be odd). This constraint ensures that the OSD region data samples are
always correctly phased with respect to the active video. The first sample output in an OSD region
is always a CB value.

Figure 21.21 OSD region horizontal positioning

The top and bottom of the region are defined by the values Y_top and Y_bottom, which are also in
the block header. These values are specified in units of display lines. The top line specified in the
first word of an OSD region specification must be greater than or equal to 3.

21.4.5 OSD 4:2:2 output

Two, four or eight bits are used to define the color index (i.e. palette address) of each pel. The first,
third, fifth, etc. indices are used to reference all three components (Y, CB and CR) of the respective
pels; the second, fourth, sixth, etc. reference only the luminance components of the palette. For
this reason the bitmap for a region must define horizontal segments containing a whole number of
pel-pairs.

CB Y CR Y CB Y CR Y CB Y CR Y

2 (X_right - X_left) + 2 samples

or (X_right - X_left) + 1 pels

Sample number 2X_left + 9 Sample number 2X_right + 10

2X_left + 8
samples

HSYNC

STi5500 l

186/287186/289 7110597 A

It is possible, however, to define a value of Xright such that an odd number of pels will be output in a
segment. In this case the index of the bitmap defining the end of each line segment is redundant.
Also, at the transition between OSD and the picture, the CR chrominance value associated with the
first pel of the decoded picture display will be defined by the OSD bitmap, not by the picture.

For the same reason, the transition to and from transparency must only occur at points which are
an even number of pels from the start of the left-hand edge of an OSD region.

21.4.6 Color palette

Each specification block after the first can either define a new palette or use the same palette as
the preceding region. If a new palette is defined then it is held in SDRAM immediately after the
header and before the bit-map. The P flag in the header defines whether the palette follows the
header, as shown in Table 21.4.

Palette modes

The palette mode defines the bits per pel in the bit-map and the pixel resolution. The palette mode
can be different for each OSD region, and is defined by the M, Q and E flags in the OSD region
specification header. Q defines the pixel resolution, allowing half resolution modes to save memory
while retaining the color resolution. The meaning of each combination of these flags is given in
Table 21.5.

To reduce the size of the bit maps while retaining the color resolution, a half resolution mode is pro-
vided, as shown in Table 21.5. In half resolution, each pel in the bit-map defines the color of two
adjacent pixels in the same line in the display.

Palette format

The format of each line of the palette defines the format of the output from the palette. Table 21.6
shows the format of the palette lines.

P Palette

0 The palette for the region is immediately after header.

1 The palette is the same as for the preceding region.

Table 21.4 Palette as before flag

M Q E Bits per pixel No. of colors Resolution

0 0 0 2 4 1 pel

1 1 0 2 4 2 pels

1 0 0 4 16 1 pel

0 1 0 4 16 2 pels

0 0 1 8 256 1 pel

1 1 1 8 256 2 pels

1 0 1 Reserved

0 1 1 Reserved

Table 21.5 M, Q and E palette mode header flags

STi5500

187/2897110597 A

Standard colors

Table 21.7 shows the 14-bit Y, CB and CR values nearest to the standard color bar colors.

21.4.7 OSD bit-map

The bit-map for an OSD region follows the palette if defined or the header if no palette is defined.

The bit-map defines the OSD pixels in left to right order within lines, and the lines in top to bottom
order. The number of bits per pixel may be 2, 4 or 8 depending on the palette mode. The value for
each pixel gives the line of the palette which defines the color for the pixel.

In 4:2:2 format, the output consists of pairs of pels, where both pels of a pair are needed to define
the color. A boundary between the visible video display and a visible portion of OSD should nor-
mally be after even-numbered pels, or the next pixel will not be of the correct color. To avoid this
effect, an OSD region should start on an even-numbered pel and the width should be an even num-
ber of pels. Similarly, any transparent area in the region should start and finish an even number of
pels from the edge of the region. This is illustrated in Figure 21.22, where all the marked widths
should be an even number of pixels.

Field Bits Description

Cr[3:0] 3:0 Cr chroma value

Cb[3:0] 7:4 Cb chroma value

T 8

Transparency:

0 Do NOT blend video with OSD for this color.
1 Blend video with OSD for this color using the mix weight α2.

Reserved 9 Reserved. Write 0.

Y[5:0] 15:10 Y luma value

Table 21.6 Palette line format

Standard color Y CB CR

White 0x3B 0x8 0x8

Black 0x04 0x8 0x8

Red 0x14 0x6 0xF

Green 0x23 0x3 0x2

Blue 0x0C 0xF 0x7

Yellow 0x33 0x1 0x9

Cyan 0x2B 0xA 0x1

Magenta 0x1C 0xD 0xE

Table 21.7 Standard colors in 14-bit color

STi5500 l

188/287188/289 7110597 A

Figure 21.22 Avoiding miscolored pixels in 4:2:2 format

21.4.8 OSD block header format

Table 21.8 shows the layout of the header, which occupies one 64-bit word. Table 21.9 shows the
layout in graphical form, with each line representing a quarter of a 64-bit word.

Field Size Bits Meaning Reference

M 1 63

Palette mode. Table 21.5.Q 1 62

E 1 61

OSDp[3] 1 60 Pointer to the next region specification. Below.

P 1 59
0 A new palette follows the header.
1 The palette is the same as the previous region.

Table 21.4.

Y_top 9 56:48 Position of the top of the OSD region. Section 21.4.4.

MixWeight 4 47:44 Mixing weight α2 with planes behind.

OSDp[6:4] 3 43:41 Pointer to the next region specification. Below.

Y_bottom 9 40:32 Position of the bottom of the OSD region. Section 21.4.4.

OSDp[12:7] 6 31:26 Pointer to the next region specification. Below.

X_left 10 25:16 Position of the left of the OSD region. Section 21.4.4.

OSDp[18:13] 6 15:10 Pointer to the next region specification. Below.

X_right 10 9:0 Position of the right of the OSD region. Section 21.4.4.

Table 21.8 OSD block header format

Display area

To avoid miscolored pixels on boundaries,
the widths marked should be even numbers of pixels.

OSD region

Transparent
area

STi5500

189/2897110597 A

The header contains the pointer OSDp[18:0]. This pointer defines the address of the next block in
the linked list to load from memory, as described in section 21.4.3. The blocks can be anywhere in
SDRAM and the pointer is given in units of 64-bit words. The block must be 8-word aligned, so the
pointer OSDp[18:0] must be a multiple of 8. Thus the least significant 3 bits of OSDp are always
zero, and are not included in the header.

The location of the first OSD specification block of a field is defined by the VID_OBP or VID_OTP
registers in units of 128 bytes. This means the full address of the first block must be a multiple of
32.

21.4.9 OSD specification block examples

This section shows the format for some complete specification blocks.

Table 21.10 shows a specification using 2 bits per pixel in the bit-map with 1 pel resolution and 14-
bit color. Only the first 8 pixels of the bit-map are shown. The palette occupies one 64-bit word, and
the bit-map occupies one 64-bit word for every 32 pixels.

Table 21.11 shows a specification using 4 bits per pixel in the bit-map with 2 pel resolution and 14-
bit color. Only the first 4 pixels of the bit-map are shown. Each entry in the bit-map uses 4 bits, but
defines two display pels of the same color. The palette occupies four 64-bit words, and the bit-map
occupies one 64-bit word for every 16 bit-map pixels.

M Q E
OSDp

[3]
P 0 0 Y_top

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Table 21.9 OSD region specification header

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 P=0 0 0 Y_top

Word 0
MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr

Word 1
Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Bit-map for 8 OSD pixels Bit-map word

Table 21.10 2 bits per pixel, 14-bit color OSD region specification

STi5500 l

190/287190/289 7110597 A

Table 21.12 shows a specification using 8 bits per pixel in the bit-map with full resolution and 14-bit
color. Only the first 2 pixels of the bit-map are shown. Each pixel in the bit-map uses 8 bits. The pal-
ette occupies 64 64-bit words (i.e. 512 bytes), and the bit-map occupies one 64-bit word for every 8
bit-map pixels.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=1 Q=1 E=0 1 P=0 0 0 Y_top

Word 0
MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr

Word 1
Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Palette4 Y 0 T4 Palette4 Cb Palette4 Cr

Word 3
Palette5 Y 0 T5 Palette5 Cb Palette5 Cr

Palette6 Y 0 T6 Palette6 Cb Palette6 Cr

Palette7 Y 0 T7 Palette7 Cb Palette7 Cr

Palette8 Y 0 T8 Palette8 Cb Palette8 Cr

Word 4
Palette9 Y 0 T9 Palette9 Cb Palette9 Cr

Palette10 Y 0 T10 Palette10 Cb Palette10 Cr

Palette11 Y 0 T11 Palette11 Cb Palette11 Cr

Palette12 Y 0 T12 Palette12 Cb Palette12 Cr

Word 5
Palette13 Y 0 T13 Palette13 Cb Palette13 Cr

Palette14 Y 0 T14 Palette14 Cb Palette14 Cr

Palette15 Y 0 T15 Palette15 Cb Palette15 Cr

Bit-map for 4 OSD pixels Bit-map word

Table 21.11 4 bits per pixel, 2-pel resolution 14-bit color OSD region specification

STi5500

191/2897110597 A

21.4.10 Mixing OSD with video

The mixing function allows each OSD pixel to be blended with the corresponding pixel generated
by the planes behind the OSD. The mix weight is a programmable parameter and can be set for
each OSD region.

The mix weight is a 4-bit number allowing mixing ratios from 0 to 1 with a resolution of 1/15. The
resulting pixel can be completely transparent (weighting of 0/15) or can completely cover the video
(15/15). Each individual color in the palette can be specified to be used with or without mixing by
setting the transparency (T) bit of the palette. A T bit equal to 0 means no mixing for the particular
color, and a T of 1 means that mixing should be used.

21.4.11OSD active signal

The OSD active signal can be used in two modes. The mode is controlled using VID_DCF.OAM. In
the first mode the OSD active signal is configured as an output. In this mode the OSD active signal
denotes when an active OSD pixel (non transparent) is on the YC output bus, as in Figure 21.23.
The signal, in this mode, has a programmable delay controlled by VID_DCF.OAD. This delay can
be set such that the OSD active signal is set as much as two clocks before or 1 to 64 clocks after
the actual pixel.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 Y_top

Word 0
MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr

Word 1
Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Palette4 Y 0 T4 Palette4 Cb Palette4 Cr Word 2

...

Palette252 Y 0 T12 Palette252 Cb Palette252 Cr

Word 64
Palette253 Y 0 T13 Palette253 Cb Palette253 Cr

Palette254 Y 0 T14 Palette254 Cb Palette254 Cr

Palette255 Y 0 T15 Palette255 Cb Palette255 Cr

Bit-map for 2 OSD pixels with 8 bits per pel or 8 bits per 2 pel Bit-map Word

Table 21.12 8 bits per pixel, 14-bit color OSD region specification

STi5500 l

192/287192/289 7110597 A

Figure 21.23 OSD active timing when VID_DCF.OAM = 1

In the second mode of operation, the OSD active signal is configured as an input and is used to
disable the OSD. When the signal goes high, the OSD will be placed on the YC bus if the OSD is
enabled. When this signal is low then no OSD will be placed on the bus even if OSD is enabled.
The programmable delay is used in the same way as for the input signal.

OSD active mode OSD active signal Meaning

0 0 Signal is an output. Video Pixels only on display bus.

0 1 Signal is an output. OSD Pixels on the display bus.

1 0 Signal is an input. Disable the OSD output.

1 1 Signal is an input. Enable OSD output if available.

Table 21.13 OSD active signal operation

PIXCLK

YC[7:0]
with VID_DCF.PXD = 0

YC[7:0]
with VID_DCF.PXD = 1

OSD active signal
(input)

OSD active signal
delay

3 2
3

1
2

0
1

0

Enable OSD pixels

Enable OSD pixels

YCrYCb

YCrYCb

STi5500

193/2897110597 A

Figure 21.24 OSD active timing when VID_DCF.OAM = 0

21.5 Mixing display planes

The blending of the elements of the final picture is performed by a mixing unit, which is shown in
Figure 21.25. The mixing of the display planes is controlled by the mix weights, α1 and α2.

The mix weight α1 controls the mixing of the back two planes, the sub-picture plane and the video
plane. α1 comes from the sub-picture stream.

The result of mixing the back two planes can be blended in turn with the OSD. The OSD mix weight
is α2 and is defined in each palette. It is a 4-bit value, defined for each OSD region, and mixing can
be enabled or disabled for each color.

Figure 21.25 Mixing unit

PIXCLK

YC[7:0]

OSD active signal
(output)

OSD active signal
delay

0 1 2 3

OSD pixels

YCrYCbYCrYCb

Video
plane

Sub-
picture

Color
palette
(LUT)

α1

α2

CVBS

YC

YUV

RGB

PAL/

YUV
to

RGB

4:2:2

4:2:2

4:2:2

α2 value for OSD region (16 levels)

4:2:2

NTSC
encoder

OSD

α1

STi5500 l

194/287194/289 7110597 A

22 Teletext interface
The STi5500 has a teletext interface (TtxtInt) which interfaces to a teletext peripheral. It translates
teletext data from memory. It has a single mode of operation, Telextext data out.

The teletext interface uses DMA to retrieve teletext data from memory, and serializes the data for
transmission to a composite video encoder.

The interface between the CPU and the teletext interface is not a channel model but is based on an
interrupt mechanism.

22.1 Teletext interface internal signals

22.2 Teletext data out

The teletext interface uses DMA to retrieve teletext data from memory, and serializes the data for
transmission to a composite video encoder. Clock run-in bits are added to the start of the serial
stream, as defined in the ETSI specification1.

The CPU is responsible for assuring the correct programming of the video encoder. The encoder
must be programmed such that it makes requests for teletext lines only on pre-specified lines.

The TtxtEvennotOdd input from the encoder is used to interrupt the CPU allowing software con-
trol of the teletext out DMA initialisation.

The CPU initiates the output of a number of lines of teletext data. These lines are output when suit-
able requests are made from the video encoder. The teletext interface uses the device protocols to
allow control by the CPU.

22.2.1 Format of the output line

One teletext line is output as a stream of 360 bits, at an average frequency of 6.9375 MHz. The line
is composed of two bytes of clock run-in (16 bits), followed by the data extracted from the transport
packet. The data field consists of the framing_code, magazine_and_packet_address, and
data_block fields. These three fields provide the block of teletext data.

The clock run-in is composed of two bytes of ‘10101010’. The framing code, which is extracted
from the data_field, should be a single byte of ‘11100100’2. Hence one line of teletext output will be

Pin In/Out Function

TtxtData out Teletext serial data

TtxtEvennotOdd in Teletext even not odd

TtxtRequest in Teletext serial data request input.

TtxtClock in 27 MHz teletext clock

Table 22.1 Teletext interface pins

1. Specification for conveying ITU-R Systems B Teletext in Digital Video Broadcasting (DVB) bitstreams.
2. Document SPB492, ‘Teletext Specification’. European Broadcasting Union, Geneva, December 1992.

STi5500

195/2897110597 A

composed as in Figure 22.1. The data will be transmitted from least significant bit (LSB) to most
significant bit (MSB) of each byte in memory.

Figure 22.1 Line output

The 360 bits of output data are defined to be nine 37-bit sequences, ending with one 27-bit
sequence. Within each sequence, all bits are transmitted using four 27 MHz cycles, except bits 10,
19, 28 and 37, which are transmitted using three 27 MHz cycles, see Figure 22.2.

Figure 22.2 Output data

22.3 Teletext interrupt control

The teletext interface can be programmed, via the TtxtIntEnable register, to interrupt the CPU
whenever one of the following occurs:

• a teletext data out data transfer completes

• the current video frame toggles odd to even or even to odd

The interrupt status contained within the TtxtIntStatus register is masked with the TtxtIntEnable
register. The interrupt bits are reset when the CPU writes to the specific acknowledgement register,
or when a DMA operation completes.

data_field
(43 bytes, 344 bits)

8 bits 16 bits 320 bits

framing_code

magazine_and_packet_address data_block

1010101010101010

clock run-in

Teletext line
(45 bytes, 360 bits)

ClockIn

TtxtRequest

TtxtData Invalid Bit 1 Bit 2 Bit 10

27MHz

STi5500 l

196/287196/289 7110597 A

22.4 Control registers

The teletext interface is programmable via configuration registers.

TtxtDmaAddress register

The TtxtDmaAddress register is a 32-bit read/write register. It specifies the DMA start location of
data from memory.

TtxtDmaCount register

The TtxtDmaCount register specifies the number of bytes to be transferred from memory during
the DMA operation. This value must be a multiple (n) of 46 bytes, where n is the number of lines to
output.

A write to this register also arms the teletext out operation.

TtxtOutDelay register

This register is used to program the delay, in 27 MHz clock periods, from TtxtRequest to TtxtData.

TtxtMode register

This register sets the mode of the teletext interface. It specifies whether teletext data in memory is
for odd or even fields.

TtxtDmaAddress Ttxt base address + #00 Read/Write

Bit Bit field Function

31:0 DmaAddress DMA start location of data from memory.

Table 22.2 TtxtDmaAddress register format

TtxtDmaCount Ttxt base address + #04 Read/Write

Bit Bit field Function

10:0 DMACount
Specifies the number of bytes to be transferred during the DMA operation from
memory and starts the DMA.

Table 22.3 TtxtDmaCount register format

TtxtOutDelay Ttxt base address + #08 Read/Write

Bit Bit field Function

8:0 Delay
Delay from the rising edge of TtxtRequest to the first valid teletext data bit in
27MHz clock periods. Valid values are in the range 2 to 9.

Table 22.4 TtxtOutDelay register format

TtxtMode Ttxt base address + #14 Read/Write

Bit Bit field Function

1 OddEven
Specifies odd or even fields of teletext data.

0 Teletext data to/from memory is for EVEN fields
1 Teletext data to/from memory is for ODD fields

Table 22.5 TtxtMode register format

STi5500

197/2897110597 A

TtxtIntStatus register

This register gives the current state of the teletext interface operations.

TtxtIntEnable register

This register allows masking of the TtxtIntStatus register.

TtxtAckOddEven register

This register is address sensitive only and clears the Odd and Even bits of the TtxtIntStatus reg-
ister.

TtxtAbort register

This register is write only and address sensitive only. A write to this address causes the teletext
interface to abort the current operation. The state of the teletext out operation is reset, and the tele-
text data transfer is interrupted. The DMA engine is reset only after the current word read/write is
complete.

TtxtIntStatus Ttxt base address + #18 Read

Bit Bit field Function

0 OutComplete Teletext out operation completed.

1 Odd Current (video encoder) field is ODD.

2 Even Current (video encoder) field is EVEN.

Table 22.6 TtxtIntStatus register format

TtxtInttEnable Ttxt base address + #1C Read/Write

Bit Bit field Function

0 InOutCompleteEn Enable teletext out operation completed interrupt.

1 OddEnable Enable odd field interrupt.

2 EvenEnable Enable even field interrupt.

Table 22.7 TtxtIntEnable register format

TtxtAckOddEven Ttxt base address + #20 Write

Bit Bit field Function

AckOddEven Acknowledge odd/even toggle interrupt.

Table 22.8 TtxtAckOddEven register format

TtxtAbort Ttxt base address + #24 Write only

Bit Bit field Function

Abort Abort current operation.

Table 22.9 TtxtAbort register format

STi5500 l

198/287198/289 7110597 A

23 PAL/NTSC encoder (DENC)

23.1 Description

The STi5500 contains a high performance PAL/NTSC digital encoder, sometimes referred to as the
DENC. The encoder converts the 4:2:2 or 4:4:4 digital video stream and the OSD, sub-picture and
picture planes into a standard analog base-band PAL/NTSC signal and into RGB analog compo-
nents. The encoder outputs interlaced or non-interlaced video in PAL-B, D, G, H, I, PAL-N, PAL-M,
NTSC-M or NTSC- 4.43 standards.

Six analog output pins are available on which it is possible to output CVBS, S-VHS (Y/C), RGB and
YUV formats. The encoder can handle interlaced mode (with 525- or 625-line standards) and non-
interlaced mode. It can perform closed-captions, CGMS or Teletext encoding.

The encoder can operate either in master mode, where it supplies all sync signals, or in one of sev-
eral slave modes, where it locks onto incoming sync signals. An autotest mode is also provided.

The main functions are controlled using 8-bit configuration registers accessed by software. See
section 23.20 for a list of the configuration registers available.

23.2 Video timing

The burst sequences are internally generated, subcarrier generation being performed numerically
with CKREF as reference. 4-frame bursts are generated for PAL or 2-frame bursts for NTSC. Rise
and fall times of synchronization tips and burst envelope are internally controlled according to the
relevant ITU-R and SMPTE recommendations. CKREF is the 27 MHz input clock to the STi5500

Figures 23.2, 23.3, 23.4, 23.5, 23.6 and 23.7 depict typical VBI waveforms.

It is possible to allow encoding of incoming YCrCb data on those lines of the VBI that do not bear
line sync pulses or pre/post-equalization pulses (see Figures 23.2, 23.3, 23.4, 23.5, 23.6 and 23.7).
This mode of operation is referred to as partial blanking and is the default set-up. It allows the
encoded waveform to keep any VBI data present in digitized form in the incoming YCrCb stream
(e.g. supplementary Closed-Captions line or StarSight data). Alternatively, the complete VBI may
be fully blanked, so no incoming YCrCb data is encoded on these lines.

Full or partial blanking is controlled by bit blkli in register configuration1.

For 525/60 systems, with the SMPTE line numbering convention:

• the complete VBI consists of lines 1 to 19 and the second half of lines 263 to 282;

• the partial VBI consists of lines 1 to 9 and the second half of lines 263 to 272;

• line 282 is either fully blanked or fully active.

For 625/50 systems, with the CCIR line numbering convention:

• the complete VBI consists of the second half of lines 623 to 22 and lines 311 to 335;

• the partial VBI consists of the second half of lines 623 to 5 and lines 311 to 318;

• line 23 is always fully active.

STi5500

199/2897110597 A

In an ITU-R656-compliant digital TV line, the active portion of the digital line is the portion included
between the SAV (Start of Active Video) and EAV (End of Active Video) words. However, this digital
active line starts somewhat earlier and may end slightly later than the active line usually defined by
analog standards. The DENC allows two approaches:

• It is possible to encode the full digital line (720 pixels / 1440 clock cycles). In this case, the
output waveform will reflect the full YCrCb stream included between SAV and EAV.

• Alternatively, it is possible to drop some YCrCb samples at the extremities of the digital line
so that the encoded analog line fits within the analog ITU-R/SMPTE specifications.

Selection between these two modes of operation is performed with bit aline in register
configuration4.

In all cases, the transitions between horizontal blanking and active video are shaped to avoid too
steep edges within the active video. Figure 23.8 and Table 23.1 give typical timings concerning the
horizontal blanking interval and the active video interval. Actual values will depend on the static off-
set programmed for subcarrier generation.

Figure 23.1 Input data format

NTSC, PAL M
(525 line / 60Hz)

PAL B, D, G, H, I, N
625 line / 50Hz

E
A

V

S
A

V

E
A

V

276T 1440T

1716T
Digital standing interval Digital active line

Line duration

288T 1440T

1728T

4T 4T

STi5500 l

200/287200/289 7110597 A

Figure 23.2 PAL-BDGHI, PAL-N typical VBI waveform, interlaced mode (ITU-R625 line numbering)

Figure 23.3 PAL-BDGHI, PAL-N typical VBI waveform, non-interlaced mode (“CCIR-like” line
numbering

A

311 312 313 314 315 316 317 318 317 336308 309 310

A B

624 625 1 2 3 4 5 6 7 8621 622 623

III

I

II

III

IV

II

C

0V :
I, II, III, IV :
A :
B :
C :

Frame synchronization reference
1st and 5th, 2nd and 6th, 3rd and 7th, 4th and 8th fields
Burst phase : nominal value +135°
Burst phase : nominal value -135°
Burst suppression internal

308 309 310 311 312 313 314 315 316 317 318 319 320

A B
0V

IV

A

624 625 1 2 3 4 5 6 7 23621 622 623

I

Partial VBI1
Full VBI1

Partial VBI2
Full VBI2

22

335

A B

311 312 1 2 3 4 5 6 7 8308 309 310

0V

Burst phase toggles every line

Partial VBI
Full VBI

22

STi5500

201/2897110597 A

Figure 23.4 NTSC-M typical VBI waveforms, interlaced mode (SMPTE-525 line numbering)

Figure 23.5 NTSC-M typical VBI waveforms, non-interlaced mode (SMPTE-like line numbering)

1

Full VBI1

2 3

Partial VBI1

4 5 6 7 8 9 10 18 19

H0.5HHH

282273272271270269268267266265264263262

HH0.5H

Full VBI2

VBI3

1 2 3 4 5 6 7 8 9 10 18 19525

282273272271270269268267266265264263

VBI4

Partial VBI2

1

Full VBI

2 3

3H

4 5 6

3H

7 8 9

3H

10 18 19

H0.5HHH

262

H

Partial VBI

STi5500 l

202/287202/289 7110597 A

Figure 23.6 PAL-M typical VBI waveforms, interlaced mode (ITU-R/CCIR-525 line numbering)

Figure 23.7 PAL-M typical VBI waveforms, non-interlaced mode (ITU-R/CCIR-like line numbering)

F'

519

F

520

F'

521

F

522 523 524 525 1 2 3 4 5 6 7 8 9

A B

A B

A B

261 262 263 264 265 266 267 268 269 270 271 280

523 524 525 1 2 3 4 5 6 7 8 9

F

519

F'

520

F

521 522

F

257

F'

258

F

259 260

A B

261 262 263 264 265 266 267 268 269 270 271 272

F'

257

F

258 259 260

0V

IV

I

II

III

IV

III

II

I

C

0V :
I, II, III, IV :
A :
B :
C :

Frame synchronization reference
1st and 5th, 2nd and 6th, 3rd and 7th, 4th and 8th fields
Burst phase : nominal value +135°
Burst phase : nominal value -135°
Burst suppression internal

Partial VBI1
Full VBI1

16 17

Partial VBI2
Full VBI2

279

256 257 258 259 260 261 262 1 2 3 4 5 6 7 8 9

A B
0V

Burst phase toggles every line

Partial VBI
Full VBI

10 16 17

STi5500

203/2897110597 A

Figure 23.8 Horizontal blanking interval and active video timings

23.3 Reset procedure

A hardware reset is performed by grounding the pin NRESET. The master clock must be running
and pin NRESET kept low for a minimum of 5 clock cycles. This sets the DENC in HSYNC+ODDE-
VEN (line-locked) slave mode, for NTSC-M, interlaced ITU-R601 encoding with MacrovisionTM

copy protection revision 7.01 operating. Closed-captioning and Teletext encoding are all disabled.

Then the configuration can be customized by writing into the appropriate registers. A few registers
are never reset, their contents are unknown until the first loading (see the STi5500 Register Man-
ual).

It is also possible to perform a software reset by setting the bit softreset in the register
configuration6. The response of the device in that case is similar to its response after a hardware
reset, except that the configuration registers and a few other registers are not altered. For further
details see the description of bit softreset.

NTSC-M PAL-BDGHI PAL-N PAL-M

a 5.38 µs (even lines)

5.52 µs (odd lines)

5.54 µs (A-type)

5.66 µs (B-type)

5.54 µs (A-type)

5.66 µs (B-type)

5.73 µs (A-type)

5.87 µs (B-type)

b 1.56 µs 1.28 µs 1.28 µs 1.28 µs

c1 8.8 µs 9.3 µs 9.3 µs 9.3 µs

c2 9.3 µs 10.1 µs 10.1 µs 10.1 µs

d 9 cycles of 3.58MHz 10 cycles of
4.43MHz

9 cycles of
3.58MHz

9 cycles of
3.58MHz

Table 23.1 Typical timing values in Figure 23.8

0H

Active video
Horizontal blanking interval

a

c1 (bit aline = 0)

c2 (bit aline = 1)

d

Full digital line encoding

‘Analog’ line encoding

(720 pixels - 1440 T)

b
(710 pixels - 1420 T)

STi5500 l

204/287204/289 7110597 A

23.4 Master mode

In this mode, the DENC supplies HSYNC and ODDEVEN sync signals (with independently pro-
grammable polarities) to drive other blocks. Refer to Figure 23.9 and Figure 23.10 for timings and
waveforms.

The DENC starts encoding and counting clock cycles as soon as the master mode has been
loaded into the configuration0 register.

Bits syncout_ad[1:0] of register configuration4 allow software to shift the relative position of the
sync signals by up to 3 clock cycles to cope with any YCrCb phasing.

Figure 23.9 ODDEVEN, VSYNC and HSYNC waveforms

Note 1: When ODDEVEN is a sync input, only one edge, the active edge, of the incoming ODDEVEN is taken into
account for synchronization. The inactive edge (the second edge on this drawing) is not critical and its posi-
tion may differ by H/2 from the location shown.

Note 2: The HSYNC pulse width indicated is valid when the DENC supplies HSYNC. In those slave modes where it
receives HSYNC, only the edge defined as active is relevant, and the width of the HSYNC pulse it receives is
not critical.

4 5 6 266 267 268 269SMPTE-525
ITU-R-625 1 2 3 313 314 315 316

Line Numbers:

ODDEVEN

VSYNC

HSYNC

Active edge
(programmable polarity)

Active edge
(programmable polarity)

Active edge
(programmable polarity)

128 Tckref =4.74 µs

STi5500

205/2897110597 A

Figure 23.10 Master mode sync signals

Note: This figure is valid for bits syncout_ad[1:0] = default

23.5 Slave modes

Several slave modes are available:

• HSYNC + ODDEVEN based (line-based sync),

• HSYNC + VSYNC based (another type of line-based sync),

• ODDEVEN-only based (frame-based sync),

• VSYNC-only based (another type of frame-based sync),

• sync-in-data based (line locked or frame locked).

ODDEVEN refers to an odd/even field flag, also known as BottomnotTop. HSYNC is a line sync sig-
nal, VSYNC is a vertical sync signal. The waveforms of these signals are depicted in Figure 23.9.
The polarities of HSYNC and VSYNC/ODDEVEN are independently programmable in all slave
modes.

In all slave modes, ODDEVEN (VSYNC) and/or HSYNC signals must be related to Pixclk, the prin-
cipal DENC clock. In other words, there is no genlocking performed by the DENC.

23.5.1 Synchronization onto a line sync signal

HSYNC+ODDEVEN based synchronization

Synchronization is performed on a line-by-line basis by locking onto incoming ODDEVEN and
HSYNC signals. See Figure 23.11 for waveforms and timings. The polarities of the active edges of
HSYNC and ODDEVEN are programmable and independent.

The first active edge of ODDEVEN initializes the internal line counter but encoding of the first line
does not start until an HSYNC active edge is detected (at the earliest, an HSYNC transition may be
at the same time as ODDEVEN). At that point, the internal sample counter is initialized and encod-
ing of the first line starts. Then, encoding of each subsequent line is individually triggered by
HSYNC active edges. The phase relationship between HSYNC and the incoming YCrCB data is

Cb YCr Y′

Duration of HSYNC pulse: 128 Tckref

CKREF

ODDEVEN (out)

YCrCb

HSYNC (out)

1Tckref

Cr Y′

Active edge (programmable polarity)

Active edge (programmable polarity)

STi5500 l

206/287206/289 7110597 A

normally such that the first clock rising edge following the HSYNC active edge samples Cb (i.e. a
blue chroma sample within the YCrCb stream). It is however possible to internally delay the incom-
ing sync signals (HSYNC+ODDEVEN) by up to 3 clock cycles to cope with different data/sync
phasings, using configuration bits syncin_ad in configuration4.

Figure 23.11 HSYNC + ODDEVEN based slave mode sync signals

Note: This figure is valid for bits syncin_ad[1:0] = default

The DENC is thus fully slaved to the HSYNC signal, which means that lines may contain more or
less samples than usual.

• If the digital line is shorter than its nominal value, the sample counter is re-initialized when
the ‘early’ HSYNC arrives and all internal synchronization signals are re-initialized.

• If the digital line is longer than its nominal value, the sample counter is stopped when it
reaches its nominal end-of-line value and waits for the ‘late’ HSYNC before reinitializing.

The field counter is incremented on each ODDEVEN transition. The line counter is reset on the
HSYNC following each active edge of ODDEVEN.

HSYNC+VSYNC based synchronization

Synchronization is performed on a line-by-line basis by locking onto incoming VSYNC and HSYNC
signals. Refer to Figure 23.12 for waveforms and timings. The polarities of HSYNC and VSYNC are
programmable and independent.

The incoming VSYNC signal is immediately transformed into a waveform identical to the odd/even
waveform of an ODDEVEN signal, therefore the behaviour of the core is identical to that described
above for HSYNC+ODDEVEN based synchronization. Again, the phase relationship between
HSYNC and the incoming YCrCb data is normally such that the first clock rising edge following the
HSYNC active edge samples “Cb” (i.e. a ‘blue’ chroma sample within the YCrCb stream). It is how-
ever possible to internally delay the incoming sync signals (HSYNCand VSYNC) by up to 3 clock
cycles to cope with different data/sync phasings, using configuration bits Syncin_ad of
configuration4.

The field counter is incremented on each active edge of VSYNC.

Cb Y Cr Y′ Cb

CKREF

ODDEVEN (in)

YCrCb

HSYNC (in)

Active edge (programmable polarity)

Active edge (programmable polarity)

STi5500

207/2897110597 A

Figure 23.12 HSYNC + VSYNC based slave mode sync signals

Note 1: This figure is valid for bits syncin_ad[1:0] = default

Note 2: The active edges of HSYNC and VSYNC should normally be simultaneous. It is permissible that HSYNC
transitions before VSYNC, but VSYNC must not transition before HSYNC.

23.5.2 Synchronization onto a frame signal

ODDEVEN-only based synchronization

Synchronization is performed on a frame-by-frame basis by locking onto an incoming ODDEVEN
signal. A line sync signal is derived internally and is also issued to the outside as HSYNC. Refer to
Figure 23.13 for waveforms and timings. The phase relationship between ODDEVEN and the
incoming YCrCB data is normally such that the first clock rising edge following the ODDEVEN
active edge samples “Cb” (i.e. a ‘blue’ chroma sample within the YCrCb stream). It is however pos-
sible to internally delay the incoming ODDEVEN signal by up to 3 clock cycles to cope with different
data/sync phasings, using configuration bits syncin_ad in configuration4.

Figure 23.13 ODDEVEN based slave mode sync signals

Note: This figure is valid for bits syncin_ad[1:0] = default

The first active edge of ODDEVEN triggers generation of the analog sync signals and encoding of
the incoming video data. Frames being supposed to be of constant duration, the next ODDEVEN
active transition is expected at a precise time after the last ODDEVEN detected.

So, once an active ODDEVEN edge has been detected, checks that the following ODDEVEN are
present at the expected instants are performed.

Cb Y Cr Y′ Cb

CKREF

VSYNC

YCrCb

HSYNC

Active edge (programmable polarity)

Active edge (programmable polarity)

(in)

(in)

Cb Y Cr Y′ Cb

CKREF

ODDEVEN (in)

YCrCb

STi5500 l

208/287208/289 7110597 A

Encoding and analog sync generation carry on unless these checks fail three successive times. In
that case, three behaviors are possible, according to the configuration programmed in registers
configuration1-2:

• if freerun is enabled, the DENC carries on outputting the digital line sync HSYNC and gen-
erating analog video just as though the expected ODDEVEN edge had been present. How-
ever, it will re-synchronize onto the next ODDEVEN active edge detected, whatever its
location.

• if freerun is disabled but bit syncok is set in the configuration registers, the DENC sets the
active portion of the TV line to black level but carries on outputting the analog sync tips (on
Ys and CVBS) and the digital line sync signal HSYNC. When programmed, Macrovisiontm

pseudo-sync pulses and AGC pulses are also present in the analog sync waveform.

• If freerun is disabled and the bit syncok is not set, all analog video is at black level and nei-
ther analog sync tips nor digital line sync are output.

This mode is a frame-based sync mode, as opposed to a field-based sync mode. This means that
only one type of edge (rising or falling, according to programming) is of interest to the DENC; the
other one is ignored.

VSYNC-only based synchronization

Synchronization is performed on a frame-by-frame basis by locking onto an incoming VSYNC sig-
nal. An auxiliary line sync signal HSYNC must also be fed to the DENC, which uses it to recon-
struct from VSYNC and HSYNC information an internal odd/even waveform identical to that of an
ODDEVEN signal. Therefore the behaviour of the core is identical to that described above for
ODDEVEN-only based synchronization (except that nothing is output on HSYNC pin since it is an
input port in that mode).

Note that HSYNC is an input but has no other use than allowing the DENC to decide whether an
incoming VSYNC pulse flags an odd or an even field. In other words, the DENC does not lock onto
HSYNC in this mode since this is NOT a line-locked mode.

The phase relationship between VSYNC and the incoming YCrCb data is normally such that the
first clock rising edge following the VSYNC active edge samples Cb (i.e. a blue chroma sample
within the YCrCb stream). It is however possible to internally delay the incoming sync signals
(VSYNCand HSYNC) by up to 3 clock cycles to cope with different data/sync phasings, using the
bits syncin_ad in configuration4).

23.5.3 Synchronization onto data-embedded sync words

‘End-of-frame’ word based synchronization

Synchronization is performed by extracting the 1-to-0 transitions of the F flag (end-of-frame) from
the EAV (End-of-Active-Video) sequence embedded within ITU-R656 / D1 compliant digital video
streams. Both a frame sync signal and a line sync signal are derived and are made available exter-
nally as ODDEVEN and HSYNC. Refer to Figure 23.14 for waveforms and timings.

STi5500

209/2897110597 A

Figure 23.14 Data (EAV) based slave mode sync signals

The first successful detection of the F flag triggers generation of the analog sync signals and
encoding of the incoming video data. Frames being supposed to be of constant duration, the next
EAV word containing the F flag is expected at a precise time after the latest detection.

So, once an active F flag has been detected, checks that the following flags are present within the
incoming video stream at the expected times are performed.

Encoding and analog sync generation carry on unless three successive fails of these checks occur.

In that case, three behaviours are possible, according to the configuration programmed:

• if free-run is enabled, the DENC carries on generating the digital frame and line SYNCs
(ODDEVEN and HSYNC) and generating analog video just as though the expected F flag
had been present. However, it will re-synshronize onto the next F flag detected within the
incoming ITU-R656/D1 video stream.

• if free-run is disabled but the bit syncok is set in the configuration registers, the DENC sets
the active portion of the TV line to black level but carries on outputting the analog sync tips
(on Ys and CVBS) and the digital frame and line sync signals ODDEVEN and HSYNC.
(When programmed, MacrovisionTM pseudo-sync pulses and AGC pulses are also present
in the analog sync waveform).

• if free-run is disabled and the bit syncok is not set, all analog video is at black level and
neither analog sync tips nor digital frame/line sync are output.

The SAV and EAV words are Hamming-decoded. After detection of two successive errors, a bit is
set in the status register to inform the micro-controller of the poor transmission quality.

‘End-of-line’ word based synchronization

Synchronization is performed by extracting the F and H flags from the SAV (Start of Active Video)
and EAV (End of Active Video) words embedded within ITU-R656 / D1 compliant digital video
streams.

A line sync signal and a frame sync signal are derived internally from these flags and are issued to
the outside on the HSYNC and ODDEVEN/VSYNC pins in output mode. These signals are also
exploited by the core of the circuit which treats them like it treats incoming ODDEVEN and HSYNC
signals in HSYNC+ODDEVEN based synchronization.

HSYNC duration = 128 Tckref

CKREF

ODDEVEN

YCrCb

HSYNC

00 B6 Cb Y

EAV

00FF

46Tckref

1Tckref

(out)

(out)

STi5500 l

210/287210/289 7110597 A

23.6 Autotest mode

An autotest mode is available, which causes the DENC to produce a color bar pattern, in the
appropriate standard, independently from the video input.

The autotest mode is started by setting to 7 the 3-bit field sync in the register configuration0. As
this mode sets the DENC in master mode, VSYNC/ODDEVEN and HSYNC signals are in output
mode. In Table 23.2, the decimal values of Y, Cr and Cb are shown corresponding to the autotest
color bar.
.

The corresponding decimal output values just before the DACs are shown graphically in
Figure 23.15 and Figure 23.16. Both figures show the static values corresponding to the input val-
ues in Table 23.2.

Figure 23.15 Luminance output levels in autotest for NTSC without set-up

Y Cr Cb

Black 16 128 128

Blue 36 116 212

Red 64 212 100

Magenta 84 200 184

Green 112 64 72

Cyan 136 44 156

Yellow 160 140 44

White 236 128 128

Table 23.2 Autotest colors

Sync level

240

8

W
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

eBlank level

Black

240
Black

STi5500

211/2897110597 A

Figure 23.16 Luminance output levels in autotest for PAL (BGHI)

23.7 Input demultiplexor

The incoming YCrCb data is demultiplexed into a ‘blue-difference’ chroma information stream, a
‘red-difference’ chroma information stream and a luma information stream. Incoming data bits are
treated as blue, red or luma samples according to their relative position with respect to the sync
signals in use and the contents of configuration bits syncin_ad in slave modes, or syncout_ad in
master mode.

The ITU-R601 recommendation defines the black luma level as Y=1610 and the maximum white
luma level as Y = 23510. Similarly it defines 225 quantification levels for the color difference compo-
nents (Cr, Cb), centered around 128. Accordingly, incoming YCrCB samples can be saturated in
the input multiplexer with the following rules:

• for Cr or Cb samples:

Cr, Cb > 240 means that Cr, Cb are saturated at 240.

Cr, Cb < 16 means that Cr, Cb are saturated at 16.

• for Y samples:

Y > 235 means that Y is saturated at 235.

Y < 16 means that Y is saturated at 16.

This avoids having to heavily saturate the composite video codes before digital-to-analog conver-
sion in case erroneous or unrealistic YCrCb samples are input to the encoder (there may otherwise
be overflow errors in the codes driving the DACs), and therefore avoids generating a distorted out-
put waveform.

However, in some applications, it may be desirable to let ‘extreme’ YCrCb codes pass through the
demultiplexor. This is controlled using bit maxdyn in register configuration6. In this case, only

Sync level

256

16

W
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

eBlank level

Black

256
Black

STi5500 l

212/287212/289 7110597 A

codes 0x00 and 0xFF are overridden; if such codes are found in the active video samples, they are
forced to 0x01 and 0xFE.

In any case, the YCrCb codes are not overridden for EAV/SAV decoder.

23.8 Sub-carrier generation

A Direct Digital Frequency Synthesizer (DDFS) generates the required color sub-carrier frequency
using a 24-bit phase accumulator. This oscillator feeds a quadrature modulator which modulates
the base-band chrominance components.

The sub-carrier frequency is obtained from the following equation:

Fsc = (Increment_Word / 224) x CKREF

where Increment _Word is a 24-bit value. Hard-wired Increment_Word values are available for
each standard and can be automatically selected. Alternatively in PAL and NTSC (according to bit
selrst in configuration2), the frequency can be fully customized by programming other values into
a dedicated Increment_Word register, increment_dfs. This allows, for instance, the encoding of
NTSC-4.43 or PAL-M-4.43.

This is done with the following procedure:

• Program the required increment in increment_dfs.

• Set bit selrst to 1 in register configuration2.

• Perform a software reset using register configuration6. This sets all bits in all DENC regis-
ters except configurationn to their default value.

Warning: if a standard change occurs after the software reset, the increment value is automatically
re-initialized with the hard wired or loaded value according to bit selrst

The reset phase of the color sub-carrier can also be software-controlled by register phase_dfs.

The sub-carrier phase can be periodically reset to its nominal value to compensate for any drift
introduced by the finite accuracy of the calculations. In PAL and NTSC sub-carrier phase adjust-
ment can be performed every line, every eight field, every four field, or every two field
(configuration2 bits valrst[1:0]).

23.9 Burst insertion

The color reference burst is inserted so as to always start with a positive zero crossing of the sub-
carrier sine wave, except in some cases where MacrovisionTM anti-copy process is active. The first
and last half-cycles have a reduced amplitude so that the burst envelope starts and ends smoothly.

The burst contains 9 or 10 sine cycles of 4.43361875MHZ or 3.579545MHz (depending on the
standard programmed in the register configuration0) as follows:

• NTSC-M 9 cycles of 3.579545MHz

• PAL-BDGHI 10 cycles of 4.43361875MHz

• PAL-M 9 cycles of 3.579545MHz

• PAL-N 9 cycles of 3.579545MHz

STi5500

213/2897110597 A

It is possible to turn the burst off (no burst insertion) by setting configuration bit bursten to 0 in
configuration2.

Burst insertion is performed by always starting the burst with a positive-going zero crossing. This
guarantees a smooth start and end of burst with a maximum of undistorted burst cycles and can
only be beneficial to chroma decoders, it is the solution implemented in the DENC.

This avoids an uncontrolled initial burst phase, and guarantees a start on a positive-going zero
crossing with the consequence that two burst start locations are visible over successive lines,
according to the line parity. This is normal and explained below.

In NTSC, the relation between subcarrier frequency and line length creates a 180o subcarrier
phase difference (with respect to the horizontal sync) from one line to the next according to the line
parity. So if the burst always starts with the same phase (positive-going zero crossing), this means
the burst will be inserted at time X or at time X+TNTSC/2 after the horizontal sync tip according to
the line parity, where TNTSC is the duration of one cycle of the NTSC burst.

With PAL, a similar rationale holds, and again there will be two possible burst start locations. The
subcarrier phase difference (with respect to the horizontal sync) from one line to the next in that
case is either 0 or 180o with the following series: A-A-B-B-A-A-...-etc. where A denotes ‘A-type’
bursts and B denotes ‘B-type’ bursts, A-type and B-type being 180o out of phase with respect to the
horizontal sync. So 2 locations are possible, one for A-type, the other for B-type (see Fig 7).

This assumes a periodic reset of the subcarrier is automatically performed (see bits valrst[1:0] in
configuration2). Otherwise, over several frames, the start of burst will drift within an interval of half
a subcarrier’s cycle. This is normal, and means the burst is correctly locked to the colors encoded.
The equivalent effect with a gated burst approach would be the following: the start location would
be fixed but the phase with which the burst starts (with respect to the horizontal sync) would be
drifting.

23.10 Luminance encoding

The demultiplexed Y samples are band-limited and interpolated at CKREF clock rate. The resulting
luminance signal is properly scaled before insertion of any Closed-captions, CGMS or Teletext
data, Macrovision copy-protection signals and synchronization pulses.

The interpolation filter compensates for the sin(x)/ x attenuation inherent in D/A conversion and
greatly simplifies the output stage filter. See Figure 23.17 to Figure 23.19 for characteristic curves.

In addition, the luminance that is added to the chrominance to create the composite CVBS signal
can be trap-filtered at 3.58 MHz (NTSC) or 4.43 MHz (PAL). This supports applications oriented
towards low-end TV sets which are subject to cross-color if the digital source has a wide luminance
bandwidth (e.g. some DVD sources). Note that the trap filter does not affect the S-VHS luminance
output nor the RGB outputs.

A 7.5 IRE pedestal can be programmed if needed with all standards (see registers configuration1
and configuration7). This allows in particular to encode Argentinian and non-Argentinian PAL-N,
or Japanese NTSC (NTSC with no set-up).

STi5500 l

214/287214/289 7110597 A

Figure 23.17 Luma filtering including DAC attenuation

Figure 23.18 Luma filtering with 3.58MHz trap, including DAC attenuation

A
m

pl
itu

de
 (

dB
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

A
m

pl
itu

de
 (

dB
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

STi5500

215/2897110597 A

Figure 23.19 Luma filtering with 4.43MHz trap, including DAC attenuation

A programmable delay can be inserted on the luminance path to offset any chroma/luma delay
introduced by off-chip filtering (chroma and luma transitions being coincident at the DAC output
with default delay) (see register configuration3).

23.11 Chrominance encoding

U and V chroma components are computed from demultiplexed Cb and Cr samples. Before modu-
lating the subcarrier, these are band-limited and interpolated at CKREF clock rate. This processing
eases the filtering following D/A conversion and allows a more accurate encoding. A set of 4 differ-
ent filters is available in PAL and NTSC for chroma filtering to fit a wide variety of applications in the
different standards and include filters recommended by ITU-R 624-4 and SMPTE170-M. The avail-
able 3-dB bandwidths are 1.1, 1.3, 1.6 or 1.9 MHz. See Figures 23.20, 23.21, 23.22, 23.23 and
23.24 for the various frequency responses and register configuration1 for programming.

The narrower bandwidths are useful against cross-luminance artifacts, the wider bandwidths allow
higher chroma contents.

Figure 23.20 Various chroma filters available and RGB filter

A
m

pl
itu

de
 (

dB
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)
0 0.5 1 1.5 2 2.5 3 3.5

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

RGB

f-3=1.9
f-3=1.6

f-3=1.3

f-3=1.1

STi5500 l

216/287216/289 7110597 A

23.12 Composite video signal generation

The composite video signal is created by adding the luminance (after trap filtering - optional in PAL
and NTSC, see register configuration3) and the chrominance components. A saturation function
is included in the adder to avoid overflow errors should extreme luminance levels be modulated
with highly saturated colors. This does not occur with natural colors but may be generated by com-
puters or graphics engines.

A ‘color killing’ function is available, whereby the composite signal contains no chrominance, i.e.
replicates the trap-filtered luminance. This function does not suppress the chrominance on the S/
VHS outputs, but suppressing the S-VHS chrominance is possible using bit bdkacn in
configuration5, where the chrominance signal is outputted on DAC n.

Figure 23.21 1.1 MHz chroma filter

Figure 23.22 1.3 MHz chroma filter

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)

STi5500

217/2897110597 A

Figure 23.23 1.6 MHz chroma filter

Figure 23.24 1.9 MHz chroma filter

23.13 RGB encoding

After demultiplexing, the Cr and Cb samples feed a 4 times interpolation filter. The resulting base-
band chroma signal has a 2.45 MHz bandwidth (Figure 23.25) and is combined with the filtered
luma component to generate R,G,B or U,V samples at 27 MHz.

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)

STi5500 l

218/287218/289 7110597 A

Figure 23.25 RGB - chroma filtering

23.14 Closed captioning

Closed-captions (or data from an Extended Data Service as defined by the Closed-Captions spec-
ification) can be encoded by the circuit. The closed caption data is delivered to the circuit through
the register interface. Two dedicated pairs of bytes (two bytes per field), each pair preceded by a
clock run-in and a start bit can be encoded and inserted on the luminance path on a selected TV
line. The Clock Run-In and Start code are generated by the DENC.

Closed-caption data registers are double-buffered so that loading can be performed anytime, even
during line 21/284 or any other selected line.

User register cccf1 and cccf2 each contain the first and second byte to send (LSB first) after the
start bit on the appropriate TV line, where cccf1 refers to field 1 and cccf2 to field 2. The TV line
number where data is to be encoded is programmable using registers cclif1 and cclif2. Lines that
may be selected include those used by the StarSight data broadcast system. Closed-captions data
has priority over any CGMS or Macrovision anti-copy signals programmed for the same line.

The internal Clock Run-In generator is based on a Direct Digital Frequency Synthesizer. The nomi-
nal instantaneous data rate is 503.496 KHz (i.e. 32 times the NTSC line rate). Data LOW corre-
sponds nominally to 0 IRE, data HIGH corresponds to 50 IRE at the DAC outputs.

When closed-captioning is on (bits cc1 and cc2 in configuration1), the CPU should load the rele-
vant registers (cccf1 or cccf2) once every frame at most (although there is in fact some margin
due to the double-buffering). Two bits are set in the status register in case of attempts to load the
closed-caption data registers too frequently; these can be used to regulate loading rate.

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)

STi5500

219/2897110597 A

Figure 23.26 Example of closed-caption waveform

The closed captions encoder considers that closed caption data has been loaded and is valid on
completion of the write operation into cccf1 for field1, or cccf2 for field 2. If closed caption encod-
ing has been enabled and no new data bytes have been written into the closed caption data regis-
ters when the closed caption window starts on the appropriate TV line, then the circuit outputs two
US-ASCII NULL characters with odd parity after the start bit.

23.15 CGMS encoding

CGMS stands for Copy Generation Management System, and is also known as VBID and
described by standard CPX-1204 of EIAJ. CGMS data can be encoded by the digital encoder.

Three bytes, containing 20 significant bits, are delivered to the chip via the register interface. Two
reference bits (1 then 0) are encoded first, followed by 20 bits of CGMS data. This includes a Cyclic
Redundancy Check sequence, which is not computed by the device but is supplied to it as part of
the 20 data bits. The reference bits are generated locally by the DENC. Figure 23.27 shows a typi-
cal CGMS waveform.

Figure 23.27 Example of CGMS waveform

CGMS encoding is enabled by setting bit encgms in register configuration3. When enabled, the
CGMS waveform is present once in each field, on lines 20 and 283 (SMPTE-525 line numbering).

The CGMS data register is double-buffered, which means that it can be loaded at any time (even
during line 20/283) without any risk of corrupting CGMS data that could be in the process of being

0

50

100

150

200

250

300

t

LS
B 11µs

48.7µs

Word 1
4 bits

Word 2
4 bits

Word 0
6 bits

CRCC
6 bits

Bit 1 Bit 20

0

50

100

150

200

250

300

t

LS
B

61µs

27.35µs

13.9µs

10µs

Transition
Time : 220ns

7 cycles
of 504kHz

STi5500 l

220/287220/289 7110597 A

encoded.The CGMS encoder considers that new CGMS data has been loaded and is valid on
completion of the write operation into register cgms.

23.16 Teletext encoding

The DENC is able to encode Teletext according to the CCIR/ITU-R Broadcast Teletext System B
specification, also known as World System Teletext.

In DVB applications, Teletext data is embedded within DVB streams as MPEG data packets. It is
the responsibility of the software to handle incoming data packets and in particular to store Teletext
packets in a buffer, which then passes them to the DENC on request.

23.16.1Signals exchanged

The DENC and the Teletext buffer exchange 2 signals: TTXS (Teletext Synchronization) going from
the DENC to the Teletext Buffer and TTXD (Teletext Data) going from the Teletext Buffer to the
DENC.

The TTXS signal is a request signal generated on selected lines. In response to this signal, the
Teletext buffer is expected to send 360 Teletext bits to the DENC for insertion of a Teletext line into
the analog video signal.

The duration of the TTXS window is 1402 reference clock periods (51.926 us), which corresponds
to the duration of 360 Teletext bits (see Transmission Protocol below).

Following the TTXS rising edge the encoder expects data from the Teletext buffer after a program-
mable number (2 to 9) of 27MHz master clock periods. Data is transmitted synchronously with the
master clock at an average rate of 6.9375 Mbit/s according to the protocol described below. It con-
sists, in order of transmission, of 16 Clock Run-In bits, 8 Framing Code bits and the 336 bits (42
bytes) that represent one Teletext packet.

23.16.2Transmission protocol

In order to transmit the Teletext data bits at an average rate of 6.9375 Mbit/s, which is about 1 /
3.89 times the master clock frequency, the following scheme is adopted:

The 360-bit packet is regarded as nine 37-bit sequences plus one 27-bit sequence. In every
sequence, each Teletext data bit is transmitted as a succession of four identical samples at 27
Msample/s, except for the 10th, 19th, 28th and 37th bits of the sequence which are transmitted as
a succession of three identical samples.

23.16.3Programming

‘TTXS rising’ to ‘first valid sample’ delay programming

The encoder expects the Teletext buffer to clock out the first Teletext data sample on the (2+N)th

rising edge of the master clock following the rising edge of TTXS. Figure 23.28 depicts this graphi-
cally for N=0.

STi5500

221/2897110597 A

Figure 23.28 TTXT Rising to First Valid Sample delay for txdl[2:0] = 0

N is programmable from 0 to 7, and is written to 3 dedicated bits txdl[2:0] located in the register
configuration4. The value written in txdl[2:0] is 2 less than the overall delay in 27MHz cycles, so
a value of 0 for txdl[2:0] corresponds to an overall delay of 2 cycles, and a value of 7 corresponds
to a delay of 9 cycles.

Teletext line selection

Five dedicated registers allow to program Teletext encoding in various areas of the Vertical Blank-
ing Interval (VBI) of each field. A total of 4 such areas (i.e. blocks of contiguous Teletext lines) can
independently be defined within the two VBIs of one frame (e.g. 2 blocks in each VBI, or 3 blocks in
field1 VBI and one in field2 VBI, etc.). Further, under certain circumstances, it is possible to define
up to 4 areas in each VBI.

Programming is performed using four teletext block definition registers ttx_block1-4 and a teletext
block mapping register (ttx_block_map). Refer to the description of user registers 34 to 38 for
details.

23.16.4Teletext pulse shape

The shape and amplitude of a single Teletext pulse are depicted in Figure 23.29, its relative power
spectral density is given in Figure 23.30 and Figure 23.31 and is substantially zero at frequencies
above 5 MHz, as required by the World System Teletext specification.

Not Valid Bit 1 Bit 2

CKREF

TTXS

TTXD

(txdl[2:0]+2) Tckref

STi5500 l

222/287222/289 7110597 A

Figure 23.29 Shape and amplitude of a single teletext symbol

Figure 23.30 Linear PSD scale

Figure 23.31 Logarithmic PSD scale

70

60

50

40

30

20

10

0
-100 -50 0 50 100

-144 ns +144 ns

IR
E

0.9
0.8

0.7
0.6
0.5
0.4

0.3
0.2
0.1

0

1

10 2 3 4 5 6 7 8
Frequency (MHz)

P
S

D
 (

dB
)

-10

0

-20

-30

-40

-50

-60

-70

-80
10 2 3 4 5 6 7 8

Frequency (MHz)

P
S

D
 (

dB
)

Normalized power spectral density (PSD) of a single Teletext pulse

STi5500

223/2897110597 A

23.17 Line skip and line insert capability

This patented feature of the DENC offers the possibility to cut the cost of the application by sup-
pressing the need for a VCXO.

Ideally, the master clock used on the application board and fed to the MPEG decoding IC would
have exactly same frequency as the clock that was used when the MPEG data was encoded. Obvi-
ously this is not realistic; up to now a solution commonly used was to dynamically adjust the clock
on the board as close to the ‘ideal’ clock as possible with the help of time stamps embedded within
the MPEG stream. Such a kind of tracking often involves the use of a VCXO: when the MPEG data
buffer fills up to more than some threshold the clock frequency is increased, when it empties down
to some other threshold the clock frequency is lowered.

The DENC offers an alternative, cost-saving solution: by programming two bits in register
configuration6, the DENC is able to reduce or increase the length of some frames in a way that
will not introduce visible artifacts (even if comb-filtering is used). These bits should be set accord-
ing to the level of the MPEG data buffer.

Operation with the DENC as sync master is as follows:

• If the MPEG data buffers fills up too much: set bit jump to 1 and bit dec_ninc to 1.The
DENC will reduce the length of the current frame (Bit jump will then automatically reset to
0).

• If the MPEG data buffers empties too much: set bit jump to 1 and bit dec_ninc to 0. The
DENC will increase the length of the current frame (Bit jump will then automatically reset to
0).

These operations can be repeated until the MPEG data buffer is inside its fixed limits

It is also possible to use the line skip/repeat capability in non-interlaced mode

This functionality of the DENC is also available in slave mode, in this case the sync signals sup-
plied to the DENC must be in accordance with the modified frame lengths programmed.

23.18 Macrovisiontm Copy Protection Process rev 7.01

The chrominance, luminance and composite video signals and R,G,B video signals can be altered
according to the MACROVISIONtm Copy Protection Process, Revision 7.01. This process is con-
trolled via the parallel bus.

A programming document is available to those customers who have executed a license or a non-
disclosure agreement with Macrovision Corporation.

23.19 CVBS, S-VHS and RGB analog outputs

Four of the six video signals (composite CVBS, S-VHS (Y/C) and RGB) can be directed to four
analog output pins through 9-bit D/A converters operating at the reference clock frequency. The
available combinations are:

S-VHS (Y/C) + CVBS + CVBS1, or

R, G, B + CVBS1 .

STi5500 l

224/287224/289 7110597 A

The combination is controlled by bit rgb_nyc in register configuration5.

A single external analog power supply pair is used for all DACs, but two independent pairs of cur-
rent and voltage references are needed. Each current reference pin normally connects externally
to a resistor tied to the analog ground, while each voltage reference pin normally connects to a
capacitance tied to the analog ground.

The internal current sources are independent from the positive supply, and the consumption of the
DACs is constant whatever the codes converted.

Any unused DAC may be independently disabled by software, in which case its output is at ‘neutral’
level (blanking for luma and composite outputs, no color for chroma output, black for RGB and UV
outputs). For applications where a single CVBS output is required, the RGB/CVBS+S-VHS/UV Tri-
ple DAC should be disabled and pins I_Ref_Dac_RGB, V_Ref_Dac_RGB tied to analog power
supply.

Due to the 3.3 V power supply used, the output swing of the DACs is about 1Vp-p. Therefore some
external gain may be required, which, combined with the recommended output filtering stage,
means active filtering. For this active filtering stage to be very simple, it is possible to ‘invert’ the
DAC outputs by programming a bit of configuration1. Code ‘N’ becomes code ‘1024-N’, i.e. the
resulting waveform undergoes a reflection around the mid-swing code.

23.20 Registers

This section lists all the control registers for the digital encoder. The registers are in a block in the
peripheral space in the address map. The addresses of the registers are given in this chapter as
offsets from the base of this block. The base of the block is named DENCBaseAddress, and its
value is given in the STi5500 Register Manual.

Table 23.3 lists the registers, giving their access type and address offset.

Register Type Bits Address Description

configuration0 Read/write 0x00 General configuration.

configuration1 Read/write 0x01 General configuration.

configuration2 Read/write 0x02 General configuration.

configuration3 Read/write 0x03 General configuration.

configuration4 Read/write 0x04 General configuration.

configuration5 Read/write 0x05 General configuration.

configuration6 Read/write 0x06 General configuration.

status Read 0x09 Status.

increment_dfs Read/write

23-16 0x0A

Increment for digital frequency synthesizer.15-8 0x0B

7-0 0x0C

phase_dfs
Read/write 23-22 0x0D

Static phase offset for digital frequency synthesizer.
Read/write 21-14 0x0E

Table 23.3 Register map

STi5500

225/2897110597 A

Table 23.4 lists the bits in each register. Bits which are not named are reserved and should be writ-
ten as zero. The registers are individually described in the STi5500 Register Manual.

chipid Read 0x11 Digital encoder identification number.

revid Read 0x12 Digital encoder revision identification number.

line_reg Read/write 0x15 - 0x17 Line jump

cgms Read/write

1-4 0x1F

CGMS data register.5-12 0x20

13-20 0x21

ttx_block1 Read/write 0x22

Teletext block definition (See section 23.16)
ttx_block2 Read/write 0x23

ttx_block3 Read/write 0x24

ttx_block4 Read/write 0x25

ttx_block_map Read/write 0x26 Teletext block mapping.

cccf1 Read/write 0x27 - 0x28 Closed caption characters/extended data for field 1.

cccf2 Read/write 0x29 - 0x2A Closed caption characters/extended data for field 2.

cclif1 Read/write 0x2B Closed caption/extended data line insertion for field 1

cclif2 Read/write 0x2C Closed caption/extended data line insertion for field 2

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

configuration0 std1 std0 sync2 sync1 sync0 polh polv freerun

configuration1 blkli flt1 flt0 sync_ok coki setup cc2 cc1

configuration2 nintrl enrst bursten - selrst rstosc valrst1 valrst0

configuration3 entrap trap_pal encgms nosd del2 del1 del0 -

configuration4 syncin_
ad1 syncin_ad0 syncout_

ad1
syncout_
ad0 aline ttxdel2 ttxdel1 ttxdel0

configuration5 - bkcvbs bkys bkc bkr bkg bkb dacinv

configuration6 softreset jump dec_ninc free_jump cfc1 cfc0 - maxdyn

status hok atfr b2_free b1_free fldct2 fldct1 fldct0 jump

increment_dfs

d23 d22 d21 d20 d19 d18 d17 d16

d15 d14 d13 d12 d11 d10 d9 d8

d7 d6 d5 d4 d3 d2 d1 d0

phase_dfs1 - - - - - - o23 o22

phase_dfs2 o21 o20 o19 o18 o17 o16 o15 o14

line_reg ltarg8 ltarg7 ltarg6 ltarg5 ltarg4 ltarg3 ltarg2 ltarg1

Table 23.4 Register bits

Register Type Bits Address Description

Table 23.3 Register map

STi5500 l

226/287226/289 7110597 A

line_reg ltarg0 lref8 lref7 lref6 lref5 lref4 lref3 lref2

line_reg lref1 lref0 - - - - - -

chipid 0 1 1 0 0 0 0 0

revid Revision

cgms1 - - - - bit1 bit2 bit3 bit4

cgms2 bit5 bit6 bit7 bit8 bit9 bit10 bit11 bit12

cgms3 bit13 bit14 bit15 bit16 bit17 bit18 bit19 bit20

ttx_block1 ttxbs1.3 ttxbs1.2 ttxbs1.1 ttxbs1.0 ttxbe1.3 ttxbe1.2 ttxbe1.1 ttxbe1.0

ttx_block2 ttxbs2.3 ttxbs2.2 ttxbs2.1 ttxbs2.0 ttxbe2.3 ttxbe2.2 ttxbe2.1 ttxbe2.0

ttx_block3 ttxbs3.3 ttxbs3.2 ttxbs3.1 ttxbs3.0 ttxbe3.3 ttxbe3.2 ttxbe3.1 ttxbe3.0

ttx_block4 ttxbs4.3 ttxbs4.2 ttxbs4.1 ttxbs4.0 ttxbe4.3 ttxbe4.2 ttxbe4.1 ttxbe4.0

ttx_block_map ttxbmf1.1 ttxbmf1.2 ttxbmf1.3 ttxbmf1.4 ttxbmf2.1 ttxbmf2.2 ttxbmf2.3 ttxbmf2.4

cccf1 opc11 c117 c116 c115 c114 c113 c112 c111

cccf1 opc12 c127 c126 c125 c124 c123 c122 c121

cccf2 opc21 c217 c216 c215 c214 c213 c212 c211

cccf2 opc22 c227 c226 c225 c224 c223 c222 c221

cclif1 - - - l1_4 l1_3 l1_2 l1_1 l1_0

cclif2 - - - l2_4 l2_3 l2_2 l2_1 l2_0

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 23.4 Register bits

STi5500

227/2897110597 A

24 SDRAM block move
This module copies blocks of data from one byte address within the SDRAM to another. A general
purpose block move engine, for transfering to and from any address, is described in Chapter 26.

A source address, a destination address and a count of the number of bytes to be transferred must
be specified.

24.1 Moving blocks of data

To perform a SDRAM block move, from one SDRAM memory buffer to another, the SDRAM block
move module must first be initialised by writing to three registers in a fixed order. The write to the
third register initiates the block move, which completes without further CPU intervention.

The source, destination and size of the blocks must be 64-bit aligned, i.e. the byte addresses and
the size in bytes must be divisible by 8.

While a block move is in progress, all other accesses to SDRAM are disabled. The progress of the
block move can be monitored using VID_STA.BMI; bit VID_STA.BMI is set while a block move is in
progress, and reset when the block move engine is idle. When the block move completes, an inter-
rupt will be generated if the mask bit VID_ITM.BMI is set.

Three registers are provided, a block move size register, a read pointer and a write pointer, as
listed in Table 24.1. The registers are all serial read/write registers in the peripheral address space.

Register Bits Cycles Name

USD_BMS 15:0 2 Block move size register.

USD_BWP 20:0 3 Memory write pointer.

USD_BRP 20:0 3 Memory read pointer.

Table 24.1 SDRAM block move registers

STi5500 l

228/287228/289 7110597 A

Part E Peripherals

STi5500

229/2897110597 A

25 Clocks
This chapter describes the various clocks provided on the STi5500 for clocking subsystems and for
system and programmer use. Clock recovery is described in Chapter 16.

The STi5500 has two on-chip phase locked loops (PLLs) to generate all the required high fre-
quency internal clocks for device operation from a single 27 MHz input clock, PixClk_27Mhz:

• ST20 clock PLL generating the processor and peripheral 50 MHz clocks.

• MPEG/system clock PLL. This clock is programmable and can be used to generate many
different clocks by fractional division. It also provides the audio decoder system clock and
the transport stream demultiplexor and front end clock.

The single clock input PixClk_27Mhz must be 27 MHz for PLL operation.

Figure 25.1 STi5500 clocks generation

Figure 25.1 shows the configuration of all the PLLs, with nominal clock speeds, and the clock distri-
bution within the device.

MPEG clock generator

÷(P/Q)

216 MHz

PixClk_27Mhz

MemClkOut

Pcm_ClkIn

To SDRAM

27
 M

H
z

x 50/27

ST20 clock generator

27 MHz

50 MHz

÷(P/Q)

÷(P/Q)

54 MHz to 60 MHz

Link_Ext_Clk

MemClkIn

Smart
Card

Transport stream demultiplexor

PAL/NTSC
encoder DACs

27 MHz

Smart
Card

÷(P/Q)

M+7
N+1x

CPU

Peripherals

Audio decoder

STi5500 l

230/287230/289 7110597 A

25.1 ST20 clock

The ST20 clock PLL is used to generate the internal clock frequencies needed for the CPU and the
OS-Link. The PLL is hard wired to produce the clock frequencies shown in Table 25.2 when the fre-
quency of PixClk_27Mhz is 27 MHz.

25.2 MPEG/system clock

The MPEG/system clock generation consists of a patented frequency synthesizer circuit and frac-
tional dividers which derive all of the required system clocks from a single selectable input, thus
eliminating the need for external dividers and PLL circuitry.

The reference input frequency can be the incoming PixClk_27Mhz or the PCM clock. The selected
reference clock frequency is multiplied by a programmable integrated PLL and the output of the
PLL is steered to a bank of programmable fractional dividers to generate the following output
clocks:

• the internal MPEG audio decoder and PCM clock;

• the SDRAM memory and video decoder clock;

• the transport stream demultiplexor clock;

• the SmartCard clock, which goes to both SmartCards.

An external PCM clock can be provided as an alternative to the internal audio PCM clock.

The internal video decoder clocks are generated from the SDRAM memory clock by division.

Each of the dividers is controlled by a dedicated register and there are two general configuration
registers. These registers are described in detail in the register manual, and are summarized in
Table 25.3.

Speed
Select1:0

Processor clock
speed (MHz)

Processor
cycle time ns

High priority
timer (MHz)

Low priority
timer (MHz)

Link speed
Mbits/s

00 Times one mode

01 60.0 16.67 1.0 0.015625 19.20

10 39.9 25.06 0.9975 0.015586 19.95

11 49.875 20.05 0.9975 0.015586 19.95

Table 25.1 Processor speed selection with 27MHz PixClk_27MHz

Nominal
 speed

Processor
clock speed

Processor
cycle time

Phase lock
loop factor

(PLLx)

OS-Link
speed

Approx. high
 priority timer

 period

Approx. low
 priority

 timer period

50 MHz 49.875 MHz 20.05 ns 1.85 19.95 Mbit/s 1.0025 µs 64.16 µs

Table 25.2 Processor speed selection

STi5500

231/2897110597 A

25.2.1 Programming the fractional dividers

The fractional dividers perform a division by P/Q. This can be expressed as:

Equation 1

where:

Equation 2

Equation 3

Equation 4

Equation 5

Equation 6

, Equation 7

Thus, the output frequency of each fractional divider, fOUT, is calculated as:

Equation 8

or

Equation 9

The values for M and N are programmed in register CKG_PLL, with M in the range 0-7 and N in
the range 0 or 1. P0, Pr and Q are programmable for each of the fractional dividers and are stored
in clock generator registers.

Register Type Address Function

CKG_PLL R/W 0x30 PLL parameters. Controls the selection of the PLL multiplying factor and
reference frequency.

CKG_CFG R/W 0x31 Clock configuration. Controls the selection of either fixed ratio, fractional divider
or external clock where appropriate.

CKG_LNK R/W 0x33 Transport stream demultiplexor clock. Fractional divider programming.

CKG_MCK R/W 0x36 SDRAM clock. Fractional divider programming.

CKG_SMC R/W 0x32 Smart Card clock. Fractional divider programming.

CKG_PCM R/W 0x35 PCM and audio decoder clock. Fractional divider programming.

CKG_PXC R/W 0x34 Pixel clock. Fractional divider programming.

Table 25.3 MPEG / system clock registers

P
Q
---- P0 1

Pr

Q
-----+ +=

5
P
Q
---- 17≤ ≤

2 P0 15≤ ≤

0 Pr 1023≤ ≤

0 Q 2047≤ ≤

Pr Q≤

Pr

Q
----- 1= Q 0=

fOUT

fVCO

P0 1
Pr

Q
-----+ +

---------------------------=

fOUT

fIN
M 7+
N 1+
--------------×

P0 1
Pr

Q
-----+ +

-----------------------------=

STi5500 l

232/287232/289 7110597 A

26 Block move DMA
This module copies blocks of data from one byte address anywhere in memory to another. The
maximum transfer size is 65535 bytes. The transfer is performed by a dedicated DMA engine, and
does not require any CPU intervention once the transfer has started. No polling or interrupt han-
dlers are required.

The interface to the block move module is provided using the channel model, as described in
Appendix A. An output instruction is executed by the CPU referring to the Block Move DMA Con-
troller Channel. The output instruction initiates the transfer and deschedules the software process
containing the instruction. The process is rescheduled automatically when the transfer is complete,
so no interrupt is required.

A source address, a destination address and a count of the number of bytes to be transferred must
be specified. The base address for the output buffer in the memory space, from which the block
move source data is taken, and the size of the transfer in bytes are set by the out instruction. For
the mapping of channels into the address space, see Chapter 8.

26.1 Moving blocks of data

To perform a DMA block move from one memory buffer to another, the block move module must
first be initialized and then an output to the block move channel executed by the CPU.

The register BMDmaAddress holds the destination address. This register must be written with the
address of the first byte of the destination buffer before each transfer. This must be done before
every transfer because after the transfer the value is left undefined.

The final stage of initializing the block move DMA transfer is to execute an output to the block move
DMA channel. The output is performed by the ST20 out instruction. The parameters of this instruc-
tion are:

• the address of the Block Move DMA Controller Channel, loaded into the Creg;

• the base address of the data to be moved, loaded into the Breg;

• the DMA transfer size in bytes, loaded into the Areg.

The Block Move DMA Controller Channel is at the fixed address #80000034 in the system space at
the bottom of the memory map. Executing the out instruction with this channel initiates the block
move and de-schedules the software process until the transfer is complete.

The block move DMA controller fetches 64-bit blocks as pairs of words from the source block when-
ever possible. It buffers the bytes before performing word writes in pairs to the destination block.
The blocks to be moved do not need to be word aligned.

When the number of bytes programmed in the out instruction have been transferred, the channel
output is acknowledged to the CPU and the software process is rescheduled. This means that
when the next instruction after the out is executed, the block move is complete.

STi5500

233/2897110597 A

27 PWM and counter module
This module provides three PWM encoder outputs, three PWM decoder (capture) inputs and four
programmable timers. Each capture input can be programmed to detect rising edge, falling edge,
both edges or neither edge (disabled). These facilities are clocked by two independent clocks, one
for PWM outputs and one for capture inputs/timers.

The PWM module contains four PWMs, numbered 0 to 3. In the STi5500, not all the facilities
described in this chapter can be used, since some of the interface pins of the module are not avail-
able as external pins of the device. In particular:

• the timer compare output from PWM2 is not connected to a pin, but is connected internally
as an internal watchdog reset.

• only the capture input of PWM3 is connected to an external pin, CaptureIn3. This can be
used to generate an interrupt.

The module is programmed by means of registers described in the individual sections.

The module generates a single interrupt signal. The exact event which caused an interrupt can be
determined by reading status bits in a register, which can then be cleared.

27.1 External interface

The PWM pins are listed in Table 27.1. Some of thesepins are shared with the PIO ports, as shown
in Table 27.1 and described in Chapter 3.

27.2 PWM outputs

There are four PWM outputs which share a common counter. The relative width (in counts) of the
output pulse on pin PWMOutN is set between 1 and 256 by loading a value from 0 to 255 into the
register PWMValN. The width cannot be less than 1, and if it is 256 the pin is continuously high.
Pulses occur every 256 counts.

Pin Shared pin In/Out Function

Brm0

out PWM outputsBrm1 BootFromROM

Brm2 Oslink_Sel

CaptureIn0 PIO2[7]

in Capture trigger inputs
CaptureIn1 PIO1[3]

CaptureIn2 PIO1[4]

CaptureIn3 PIO4[6]

CompareOut0 PIO2[4]
out Compare output

CompareOut1 PIO4[5]

Table 27.1 PWM and counter pins

STi5500 l

234/287234/289 7110597 A

The counter is clocked by the 27MHz clock ClockIn divided by a prescaler. The prescaling factor,
and therefore the period represented by one count, is determined by the value of field PWM-
ClkValue in register Control. The factor can be from 1 to 16.

The counter (in register PWMCount) is enabled by setting the PWMEnable bit of the Control reg-
ister to 1. When it is disabled (PWMEnable is 0), PWMOut is forced low. PWMCount is writable at
any time but can have a synchronization latency.

When the PWM counter overflows, an interrupt is generated if the PWMIntEn bit of the PWMIntEn-
able register is set to 1. Bit PWMInt of register PWMIntStatus becomes 1, and can be reset by
writing 1 to bit PWMIntAck of register PWMIntAck.

27.2.1 Registers

The PWM and counter module is programmable using control registers which are mapped into the
peripheral address space. The registers for the PWM module are grouped in a 4 Kbyte block. The
base of the register block is at the address PWMBaseAddress, where the value of PWMBaseAd-
dress is given in the Memory Map chapter. The addresses of the registers are given in the tables
as offsets from this address.

Pulse width

Interrupt enable

PWMValN PWMBaseAddress + offset (see below) Read/Write

Bit Bit field Function

8:0 PWMValN 8-bit pulse width (width = value + 1 counts)

Table 27.2 PWMValN register format

Register Offset from PWMBaseAddress

PWMVal0 #00

PWMVal1 #04

PWMVal2 #08

PWMVal3 #0C

Table 27.3 PWMValN register offsets

PWMIntEnable PWMBaseAddress + #54 Read/Write

Bit Bit field Function

0 PWMIntEn PWM counter overflow interrupt enable

Table 27.4 PWMIntEnable register format (PWM outputs field)

STi5500

235/2897110597 A

Interrupt status

Interrupt acknowledge

Control register

PWM output counter

27.3 Capture inputs

There are four capture inputs which share a common counter with four compare facilities.

What constitutes an event on input CaptureInN is defined by the code in register CaptureEdgeN.
Possible events are rising edge, falling edge, both or neither (in other words, disabled).

When an input event occurs on input CaptureInN, the value of the counter (in register PWMCap-
tureCount) at that time is captured in register PWMCaptureValN. The value can be #00000000 to
#FFFFFFFF.

When an input event occurs, an interrupt is generated provided the CaptureNIntEn bit of the
PWMIntEnable register is set to 1. Bit CaptureIntN of register PWMIntStatus becomes 1, and
can be reset by writing 1 to bit CaptureIntAckN of register PWMIntAck.

The counter is not stopped nor reset by any of these events. See section 27.5 for details.

PWMIntStatus PWMBaseAddress + #58 Read

Bit Bit field Function

0 PWMInt
PWMInt = 1 identifies the interrupt as having been caused by PWM counter
overflow

Table 27.5 PWMIntStatus register format (PWM outputs field)

PWMIntAck PWMBaseAddress + #5C Write

Bit Bit field Function

0 PWMIntAck Interrupt acknowledge: write 1 to reset PWMInt to 0

Table 27.6 PWMIntAck register format (PWM outputs field)

PWMControl PWMBaseAddress + #50 Read/Write

Bit Bit field Function

3:0 PWMClkValue PWM clock prescale factor 0-15 (divide clock by value + 1)

9 PWMEnable Enables PWM counter when = 1

Table 27.7 PWMControl register format (PWM outputs fields)

PWMCount PWMBaseAddress + #60 Read/Write (but see text)

Bit Bit field Function

7:0 PWMCount PWM output counter

Table 27.8 PWMCount register format

STi5500 l

236/287236/289 7110597 A

Capture event definition

Capture value

Interrupt enable

PWMCaptureEdgeN PWMBaseAddress + offset (see below) Read/Write

Bit Bit field Function

1:0 CaptureEdgeN 01 = rising edge, 10 = falling edge, 11 = rising or falling edge, 00 = disabled

Table 27.9 PWMCaptureEdgeN register format

Register Offset from PWMBaseAddress

PWMCaptureEdge0 #30

PWMCaptureEdge1 #34

PWMCaptureEdge2 #38

PWMCaptureEdge3 #3C

Table 27.10 PWMCaptureEdgeN register offsets

PWMCaptureValN PWMBaseAddress + offset (see below) Read only

Bit Bit field Function

31:0 CaptureValN 32-bit counter value at time of event occurring at CaptureInN

Table 27.11 PWMCaptureValN register format

Register Offset from PWMBaseAddress

PWMCaptureVal0 #10

PWMCaptureVal1 #14

PWMCaptureVal2 #18

PWMCaptureVal3 #1C

Table 27.12 PWMCaptureValN register offsets

PWMIntEnable PWMBaseAddress + #54 Read/Write

Bit Bit field Function

1 CaptureIntEn0 Capture 0 interrupt enable: 1 = enabled

2 CaptureIntEn1 Capture 1 interrupt enable: 1 = enabled

3 CaptureIntEn2 Capture 2 interrupt enable: 1 = enabled

4 CaptureIntEn3 Capture 3 interrupt enable: 1 = enabled

Table 27.13 PWMIntEnable register format (Capture fields)

STi5500

237/2897110597 A

Interrupt status

Interrupt acknowledge

27.4 Compare (programmable timer) facilities

There are four programmable timer facilities which share a common counter with four capture
inputs.Each of four compare registers PWMCompareValN in the module can be set to a value
#00000000 to #FFFFFFFF.

When the counter in register PWMCaptureCount reaches the value of register PWMCompare-
ValN, two things happen:

1 An interrupt is generated provided the PWMCompareIntEnN bit of the PWMIntEnable reg-
ister is set to 1. Bit PWMCompareIntN of register PWMIntStatus becomes 1, and can be
reset by writing 1 to bit PWMCompareIntAckN of register PWMIntAck.

2 Pin PWMCompareOutN takes on the value set in register PWMCompareOutValN.

The counter is not stopped nor reset by any of these events. See section 27.5 below for details of
the counter.

Compare value

PWMIntStatus PWMBaseAddress + #58 Read

Bit Bit field Function

1 CaptureInt0 Capture 0 interrupt: 1 = interrupt

2 CaptureInt1 Capture 1 interrupt: 1 = interrupt

3 CaptureInt2 Capture 2 interrupt: 1 = interrupt

4 CaptureInt3 Capture 3 interrupt: 1 = interrupt

Table 27.14 PWMIntStatus register format (Capture fields)

PWMIntAck PWMBaseAddress + #5C Write

Bit Bit field Function

1 CaptureIntAck0 Capture 0 interrupt acknowledge: write 1 to reset status bit

2 CaptureIntAck1 Capture 1 interrupt acknowledge: write 1 to reset status bit

3 CaptureIntAck2 Capture 2 interrupt acknowledge: write 1 to reset status bit

4 CaptureIntAck3 Capture 3 interrupt acknowledge: write 1 to reset status bit.

Table 27.15 PWMIntAck register format (Capture fields)

PWMCompareValN PWMBaseAddress + offset (see below) Read/Write

Bit Bit field Function

31:0 CompareValN 32-bit counter value at time of event occurring at CompareInN

Table 27.16 PWMCompareValN register format

STi5500 l

238/287238/289 7110597 A

Interrupt enable

Interrupt status

Interrupt acknowledge

Register Offset from PWMBaseAddress

PWMCompareVal0 #20

PWMCompareVal1 #24

PWMCompareVal2 #28

PWMCompareVal3 #2C

Table 27.17 PWMCompareValN register offsets

PWMIntEnable PWMBaseAddress + #54 Read/Write

Bit Bit field Function

5 CompareIntEn0 Compare 0 interrupt enable: 1 = enabled

6 CompareIntEn1 Compare 1 interrupt enable: 1 = enabled

7 CompareIntEn2 Compare 2 interrupt enable: 1 = enabled

8 CompareIntEn3 Compare 3 interrupt enable: 1 = enabled

Table 27.18 PWMIntEnable register format (Compare fields)

PWMIntStatus PWMBaseAddress + #58 Read

Bit Bit field Function

5 CompareInt0 Compare 0 interrupt: 1 = interrupt

6 CompareInt1 Compare 1 interrupt: 1 = interrupt

7 CompareInt2 Compare 2 interrupt: 1 = interrupt

8 CompareInt3 Compare 3 interrupt: 1 = interrupt

Table 27.19 PWMIntStatus register format (Compare fields)

PWMIntAck PWMBaseAddress + #5C Write

Bit Bit field Function

5 CompareIntAck0 Compare 0 interrupt acknowledge: write 1 to reset status bit

6 CompareIntAck1 Compare 1 interrupt acknowledge: write 1 to reset status bit

7 CompareIntAck2 Compare 2 interrupt acknowledge: write 1 to reset status bit

8 CompareIntAck3 Compare 3 interrupt acknowledge: write 1 to reset status bit

Table 27.20 PWMIntAck register format (Compare fields)

STi5500

239/2897110597 A

Compare output value

27.5 Capture/compare counter, prescaling and clocking

The capture/compare counter is clocked from the prescaled system clock, and is common to all
capture and compare functions. The prescaling factor, and therefore the period represented by one
count, is determined by the value of field CaptureClkValue in register PWMControl. The factor
can be from 1 to 32.

The counter (in register PWMCaptureCount) is enabled by setting the PWMCaptureEnable bit of
the Control register to 1. When it is disabled (PWMCaptureEnable is 0), none of the capture or
compare functions work. PWMCaptureCount, like PWMCount, can be read or written at any time.

When the capture/compare counter reaches its maximum count of #FFFFFFFF, it wraps round to
count up from zero again.

Control: Clock Prescaling, Counter Enables

Capture/Compare Counter

PWMCompareOutValN PWMBaseAddress + offset (see below) Read/Write

Bit Bit field Function

0 CompareOutValN Value written to CompareOutN pin when compare value = counter value

Table 27.21 PWMCompareOutValN register format

Register Offset from PWMBaseAddress

PWMCompareOutVal0 #40

PWMCompareOutVal1 #44

PWMCompareOutVal2 #48

PWMCompareOutVal3 #4C

Table 27.22 PWMCompareOutValN register offsets

PWMControl PWMBaseAddress + #50 Read/Write

Bit Bit field Function

8:4 CaptureClkValue Capture/compare clock prescale factor 0-31 (divide clock by value + 1)

10 CaptureEnable Enables capture/compare counter when = 1

Table 27.23 PWMControl register format (capture/compare fields)

PWMCaptureCount PWMBaseAddress + #64 Read/Write

Bit Bit field Function

31:0 CaptureCount Capture/compare counter

Table 27.24 PWMCaptureCount register format

STi5500 l

240/287240/289 7110597 A

28 Asynchronous serial controller
The Asynchronous Serial Controller (ASC), also referred to as the UART interface, provides serial
communication between the STi5500 and other microcontrollers, microprocessors or external
peripherals. The STi5500 provides four ASCs.

Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable.
Parity, framing, and overrun error detection is provided to increase the reliability of data transfers.
Transmission and reception of data is double-buffered. For multiprocessor communication, a mech-
anism to distinguish the address from the data bytes is included. Testing is supported by a loop-
back option. A 16-bit baud rate generator provides the ASC with a separate serial clock signal.

Each ASC supports full-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. Data is transmitted on the trans-
mit data output pin TXD and received on the receive data input pin RXD.

Each ASC can be set to operate in SmartCard mode for use when interfacing to a SmartCard.

28.1 Control

Each ASC can be controlled by registers which are mapped into the device address space. The
registers for each ASC are grouped in a 4 Kbyte block, with the base of the block for ASC number
n at the address ASCnBaseAddress. The value of ASCnBaseAddress is given in the Memory Map
chapter. The addresses of the registers are given in the tables as offsets from this address.
Table 28.1 lists the registers for each ASC.

28.1.1 Control register

The ASCnControl register controls the operating mode of the ASC and contains control bits for
mode and error check selection, and status flags for error identification. The format of the register
is shown in Table 28.2.

Programming the mode control field (Mode) to one of the reserved combinations may result in
unpredictable behavior. Serial data transmission or reception is only possible when the baud rate
generator run bit (Run) is set to 1. When the Run bit is set to 0, TXD will be 1. Setting the Run bit

Register Address offset Function Bits Access
Reset
value

ASCnBaudRate #00 Baud rate generator/reload. 16 R/W -

ASCnTxBuffer #04 Output buffer. 9 W -

ASCnRxBuffer #08 Input buffer. 9 R -

ASCnControl #0C Control register. 10 R/W 0

ASCnIntEnable #10 Enable interrupts. 6 R/W -

ASCnStatus #14 Interrupt status. 6 R -

ASCnGuardtime #18 Delay before assertion of transmitter empty flag. 8 R/W -

Table 28.1 ASC registers

STi5500

241/2897110597 A

to 0 will immediately freeze the state of the transmitter and receiver. This should only be done
when the ASC is idle.

ASCnControl ASCnBaseAddress + #0C Read/Write

Bit Bit field Function

2:0 Mode

ASC mode control:

Mode2:0 Mode
000 RESERVED.
001 8-bit data.
010 RESERVED.
011 7-bit data + parity.
100 9-bit data.
101 8-bit data + wake up bit.
110 RESERVED.
111 8-bit data + parity.

4:3 StopBits

Number of stop bits selection:

StopBits1:0 Number of stop bits
00 0.5 stop bits.
01 1 stop bits.
10 1.5 stop bits.
11 2 stop bits.

5 ParityOdd
Parity selection:

0 Even parity (parity bit set on odd number of ‘1’s in data).
1 Odd parity (parity bit set on even number of ‘1’s in data).

6 LoopBack
Loopback mode enable bit:

0 Standard transmit/receive mode.
1 Loopback mode enabled.

7 Run
Baudrate generator run bit:

0 Baudrate generator disabled (ASC inactive).
1 Baudrate generator enabled.

8 RxEnable
Receiver enable bit:

0 Receiver disabled.
1 Receiver enabled.

9 SCEnable
SmartCard enable bit:

0 SmartCard mode disabled.
1 SmartCard mode enabled.

15:10 Reserved. Write 0. Read back 0.

Table 28.2 ASCnControl register format

STi5500 l

242/287242/289 7110597 A

28.2 Transmission and reception

28.2.1 Buffer registers

Serial data transmission or reception is only possible when the baud rate generator run bit (Run) is
set to 1. A transmission is started by writing to the transmit buffer register ASCnTxBuffer, defined
in Table 28.3.

Data transmission is double-buffered, so a new character may be written to the transmit buffer reg-
ister before the transmission of the previous character is complete. This allows characters to be
sent back-to-back without gaps.

Data reception is enabled by the receiver enable bit (RxEnable) in the ASCnControl register. After
reception of a character has been completed, the received data and, if provided by the selected
operating mode, the received parity bit can be read from the receive buffer register (ASCnRx-
Buffer), defined in Table 28.4.

ASCnTxBuffer ASCnBaseAddress + #04 Write only

Bit Bit field Function

0 TD0 Transmit buffer data D0.

1 TD1 Transmit buffer data D1.

2 TD2 Transmit buffer data D2.

3 TD3 Transmit buffer data D3.

4 TD4 Transmit buffer data D4.

5 TD5 Transmit buffer data D5.

6 TD6 Transmit buffer data D6.

7 TD7/Parity
Transmit buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode field of the ASCControl register).

8
TD8/Parity

/Wake/0

Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the
operating mode (the setting of the Mode field of the ASCControl register).

Note: If the Mode field selects an 8 bit frame then this bit should be written as 0.

15:9 Reserved. Write 0.

Table 28.3 ASCnTxBuffer register format

STi5500

243/2897110597 A

Data reception is double-buffered, so that reception of a second character may begin before the
received character has been read out of the receive buffer register. The overrun error status flag
(OverrunError) in the status register (ASCnStatus) (see Table 28.7) will be set when the receive
buffer register has not been read by the time reception of a second character is complete. The pre-
viously received character in the receive buffer is overwritten, and the ASCnStatus register is
updated to reflect the reception of the new character.

The loop-back option (selected by the LoopBack bit) internally connects the output of the transmit-
ter shift register to the input of the receiver shift register. This may be used to test serial communi-
cation routines at an early stage without having to provide an external network.

28.2.2 Data frames

Data frames may be 8-bit or 9-bit, with or without parity and with or without a wake-up bit. The data
frame type is selected by the setting of the Mode bit field in the ASCnControl register, see
Table 28.2.

The transmitted data frame consists of three basic elements:

• the start bit;

• the data field (8 or 9 bits, least significant bit (LSB) first, including a parity bit or wake-up bit,
if selected);

• the stop bits (0.5, 1, 1.5 or 2 stop bits).

8-bit data frames

Figure 28.1 illustrates an 8-bit data frame. 8-bit frames may use of one of the following formats:

• eight data bits D0-7 (Mode set to 001);

ASCnRxBuffer ASCnBaseAddress + #08 Read only

Bit Bit field Function

0 RD0 Receive buffer data D0.

1 RD1 Receive buffer data D1.

2 RD2 Receive buffer data D2.

3 RD3 Receive buffer data D3.

4 RD4 Receive buffer data D4.

5 RD5 Receive buffer data D5.

6 RD6 Receive buffer data D6.

7 RD7/Parity
Receive buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode bit of the ASCControl register).

8
RD8/Parity/
Wake/X

Receive buffer data D8, or parity bit, or wake-up bit - dependent on the operating mode (the
setting of the Mode field of the ASCControl register)

Note: If the Mode field selects an 8 bit frame then this bit is undefined. Software should
ignore this bit when reading 8 bit frames

15:9 Reserved. Read back 0.

Table 28.4 ASCnRxBuffer register format

STi5500 l

244/287244/289 7110597 A

• seven data bits D0-6 plus an automatically generated parity bit (Mode set to 011).

Parity may be odd or even, depending on the ParityOdd bit in the ASCnControl register. If the
modulo 2 sum of the seven data bits is 1, then the even parity bit will be set and the odd parity bit
will be cleared. The parity error flag (ParityError) will be set if a wrong parity bit is received. The
parity bit itself will be stored in bit 7 of the ASCnRxBuffer register.

Figure 28.1 8-bit data frames

9-bit data frames

Figure 28.2 illustrates a 9-bit data frame. 9-bit data frames use of one of the following formats:

• nine data bits D0-8 (Mode set to 100);

• eight data bits D0-7 plus an automatically generated parity bit (Mode set to 111);

• eight data bits D0-7 plus a wake-up bit (Mode set to 101).

Figure 28.2 9-bit data frames

Parity may be odd or even, depending on the ParityOdd bit in the ASCnControl register. If the
modulo 2 sum of the eight data bits is 1, then the even parity bit will be set and the odd parity bit will
be cleared. The parity error flag (ParityError) will be set if a wrong parity bit is received. The parity
bit itself will be stored in the ninth bit of the ASCnRxBuffer register, as shown in Table 28.4.

In wake-up mode, received frames are only transferred to the receive buffer register if the ninth bit
(the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and no data will
be transferred.

This feature may be used to control communication in multi-processor systems. When the master
processor wants to transmit a block of data to one of several slaves, it first sends out an address
byte which identifies the target slave. An address byte differs from a data byte in that the additional

start
bit

D0 D1 D2 D3 D4 D5 D6
8th
bit(LSB)

1st
stop
bit

2nd
stop
bit

• Data bit (D7)
• Parity bit

start
bit

D0 D1 D2 D3 D4 D5 D6
9th
bit(LSB)

1st
stop
bit

2nd
stop
bit

• Data bit (D8)
• Parity bit

D7

• Wake-up bit

STi5500

245/2897110597 A

ninth bit is a 1 for an address byte and a 0 for a data byte, so no slave will be interrupted by a data
byte. An address byte will interrupt all slaves (operating in 8-bit data plus wake-up bit mode), so
each slave can examine the 8 least significant bits (LSBs) of the received character, which is the
address. The addressed slave will switch to 9-bit data mode, which enables it to receive the data
bytes that will be coming (with the wake-up bit cleared). The slaves that are not being addressed
remain in 8-bit data plus wake-up bit mode, ignoring the data bytes which follow.

28.2.3 Transmission

Transmission begins at the next overflow of the divide-by-16 counter, provided that the Run bit is
set and data has been loaded into the ASCnTxBuffer.

Data transmission is double buffered. When the transmitter is idle, the transmit data written into the
transmit buffer ASCnTxBuffer is immediately moved to the transmit shift register, thus freeing the
transmit buffer for the next data to be sent. This is signalled by the transmit buffer empty flag
(TxBufEmpty) being set. The transmit buffer can thus be loaded with the next data, while the pre-
vious data is being transmitted.

The transmitter empty flag (TxEmpty) indicates whether the output shift register is empty. It will be
set at the beginning of the last data frame bit that is transmitted, i.e. during the first system clock
cycle of the first stop bit shifted out of the transmit shift register.

The loop-back option (selected by the LoopBack bit of the ASCnControl register) internally con-
nects the output of the transmitter shift register to the input of the receiver shift register. This may
be used to test serial communication routines at an early stage without having to provide an exter-
nal network.

28.2.4 Reception

Reception is initiated by a falling edge on the data input pin RXD, provided that the Run and RxEn-
able bits of the ASCnControl register are set. The RXD pin is sampled at 16 times the rate of the
selected baud rate. A majority decision of the first, second and third samples of the start bit deter-
mines the effective bit value. This avoids erroneous results that may be caused by noise.

If the detected value of the first bit of a frame is not a 0, then the receive circuit is reset and waits for
the next falling edge transition at the RXD pin. If the start bit is valid, i.e. is 0, the receive circuit con-
tinues sampling and shifts the incoming data frame into the receive shift register. For subsequent
data and parity bits, the majority decision of the seventh, eighth and ninth samples in each bit time
is used to determine the effective bit value. The effective values received on RxD are shifted into a
10-bit input shift register.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop bit is
used to determine the effective stop bit value. For 1 and 2 stop bits, the majority decision of the
seventh, eighth, and ninth samples during the stop bits is used to determine the effective stop bit
values. For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples
during the stop bits is used to determine the effective stop bit value.

When the last stop bit has been received (at the end of the last programmed stop bit period) the
content of the receive shift register is transferred to the receive data buffer register (ASCnRx-
Buffer). The receive buffer full flag (RxBufFull) is set, and the parity (ParityError) and framing
error (FrameError) flags are updated at the same time, after the last stop bit has been received,
i.e. at the end of the last stop bit programmed period. The flags are updated even if no valid stop

STi5500 l

246/287246/289 7110597 A

bits have been received. The receive circuit then waits for the next falling edge transition at the
RXD pin.

Reception is stopped by clearing the RxEnable bit of ASCnControl. Any currently received frame
is completed including the generation of the receive status flags. Start bits that follow this frame will
not be recognized.

The most significant bit of each input entry records whether or not there was a frame error when
that entry was received (i.e. one of the effective stop bit values was ‘0’). The FrameError bit of the
ASCnStatus register is set when at least one of the valid entries in the input buffering has its most
significant bit set.

If the mode is one where a parity bit is expected, then the next bit records whether there was a par-
ity error when that entry was received. It does not contain the parity bit that was received. The Par-
ityError bit of ASCnStatus is set when at least one of the valid entries in the input FIFO has bit 8
set.

28.3 Hardware error detection capabilities

To improve the safety of serial data exchange, the ASC provides three error status flags in the
ASCnStatus register which indicate if an error has been detected during reception of the last data
frame and associated stop bits.

• The parity error bit (ParityError) in the ASCnStatus register is set when the parity check
on the received data is incorrect.

• The framing error bit (FrameError) in the ASCnStatus register is set when the RXD pin is
not a 1 during the programmed number of stop bit times, sampled as described in the sec-
tion above.

• The overrun error bit (OverrunError) in the ASCnStatus register is set when the last char-
acter received in the ASCnRxBuffer register has not been read out before reception of a
new frame is complete.

These flags are updated simultaneously with the transfer of data to the receive buffer.

28.4 Baud rate generation

Each ASC has its own dedicated 16-bit baud rate generator with 16-bit reload capability.

The baud rate generator is clocked with the CPU clock. The timer counts downwards and can be
started or stopped by the Run bit in the ASCnControl register. Each underflow of the timer pro-
vides one clock pulse. The timer is reloaded with the value stored in its 16-bit reload register each
time it underflows.

28.4.1 Baud rate generator register

The ASCnBaudRate register is the dual-function baud rate generator and reload value register. A
read from this register returns the content of the timer; writing to it updates the reload register.

STi5500

247/2897110597 A

If the Run bit of the control register is 1, then any value written in the ASCnBaudRate register is
immediately copied to the timer. However, if the Run bit is 0 when the register is written, then the
timer will not be reloaded until the first CPU clock cycle after the Run bit is 1.

28.4.2 Baud rates

The baud rate generator provides a clock at 16 times the baud rate. This clock only ticks if the Run
bit of the ASCnControl register is set to 1. Setting this bit to 0 will immediately freeze the state of
the ASCs transmitter and receiver.

The baud rate and the required reload value for a given baud rate can be determined by the follow-
ing formulae:

where: ASCBaudRate represents the content of the ASCnBaudRate register, taken as an unsigned
16-bit integer,
fCPU is the frequency of the CPU.

ASCnBaudRate ASCnBaseAddress + #00 Read/Write

Bit Bit field Write Function Read Function

15:0 ReloadVal 16-bit reload value. 16-bit count value.

Table 28.5 ASCnBaudRate register format

BaudRate =
16 x ASCBaudRate

ASCBaudRate =
16 x BaudRate

fCPU

fCPU

STi5500 l

248/287248/289 7110597 A

Table 28.6 lists commonly used baud rates with the required reload values and the approximate
deviation errors for an example baud rate with a CPU clock of 50 MHz. This does not imply avail-
ability of a 50 MHz device.

28.5 Interrupt control

Each ASC contains two registers that are used to control interrupts, the status register (ASCnSta-
tus) and the interrupt enable register (ASCnIntEnable). The status bits in the ASCnStatus register
show the cause of any interrupt. The interrupt enable register allows certain interrupt causes to be
masked. Interrupts will occur when a status bit is 1 (high) and the corresponding bit in the ASCnIn-
tEnable register is 1.

The error interrupt signal is generated by the ASC from the OR of the parity error, framing error,
and overrun error status bits after they have been ANDed with the corresponding enable bits in the
ASCnIntEnable register. An overall interrupt request signal is generated from the OR of the error
interrupt signal and the TxEmpty, TxBufEmpty and RxBufFull signals, as shown in Figure 28.3.

Software cannot write directly to the status register. The reset mechanism for the status register is
described below. The transmitter interrupt status bits (TxEmpty, TxBufEmpty) are reset when a
character is written to the transmitter buffer. The receiver interrupt status bit (RxBufFull) is reset
when a character is read from the receive buffer. The error status bits (ParityError, FrameError,
OverrunError) are reset when a character is read from the receive buffer.

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Approx.

deviation error

625 K 5 5 0005 0%

38.4 K 81.380 81 0051 0.1%

19.2 K 162.760 163 00A3 0.1%

9600 325.521 325 0145 0.2%

4800 651.042 651 028B 0.01%

2400 1302.083 1302 0516 0.01%

1200 2604.167 2604 0A2C 0.01%

600 5208.33 5208 1458 0.01%

300 10416.667 10417 28B1 0.01%

75 41666.667 41667 A2C3 0.01%

Table 28.6 Baud rates

STi5500

249/2897110597 A

ASCnStatus ASCnBaseAddress + #14 Read Only

Bit Bit field Function

0 RxBufFull
Receiver buffer full flag:

0 Receiver buffer is not full.
1 Receiver buffer is full.

1 TxEmpty
Transmitter empty flag:

0 Ttransmitter is not empty.
1 Transmitter is empty.

2 TxBufEmpty
Transmitter buffer empty flag:

0 Transmitter buffer not empty.
1 Transmitter buffer empty.

3 ParityError
Input parity error flag:

0 No parity error.
1 Parity error.

4 FrameError
Input frame error flag, i.e.stop bits not found:

0 No framing error.
1 Framing error.

5 OverrunError
Overrun error flag:

0 No overrun error.
1 Overrun error, i.e. data received when the input buffer is full.

7:6 Reserved. Read 0.

Table 28.7 ASCnStatus register format

STi5500 l

250/287250/289 7110597 A

ASCnIntEnable ASCnBaseAddress + #10 Read/Write

Bit Bit field Function

0 RxBufFullIE
Receiver buffer full interrupt enable:

0 Receiver buffer full interrupt disable.
1 Receiver buffer full interrupt enable.

1 TxEmptyIE
Transmitter empty interrupt enable:

0 Transmitter empty interrupt disable.
1 Transmitter empty interrupt enable.

2 TxBufEmptyIE
Transmitter buffer empty interrupt enable:+

0 Transmitter buffer empty interrupt disable.
1 Transmitter buffer empty interrupt enable.

3 ParityErrorIE
Parity error interrupt enable:

0 Parity error interrupt disable.
1 Parity error interrupt enable.

4 FrameErrorIE
Framing error interrupt enable:

0 Framing error interrupt disable.
1 Framing error interrupt enable.

5 OverrunErrorIE
Overrun error interrupt enable:

0 Overrun error interrupt disable.
1 Overrun error interrupt enable.

7:6 Reserved. Write 0. Read back 0.

Table 28.8 ASCnIntEnable register format

STi5500

251/2897110597 A

Figure 28.3 ASC status and interrupt registers

28.5.1 Using the ASC interrupts

The transmitter generates two interrupts; this provides advantages for the servicing software. For
normal operation (i.e. other than the error interrupt) the ASC provides three interrupt requests to
control data exchange via the serial channel:

• TxBufEmpty TxHalfEmpty is activated when data is moved from ASCnTxBuffer to the
transmit shift register;

• TxEmpty is activated before the last bit of a frame is transmitted;

• RxBufFull is activated when the received frame is moved to ASCnRxBuffer.

As shown in Figure 28.4, TxBufEmpty is an early trigger for the reload routine, while TxEmpty
indicates the completed transmission of the data field of the frame. Therefore, software using hand-

AND

register register

RxBufFullIE

TxEmptyIE

TxBufEmptyIE

ParityErrorIE

FrameErrorIE

OverrunErrorIE

ASCIntEnableASCStatus

OR

Receive buffer
full interrupt

Transmitter
empty interrupt

Transmit buffer
empty interrupt

Error interrupt

RxBufFull

TxEmpty

TxBufEmpty

ParityError

FrameError

OverrunError

OR
ASC interrupt

AND

AND

AND

AND

AND

STi5500 l

252/287252/289 7110597 A

shake should rely on TxEmpty at the end of a data block to make sure that all data has really been
transmitted.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty), which indicates that
the previously loaded data has been transmitted, except for the last bit of a frame.

For multiple back-to-back transfers it is necessary to load the next data before the last bit of the
previous frame has been transmitted. The use of TxEmpty alone would leave just one stop bit time
for the handler to respond to the interrupt and intiate another transmission. Using the output buffer
interrupt (TxBufEmpty) to signal for more data allows the service routine to load a complete frame,
as ASCnTxBuffer may be reloaded while the previous data is still being transmitted.

Figure 28.4 ASC transmission

Figure 28.5 ASC receive

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

TxEmpty interrupt

Output shift register

Transmission

ASCTxBuffer register char 2

char 1 char 2

char 3

char 3

char 1 char 2 char 3

Write char1 Write char2 Write char3

TxBufEmpty interrupt

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

RxBufFull

Input shift register

Receive

ASCRxBuffer register char1 char 2

char 1 char 2

char 3

char 3

char 1 char 2 char 3

STi5500

253/2897110597 A

28.6 SmartCard mode specific operation

To conform to the ISO SmartCard specification the following modes are supported in the ASC
SmartCard mode.

When the SmartCard mode bit is set to 1, the following operation occurs.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a mini-
mum of 1/2 baud clock. In normal operation a full transmit shift register will start shifting on
the next baud clock edge. In SmartCard mode this transmission is further delayed by a
guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 1/2 stop bit
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame, i.e. at the end of the 1/2 stop bit period. This is to indicate to the SmartCard
that the data transmitted to the UART has not been correctly received.

• The assertion of the TxEmpty interrupt can be delayed by programming the ASCnGuard-
Time register, as described in Table 28.9. In normal operation, TxEmpty is asserted when
the transmit shift register is empty and no further transmit requests are outstanding.

In SmartCard mode an empty transmit shift register triggers the guardtime counter to count
up to the programmed value in the ASCnGuardTime register. TxEmpty is forced low dur-
ing this time. When the guard time counter reaches the programmed value TxEmpty is
asserted high.

The de-assertion of TxEmpty is unaffected by SmartCard mode.

The receiver enable bit is reset after a character has been received. This avoids the receiver
detecting another start bit in the case of the smartcard driving the RXD line low until the UART
driver software has dealt with the previous character.

When the SmartCard mode bit is set to 0, normal UART operation occurs.

28.6.1 Guard time

The ASCnGuardTime register enables the user to delay the assertion of the interrupt TxEmpty by
a programmable number of baud clock ticks.

ASCnGuardTime ASCnBaseAddress + #18 Read/Write

Bit Bit field Function

7:0 GuardTime Number of baud clocks to delay assertion of TxEmpty.

15:8 Reserved. Write 0. Read back 0.

Table 28.9 ASCnGuardTime register format

STi5500 l

254/287254/289 7110597 A

29 SmartCard interface
The SmartCard interface is designed to support only asynchronous protocol SmartCards as
defined in the ISO7816-3 standard. Limited support for synchronous SmartCards can be provided
in software by using PIO bits to provide the clock, reset, and I/O functions on the interface to the
card. Two SmartCard interfaces are supported on the STi5500.

The UART function of the SmartCard interface is provided by a UART (ASC). UART ASC0 can be
used by SmartCard0 and ASC2 can be used by SmartCard1.

Each ASC used by a SmartCard interface must be configured as eight data bits plus parity, 0.5 or
1.5 stop bits, with SmartCard mode enabled. A 16-bit counter, the SmartCard clock generator,
divides down either the CPU clock, or an external clock connected to a pin shared with a PIO bit, to
provide the clock to the SmartCard. PIO bits in conjunction with software are used to provide the
rest of the functions required to interface to the SmartCard. The inverse signalling convention, as
defined in ISO7816-3, is handled in software, inverted data and most significant bit first. See Chap-
ter 28 for details of the ASC and Chapter 31 for details of the PIO ports.

29.1 External interface

The signals required by the SmartCard are given in Table 29.1.

The signals provided on the STi5500 are given in Table 29.2.

Pin Function

Clk Clock for SmartCard.

I/O Input or output serial data. Open drain drive at both ends.

RST Reset to card.

Vcc Supply voltage.

Vpp Programming voltage.

Table 29.1 SmartCard pins

Pin In/Out Function

ScClk Out, open drain for 5V cards. Clock for SmartCard.

ScClkGenExtClk In. External clock input to SmartCard clock divider.

ScDataOut Out, open drain driver. Serial data output. Open drain drive.

ScDataIn In. Serial data input.

ScRST Out, open drain. Reset to card.

ScCmdVcc Out. Supply voltage enable/disable.

ScCmdVpp Out. Programming voltage enable/disable.

ScDetect In. SmartCard detection.

Table 29.2 SmartCard interface pins

STi5500

255/2897110597 A

The ScRST, ScCmdVpp, ScCmdVcc, and ScDetect signals are provided by pins of the PIO ports.
Programming the PIO pins of the port for alternative function modes connects the ASC TXD data
signal to the ScDataOut pin with the correct driver type and the clock generator to the ScClk pin.
Details of the PIO pin assignments can be found in Table 3.13.

The ISO standard defines the bit times for the asynchronous protocol in terms of a time unit called
an ETU which is related to the clock frequency received by the card. One bit time is of length one
ETU.

The ASC transmitter output and receiver input need to be connected together externally. For the
transmission of data from the STi5500 to the SmartCard, the ASC will need to be set up in Smart-
Card mode.

Figure 29.1 ISO 7816-3 asynchronous protocol

29.2 SmartCard clock generator

The SmartCard clock generator provides a clock signal to the connected SmartCard. The Smart-
Card uses this clock to derive the baud rate clock for the serial I/O between the SmartCard and
another UART. The clock is also used for the CPU in the card, if present.

Operation of the SmartCard interface requires that the clock rate to the card is adjusted while the
CPU in the card is running code, so that the baud rate can be changed or the performance of the
card can be increased. The protocols that govern the negotiation of these clock rates and the alter-
ing of the clock rate are detailed in the ISO7816-3 standard. The clock is used as the CPU clock for
the SmartCard, so updates to the clock rate must be synchronized with the clock (Clk) to the
SmartCard. This means the clock high or low pulse widths must not be shorter than either the old
or new programmed value.

The clock generator clock source can be set to be either the system clock (st20 processor clock)
or an external clock (mpeg/smart card clock) . Two registers control the period of the clock and the
running of the clock.

The ScClkVal register determines the SmartCard clock frequency. The value given in the register
is multiplied by 2 to give the division factor of the input clock frequency. The divider is updated with
the new value for the divider ratio on the next rising or falling edge of the output clock.

The ScClkCon register controls the source of the clock and determines whether the SmartCard
clock output is enabled. The programmable divider and the output are reset when the enable bit is
set to 0.

Line is pulled low by the
receiver during stop bits
if there is a parity error

S a b c d e f g h P

Start
bit

8 data bits Parity
bit

11 ETU

STi5500 l

256/287256/289 7110597 A

30 I2C interface (SSC)
The High-Speed Synchronous Serial Controller (SSC) can be used to interface to a wide variety of
serial memories, remote control receivers, and other microcontrollers. Various interface standards
exist for these, the most important of which is the I2C bus in the set-top box application as this is
the interface used most often for the control of the Link-IC. Figure 30.1 below shows how the SSC
is interfaced to an I2C bus as the bus master. Software is required to handle some of the I2C bus
protocol such as byte acknowledgement.

Figure 30.1 Connection of ST24C02 and STi5500 to I2C-bus

The SSC provides flexible high-speed serial communication between the STi5500 and other micro-
controllers, microprocessors or external peripherals using the I2C bus protocol as a master only.

30.1 High-speed synchronous serial controller

The SSC supports half-duplex synchronous communication. The serial clock signal can be gener-
ated by the SSC itself (master mode). Data width is programmable. Transmission and reception of
data is double-buffered. A 16-bit baud rate generator provides the SSC with a separate serial clock
signal.

The high-speed synchronous serial controller can be used to communicate with shift registers (IO
expansion), peripherals (e.g. EEPROMs) or other controllers (networking). The SSC supports half-
duplex communication.

MTSR / MRST

SClk

VDD

A0

VSS(GND)

A1

A2

SDA

SCL

VDD

GND

10nF

2.7k2.7k

ST24C02
slaveSTi5500

master

STi5500

257/2897110597 A

Figure 30.2 Registers associated with the SSC

Control register

The operating mode of the serial channel SSC is controlled by the control register (SSCControl).

SSCControl SSC base address +#0C Read/Write

Bit Bit field Function

3:0 DataWidth

SSC Data width selection.

DataWidth Meaning
0000 Reserved. Do not use this combination.
0001 2 bits
0010 3 bits
... ...
1111 16 bits

4 HeadControl SSC Heading control bit. For I2C operation, software must write a 1; the effect of writing
0 is undefined. The MSB of the selected data width is shifted out first.

5 ClkPhase SSC Clock phase control bit. For I2C operation, software must write a 1; the effect of
writing 0 is undefined

6 ClkPolarity SSC Clock polarity control bit. For I2C operation, software must write a 0; the effect of
writing 1 is undefined

8 MasterSel SSC Master select bit. For I2C operation, software must write a 1; the effect of writing 0
is undefined

9 Enable

SSC Enable bit.

0 Transmission and reception disabled
1 Transmission and reception enabled

10 LoopBack

SSC Loopback bit.

0 transmitter is connected to shift register input
1 shift register output is connected to shift register input

7, 15:11 RESERVED. Write 0, read back 0.

Table 30.1 SSCControl register format

Data
registers

Control
registers

Interrupt control
registers

SSCBaudRate SSCControl SSCIntEnable

SSCStatusSSCTxBuffer

SSCRxBuffer

SSCBaudRate SSC Baud rate generator/reload register
SSCTxBuffer SSC Transmit buffer register (write only)
SSCRxBuffer SSC Receive buffer register (read only)
SSCControl SSC Control register
SSCIntEnable SSC Interrupt enable register
SSCStatus SSC Status register

STi5500 l

258/287258/289 7110597 A

30.1.1 Synchronous serial channel operation

The shift register of the SSC is connected to both the transmit pin and the receive pin via the pin
control logic (see block diagram Figure 30.3). Transmission and reception of serial data is synchro-
nized and takes place at the same time, i.e. the same number of transmitted bits is also received.
Transmit data is written into the Transmit Buffer (SSCTxBuffer) register. It is moved to the shift reg-
ister as soon as this is empty. The SSC immediately begins transmitting. When the data has trans-
ferred to the shift register, the transmit buffer empty (TxBufEmpty) flag will be set to indicate that
the transmit buffer (SSCTxBuffer) may be reloaded again. When the programmed number of bits
(2 to 16) has been transferred, the contents of the shift register are moved to the Receive Buffer
(SSCRxBuffer) register and the receive buffer full (RxBufFull) flag will be set. If no further transfer
is to take place, i.e. the transmit buffer is empty, the SSC will revert back to an idle state waiting for
a load of the transmit register.

Figure 30.3 Synchronous serial channel SSC block diagram

Receiver buffer

Transmitter empty

Receive error

OR gate

full interrupt

interrupt

interrupt
Phase error

interrupt

CPU
clock

Baud rate
generator

Clock
control

Slave clock

Master clock

Shift clock

SSC control block

SSC interrupt

Status Control

16-bit shift register

Pin
control

Transmit buffer
register (SSCTxBuffer)

Receive buffer
register (SSCRxBuffer)

Internal bus

SClk

MTSR

MRST

STi5500

259/2897110597 A

Note that only one SSC can be master at a given time.

The transfer of serial data bits can be programmed as follows:

• the data width can be 2 to 16 bits

• the baud rate can be set over a wide range

The data width selection (DataWidth) bit allows data widths of 2 to 16 bits to be transferred.

The unused bits of SSCTxBuffer are ignored, the unused bits of SSCRxBuffer are not valid and
should be ignored by the receiver service routine.

Transmit and receive buffer registers

Clock control

If the ClkPhase and ClkPolarity bits in the SSCControl register are programmed, as defined by
Table 30.1 on page 257, then the clock and data relationship will be I2C compatible. The data is
stable during the high level of the clock and I2C setup and hold times are met.

Figure 30.4 Clock and data relationships

SSCTxBuffer SSC base address + #04 Write only

Bit Bit field Function

15:0 TD15:0 Transmit buffer data D15:0

Table 30.2 SSCTxBuffer register format

SSCRxBuffer SSC base address + #08 Read only

Bit Bit field Function

15:0 RD15:0 Receive buffer data D15:0

Table 30.3 SSCRxBuffer register format

ClkPolarity ClkPhase

0 1

Transmit data
Last
bit

Latch data

Shift data

First
bit

Serial clock SClk

Pins MTSR/MRST

STi5500 l

260/287260/289 7110597 A

30.1.2 Half-duplex operation

In a half duplex configuration only one data line is necessary for both receiving and transmitting of
data. The data exchange line is connected to both pins MTSR and MRST of each device, the clock
line is connected to the SClk pin.

Figure 30.5 Half-duplex configuration

The master device controls the data transfer by generating the shift clock, while the slave devices
receive it. Due to the fact that all transmit and receive pins are connected to the one data exchange
line, serial data may be moved between arbitrary stations.

Similar to full duplex mode there are two ways to avoid collisions on the data exchange line:

• only the transmitting device may enable its transmit pin driver

• the non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device will clock its own
data at the input pin (MRST for a master device). This allows any corruptions on the common data
exchange line, where the received data is not equal to the transmitted data, to be detected.

Master Device #1 SlaveDevice #2

SlaveDevice #3

Clock

MTSR

MRST

SClk Clock

Shift register

MTSR

MRST

SClk Clock

Shift register
Common
transmit /
receive

line
MTSR

MRST

SClk

Shift register

Clock

STi5500

261/2897110597 A

Continuous transfers

When the TxBufEmpty bit is 1, it indicates that the transmit buffer SSCTxBuffer is empty and
ready to be loaded with the next transmit data. If SSCTxBuffer has been reloaded by the time the
current transmission is finished, the data is immediately transferred to the shift register and the next
transmission will start without any additional delay. On the data line there is no gap between the
two successive frames. For example, two byte transfers would look the same as one word transfer.
This feature can be used to interface with devices which can operate with or require more than 16
data bits per transfer. Software determines how long a total data frame length can be. This option
can also be used to interface to byte-wide and word-wide devices on the same serial bus.

Note: This can only happen in multiples of the selected basic data width, since it would require dis-
abling/enabling of the SSC to reprogram the basic data width on-the-fly.

30.1.3 Baud rate generation

The SSC has its own dedicated 16-bit baud rate generator with 16-bit reload capability. The result-
ant baud rate for transmission and reception is half the value in the SSCBaudRate register.

30.1.4 Baud rate generator register

Baud rates

The formulas below calculate either the resulting baud rate for a given reload value, or the required
reload value for a given baud rate:

Where, <SSCBaudRate> represents the content of the reload register, as an unsigned 16-
bit integer and fCPU represents the CPU clock frequency.

SSCBaudRate ASC base address + #00 Read/Write

Bit Bit field Write Function Read Function

15:0 ReloadVal 16-bit reload value 16-bit count value

Table 30.4 SSCBaudRate register format

Baudrate
2 x <SSCBaudRate>

<SSCBaudRate> = (
 2 x Baudrate

)=
fCPU fCPU

STi5500 l

262/287262/289 7110597 A

The maximum baud rate that can be achieved when using a CPU clock of 40 MHz is 5 MBaud.
Table 30.5 below lists some possible baud rates together with the required reload values and the
resulting bit times, assuming a CPU clock of 40 MHz.

Note: The content of SSCBaudRate must be greater than 0.

30.1.5 Hardware error detection capabilities

The SSC is able to detect two different error conditions.

• Receive Error

• Phase Error

When an error is detected, the respective error flag is set in the SCCStatus register. The error
interrupt handler may then check the error flags to determine the cause of the error interrupt.

A Receive Error is detected, when a new data frame is completely received, but the previous data
was not read out of the receive buffer register SSCRxBuffer. This condition sets the error (RxEr-
ror) flag and, when enabled via RxErrorIE, the error interrupt request flag (ErrorInterrupt). The
old data in the receive buffer SSCRxBuffer will be overwritten with the new value and is irretriev-
ably lost.

A Phase Error is detected, when the incoming data on the MRST pin, sampled at the same fre-
quency as the CPU clock, changes between one sample before and two samples after the latching
edge of the clock signal (See “Clock control” on page 259.). This condition sets the error flag Pha-
seError and, when enabled via PhaseErrorIE, the error interrupt request flag (ErrorInterrupt).

30.1.6 Interrupt control

The SSC contains two registers that are used to control interrupts, a status (SSCStatus) register
and an interrupt enable (SSCIntEnable) register. The status bits in the SSCStatus register deter-
mine the cause of the interrupt. Interrupts will occur when a status bit is 1 (high) and the corre-
sponding bit in the SSCIntEnable register is 1.

The error interrupt signal (ErrorInterrupt) is generated by the SSC from the OR of the receive
error and phase error status bits after they have been ANDed with the corresponding enable bits in
the SSCIntEnable register.

Baud rate Bit time Reload value

Reserved. Use a reload value > 0. - #0000

5 MBaud 200 ns #0004

3.3 MBaud 300 ns #0006

2.5 MBaud 400 ns #0008

2.0 MBaud 500 ns #000A

1.0 MBaud 1 µs #0014

100 KBaud 10 µs #00C8

10 KBaud 100 µs #07D0

1.0 KBaud 1 ms #4E20

Table 30.5 Baud rates and bit times for different SSCBaudRate reload values

STi5500

263/2897110597 A

An overall interrupt request signal (SSC_interrupt) is generated from the OR of the receive inter-
rupt request (RxBufFull), transmit interrupt request (TxBufEmpty) and error interrupt request
(ErrorInterrupt) signals.

Note the status register cannot be written to directly by software. The set and reset mechanism for
the status register is described below.

The receiver interrupt status bit (RxBufFull) is set when a character is loaded from the shift regis-
ter into the receive buffer (SSCRxBuffer). The RxBufFull bit is reset when a character is read from
the receive buffer (SSCRxBuffer).

The transmitter interrupt status bit (TxBufEmpty) is set when a character is loaded from the trans-
mitter buffer (SSCTxBuffer) into the shift register. The TxBufEmpty bit is reset when a character
is written into the transmitter buffer (SSCTxBuffer).

The status bits (RxError, PhaseError) are reset when a character is read from the receive buffer
(SSCRxBuffer).

SSCStatus SSC base address + #14 Read Only

Bit Bit field Function

0 RxBufFull
Receiver Buffer Full Flag

1 receiver buffer full

1 TxBufEmpty
Transmitter Buffer Empty Flag

1 transmitter buffer empty

3 RxError
Receive Error Flag

1 receive error set

4 PhaseError
Phase Error Flag

1 phase error set

2, 7:5 RESERVED. Will read back 0.

Table 30.6 SSCStatus register format

SSCIntEnable SSC base address + #10 Read/Write

Bit Bit field Function

0 RxBufFullIE
Receiver Buffer Full Interrupt Enable

1 receiver buffer full interrupt enable

1 TxBufEmptyIE
Transmitter Buffer Empty Interrupt Enable

1 transmitter buffer empty interrupt enable

3 RxErrorIE
Receive Error Interrupt Enable

1 receive error interrupt enable

4 PhaseErrorIE
Phase Error Interrupt Enable

1 phase error interrupt enable

2, 7:5 RESERVED. Write 0, will read back 0.

Table 30.7 SSCIntEnable register format

STi5500 l

264/287264/289 7110597 A

Figure 30.6 SSC status and interrupt registers

Using the SSC interrupts

An interrupt handler for the SSC needs to read the SCCStatus register before writing the SCCTx-
Buffer or reading the SCCRxBuffer as there might have been an error. The error flags will be
cleared by these read or write operations, see sections above on error detection and interrupts.

&

&

&

&

SSCStatus
register register

SSCIntEnable

RxBufFullIE

TxBufEmptyIE

RxErrorIE

PhaseErrorIE

RxBufFull

TxBufEmpty

RxError

PhaseError

Receiver buffer
full interrupt

Transmitter buffer
empty interrupt

RESERVED
read 0, write 0

RESERVED
read 0, write 0

RESERVED
read 0, write 0

RESERVED
read 0, write 0

Receive error
interrupt

Phase error
interrupt

STi5500

265/2897110597 A

31 Parallel input/output
The STi5500 device has 34 bits of parallel input/output (PIO), configured in four ports PIO3-0 of
eight bits and one port PIO4 of two bits. Each bit is programmable as an output, an input, a bidirec-
tional pin, or as an alternative function output pin. The alternative function connects signals from
device peripherals to the pins of the device through the PIO. Details of the alternative function
assignments can be found in Chapter 3. Not all of the PIO port bits are connected to device pins.

Each port of eight input bits can also be compared against a register and an interrupt generated
when the value is not equal. Each of the ports operates as described in the rest of this chapter.

Output drivers for the PIO pins, both in PIO mode and the alternative function mode, can be pro-
grammed to be push-pull or open drain.

Each 8-bit PIO port has a set of 8-bit registers, and the 2-bit port has a similar set of 2-bit registers.
Each of the bits of each register refers to the corresponding pin in the corresponding port. These
registers hold:

• the output data for the port (PnOut);

• the input data read from the pin (PnIn);

• PIO bit configuration registers (PnC0-2);

• the two input compare function registers (PnComp and PnMask).

Each of the registers, except PnIn, is mapped onto two additional addresses so that bits can be set
or cleared individually. The Set_ register allows bits to be set individually. Writing a ‘1’ in this regis-
ter sets the corresponding bit in the associated register, a ‘0’ leaves the bit unchanged. Similarly
the Clear_ register allows bits to be cleared individually. Writing a ‘1’ in this register resets the cor-
responding bit in the associated register; a ‘0’ leaves the bit unchanged.

STi5500 l

266/287266/289 7110597 A

Part F Timing and electrical data

STi5500

267/2897110597 A

32 Timing specifications
The STi5500 is being characterized. These timing specifications are given for guidance only and
will be updated when characterization is complete.

The timings are based on the following conditions unless otherwise stated:

1 Input rise and fall times of 3 ns (10% -> 90%).

2 Output load = 30pF

3 Output threshold = 1.5V

32.1 SDRAM

Figure 32.1 Synchronous DRAM power-on sequence

CLK

RAS

CAS

A

WE

DQM

DQ

CKE
High level

CS

A10

HI - Z

4 cycles min.4 cycles min.

Mode Register Data

All banks
precharge
command

Mode

write

CBR Refresh CBR refresh Activate
command

tRP tRC tRC

Note: The number of refreshes required varies for different suppliers

x32

command

register

A11

STi5500 l

268/287268/289 7110597 A

Figure 32.2 AC parameters for read and write (synchronous DRAM)

CLK

Input data

Output data

tCK
tCH tCL

tS tH

tHA

tAC

Address

tOH

tCMH

Commands

tSA

tCMS

STi5500

269/2897110597 A

Figure 32.3 Synchronous DRAM write (burst length = 4, CAS latency = 3)

In Table 32.1, the unit T is the period of the memory subsystem clock, which is typically 100MHz.

Symbol Parameter Min Max Units Notes

tRP ACTIVE to PRE Command Period 3 T

tRC REF to REF / ACTIVE Command Period 8 T

tCK Clock Cycle time 9.25 ns 1

tCH Clock HIGH level width ns

tCL Clock LOW level width ns

tS Data input setup time 0 ns

tH Data input hold time 2.5 ns

tAC Output data access time 2.9 ns

Table 32.1 Synchronous DRAM read and write

CLK

RAS

CAS

A

WE

DQM

DQ

CKE

CS

A11

A10

tCMHtCMS

tRCDtRRD

tDAL
tRC

tDPL tRP

Active B Write A Write B Precharge all Active BActive A

STi5500 l

270/287270/289 7110597 A

1 A 50% duty cycle is only obtained using the hard wired divide by 2, which is recommended.

Figure 32.4 Synchronous DRAM read (burst length = 4, CAS latency = 3)

tOH Output data hold time 1 ns

tSA Address access time 7 ns

tHA Address hold time 1.7 ns

tCMS Command (CS, RAS, CAS, WE,DQM) access time 2.7 ns

tCMH Command (CS, RAS, CAS, WE,DQM) hold time 1 ns

tRCD Delay time ACTIVE to READ / WRITE command 4 T

tRRD ACTIVE(A) to ACTIVE(B) Command period 4 T

tDAL Data-out to ACTIVE command period 5 T

tDPL Data-out to Precharge Command period 2 T

tRAS ACTIVE to PRECHARGE Command Period 9 T

Symbol Parameter Min Max Units Notes

Table 32.1 Synchronous DRAM read and write

CLK

RAS

CAS

A

WE

DQM

DQ

CKE

CS

A11

A10

tCMHtCMS

Active A Read A Read B Precharge all Active A

tRCD

t tRPRAS

tRC

STi5500

271/2897110597 A

32.2 PCM/AC-3 decoder interface

Figure 32.5 PCM data output

Symbol Parameter Min Max Units Notes

tSCLPD SC low to PCMDATA valid 50 ns

tSCLLR SC low to LRCLK 50 ns

tSCLPD SC low to PCMDATA valid 50 ns

tSCLLR SC low to LRCLK 50 ns

Table 32.2 PCM data output

PCMDATA

LRCLK

SCLK

tSCLPD tSCLLR

PCMDATA

LRCLK

SCLK

tSCHPD tSCHLR

INV_SCLK = 0

INV_SCLK = 1

STi5500 l

272/287272/289 7110597 A

Figure 32.6 AC-3 decoder interface

32.3 EMI timings

The EMI Reference Clock used in the EMI timings is a virtual clock and is defined as the point at
which all positively edged EMI strobe and address outputs are valid. This removes process depen-
dent skews from the datasheet description and highlights the dominant influence of address and
strobe timings on memory system design.

Symbol Parameter Min Max Units Notes

tDSTD Delay strobe to data 30 40 ns

tDSWC Delay strobe to word clock 30 40 ns

tP Strobe period 70 ns

tH Strobe pulse width, high 30 ns

tL Strobe pulse width, low 30 ns

Table 32.3 AC-3 decoder interface

Symbol Parameter Min Max Units Note

tCHAV Reference Clock high to Address valid -8.0 0.0 ns

tCLSV Reference Clock low to Strobe valid -8.0 3.0 ns

tCHSV Reference Clock high to Strobe valid -8.0 0.0 ns

tRDVCH Read Data valid to Reference Clock high 13.0 ns

tCHRDX Read Data hold after Reference Clock high -2.0 ns

tSVRDX Read Data hold after Strobe valid 0.0 ns 1

tCLWDV Reference Clock low to Write Data valid -8.0 7.0 ns 1

tCHWDV Reference Clock high to Write Data valid -8.0 6.0 ns 1

Table 32.4 EMI cycle timings

A_C_DATA

A_WORD_CLK1

A_C_STB tDSTD
tDSWC

tP

tH tL

STi5500

273/2897110597 A

Notes

1 Minimum values are guaranteed by design.

tCHWDZ Reference Clock high to write data tristate -8.0 6.0 ns

tCHRSV Reference Clock high to remaining Strobes valid -8.0 3.0 ns

tCHPH Reference Clock high to ProcClkOut high -8.0 0.0 ns

tWVCH MemWait valid to Reference Clock high 13.0 ns

tRVCH MemReq valid to Reference Clock high 13.0 ns

tPHWX MemWait hold after ProcClkOut high 0.0 ns 1

tPHRX MemReq hold after ProcClkOut high 0.0 ns 1

tPHEMIZ MemGrant to signals tristate when bus granted TBD ns 1

Symbol Parameter Min Max Units Note

Table 32.4 EMI cycle timings

STi5500 l

274/287274/289 7110597 A

Figure 32.7 EMI timings

DATA0-15
(Read)

MemWait

MemReq

tPHWX

tPHRX

tSVRDX

tCHWX

tCHRX

Reference clock

(Write on 0,1 clock)

(Write on half clock)

ADR1-21

NOT_RAS0-1
NOT_CAS0-1
NOT_WE0-1
NOT_CE1-3

NOT_OE

DATA0-15

DATA0-15

ProcClkOut

tCHAV

tCHSV tCLSV

tRDVCH
tCHRDX

tCHWDV

tCLWDV

tCHRSV

tCHPH tCHPH

tWVCH

tRVCH

tCLWDZ

STi5500

275/2897110597 A

32.4 Rise and fall times

All rise and fall times are measured at 10 – 90%.

Figure 32.8 Rise and fall times for EMI pins

32.5 PIO timings

Reference clock in this case means the last transition of any PIO signal.
.

Symbol Parameter Min Max Units Note

tPCHPOV PIO_refclock high to PIO output valid -15.0 0.0 ns

tPCHWDZ PIO tristate after PIO_refclock high -15.0 5.0 ns

tPIOr Output rise time 7.0 30.0 ns

tPIOf Output fall time 7.0 30.0 ns

Table 32.5 PIO timings

5

10

20 50 80 100 150

Cload (pF)

Fall time (ns)

1

2

3

4

6

7

8

9

5

10

15

20 50 80 100 150

Rise time (ns)

Cload (pF)

1
2
3
4

6
7
8
9

11
12
13
14

To be defined

STi5500 l

276/287276/289 7110597 A

Figure 32.9 PIO timings

Figure 32.10 Rise and fall times

PIO Reference Clock

PIOout

tPCHPOV

V

PIOout

tPCHWDZ

5

10

Cload (pF)

Fall time (ns)

1

2

3

4

6

7

8

9

5

10

15 Rise time (ns)

Cload (pF)

1
2
3
4

6
7
8
9

11
12
13
14

0 400pF 0 400 pF

To be defined

STi5500

277/2897110597 A

32.6 OS-Link timings

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receiv-
ers etc., caused by such things as short term variation in supply voltages and differences in
delays for rising and falling edges.

Figure 32.11 Link timings

Figure 32.12 Buffered OS-Link timings

Symbol Parameter Minimum Nominal Maximum Units Notes

tJQR LinkOut rise time 20 ns

tJQF LinkOut fall time 10 ns

tJDR LinkIn rise time 20 ns

tJDF LinkIn fall time 20 ns

tJQJD Buffered edge delay 0 ns

∆tJB Variation in tJQJD 20 Mbits/s 3 ns 1

CLIZ LinkIn capacitance @ f=1MHz 10 pF

CLL LinkOut load capacitance 50 pF

Table 32.6 OS-Link timings

LinkOut

LinkIn

90%

10%

90%

10%

tJQR tJQF

tJDR tJDF

LinkOut

Latest tJQJD

Earliest tJQJD

1.5 V

1.5 V

DtJB

LinkIn

STi5500 l

278/287278/289 7110597 A

32.7 Reset and Analyse timings

Figure 32.13 Reset and Analyse timings

32.8 Clock timings

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 Clock transitions must be monotonic within the range VIH to VIL.

Symbol Parameter Minimum Nominal Maximum Units

tRSTLRSTH not_Rst pulse width low 8 ClockIn

tRHRL CPUReset pulse width high 1 ClockIn

tAHRH CPUAnalyse setup before CPUReset 3 ms

tRLAL CPUAnalyse hold after CPUReset end 1 ClockIn

Table 32.7 Reset and Analyse timings

Symbol Parameter Minimum Nominal Maximum Units Notes

tDCLDCH ClockIn pulse width low 15.5 18.5 21.5 ns

tDCHDCL ClockIn pulse width high 15.5 18.5 21.5 ns

tDCLDCL ClockIn period 37 ns 1, 2

tDCR ClockIn rise time ns 3

tDCF ClockIn fall time ns 3

Table 32.8 ClockIn timings

not_Rst

CPUReset

CPUAnalyse

tRSTLRSTH

tRHRL tRHRL

tRLALtAHRH

STi5500

279/2897110597 A

Figure 32.14 ClockIn timings

32.9 TAP timings

Figure 32.15 TAP timings

Symbol Parameter Minimum Nominal Maximum Units

tTCHTCH TCK period 50 ns

tTIVTCH TAP inputs valid to TCK high 10 ns

tTCHTIX TAP input hold after TCK high 10 ns

tTCHTOV TCK low to TAP output valid 50 ns

Table 32.9 TAP timings

2.0V
1.5V
0.8V

tDCLDCH tDCHDCL

tDCLDCL

90%

10%

tDCF

90%

10%

tDCR

TCK

TDI

TDO

tTIVTCH

tTCHTIX

tTCHTOV

TMS

tTCHTCH

STi5500 l

280/287280/289 7110597 A

Figure 32.16 Rise and fall times

32.10 Transport stream demultiplexor timings

Transport stream demultiplexor timings for STi5500 silicon version D and later are given in
Table 32.10. Timings for earlier versions are given in Table 32.11.

Symbol Parameter Min Nom Max Units Notes

tLCHLCH F_B_CLK period 16 ns

tLCHLCL F_B_CLK pulse width high 2 ns

tLCLLCH F_B_CLK pulse width low 2 ns

tLDVLCH Transport stream demultiplexor signals valid to F_B_CLK low 2.5 ns

tLCHLDX Transport stream demultiplexor signals hold after F_B_CLK low 2 ns

Table 32.10 Transport stream demultiplexor timing for STi5500 silicon version D and later

5

10

Cload (pF)

Fall time (ns)

1

2

3

4

6

7

8

9

5

10

15 Rise time (ns)

Cload (pF)

1
2
3
4

6
7
8
9

11
12
13
14

0 400pF 0 400 pF

To be defined

STi5500

281/2897110597 A

Figure 32.17 Transport stream demultiplexor timing

Symbol Parameter Min Nom Max Units Notes

tLCHLCH F_B_CLK period 16 ns

tLCHLCL F_B_CLK pulse width high 2 ns

tLCLLCH F_B_CLK pulse width low 2 ns

tLDVLCH F_DATA signal valid to F_B_CLK low 2.5 ns

tLDVLCH F_P_CLK signal valid to F_B_CLK low 2.5 ns

tLDVLCH F_ERR signal valid to F_B_CLK low 5.0 ns

tLCHLDX F_DATA signal hold after F_B_CLK low 3.5 ns

tLCHLDX F_P_CLK signal hold after F_B_CLK low 3.0 ns

tLCHLDX F_ERR signal hold after F_B_CLK low 2 ns

Table 32.11 Transport stream demultiplexor timing for STi5500 silicon versions before D

F_B_CLK

F_P_CLK
F_DATA

F_ERROR

tLCLLCHtLCHLCL

tLCHLCH

tLDVLCH tLCHLDX

STi5500 l

282/287282/289 7110597 A

33 Electrical specifications
The STi5500 is being characterized. These electrical specifications are given for guidance only and
will be updated when characterization is complete.

33.1 Absolute maximum ratings

Stresses greater than those listed in Table 33.1 may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operating sections of this specification is not implied. Continuous operation
at these limits is not intended and should be limited to those conditions specified in section 33.2.

33.2 Operating conditions

The following specifications are over VDD = 3.3V ± 0.3V, TA = 0˚C to 70˚C unless otherwise speci-
fied.

Symbol Parameter Min Max Unit

VDD, VDDA DC supply voltage 4.5 V

VI Voltage on input, bi-directional and address pins GND-0.6 6.5 V

VO Voltage on output pins GND-0.6 VDD+0.6 V

IO DC output current 25 mA

TS Storage temperature (ambient) -55 125 °C

TA Temperature under bias (ambient) -55 125 °C

Table 33.1 Absolute maximum ratings

Symbol Parameter Min Max Units Notes

VI, VO Input or output voltage 0 5.75 V

CL Load capacitance per pin 60 pF

CLD Load capacitance per data pin 60 pF

CLA Load capacitance per address/strobe pin 100 pF

CLP Load capacitance per PIO pin 400 pF

TA Operating temperature (ambient) 0 70 °C

PD Power dissipation 2 W
Measured at 40 MHz with no static loads on
the EMI pins and with a 30 pF load on all
output pins.

Table 33.2 Operating conditions

STi5500

283/2897110597 A

33.3 DC electrical characteristics

The electrical types of the pins are given in Table 33.5. The table gives the 5V tolerance and type
for each physical pin, listed in alphabetical order of pin name. The meanings of the type codes are
given in Table 33.6.

Symbol Parameter Min Typ Max Units Notes

VDD Positive supply voltage 3.0 3.3 3.6 V

VIH Input logic 1 voltage 2.0 5.5 V

VIL Input logic 0 voltage -0.5 0.8 V

IIN Input current (input pin) ±10 µA 0 ≤ VI ≤ 5.5

IOZ Off state digital output current ±50 µA 0 ≤ VI ≤ VDD and 4.5 < VI < 5.5

IOZP Peak off state output current ±200 µA VDD ≤ VI ≤ 4.5

VOH Output logic 1 voltage 2.4 V At rated output load currents

VOL Output logic 0 voltage 0.4 V At rated output load currents

CIN Input capacitance (input pins) 10 pF

CIO Input capacitance (bi-directional pins) 15 pF

COUT Output capacitance 15 pF

Table 33.3 DC specifications

Symbol Parameter Min Typ Max Units Notes

VDDA Analog positive supply voltage 3.0 3.3 3.6 V

IDDA Analog current consumption 20 50 mA

RIREF
Resistance for reference current
source for 3 D/A converters

1.2 kΩ

VO Output voltage Dyn 0.95 1.10 VPP

DAC to DAC VO max code 3 %

ILE LF integral non-linearity ± 1 LSB

DLE LF differential non-linearity ± 0.5 LSB

Table 33.4 DC specifications

STi5500 l

284/287284/289 7110597 A

Pin name 5V tol’nce
Pin electrical type

Input Output

A_C_Req yes S

A_Pts_Stb yes S

Ad0-11 no T8

Adr1-21 yes T6

B_Out no A

Brm0 / Oslink_Sel yes S T6

Brm1 / BooFromRom yes S T6

Brm2 no T8

C_Out no A

ProcClockOut yes T6

CV_Out no A

Data0-15 yes S T6

Dq0-15 no S T8

Dqml no T8

Dqmu no T8

F_B_Clk yes S

F_Data yes S

F_Error / P_Start yes S

F_P_Clk / D_Valid yes S

G_Out no A

Gnd P

I_Ref_Dac_RGB no A

I_Ref_Dac_YCC no A

Irq0-2 yes S

Link_Ext_Clk yes S

lrclk / A_Word_Clk no C8

MemClkIn no S

MemClkOut no T8

MemWait no S

not_Cas0-1 yes T6

not_CE1-3 yes T6

not_Hsync yes S T6

Table 33.5 Pin electrical type

STi5500

285/2897110597 A

not_OE yes T6

not_Ras0 / not_CE0 yes T6

not_Ras1 yes T6

not_Rst yes S

not_SdCas no T8

not_SdCS0-1 no T8

not_SdRas no T8

not_SdWE no T8

not_Trst yes S

not_WE0-1 yes T6

Nrss_Clk no T6

Nrss_In yes S

Nrss_Out no T8

Odd_not_Even yes S T6

Osc_In / 27Mhz_Out yes S T6

Osd_Active yes S T6

Pcm_ClkIn yes S T6

Pcm_ClkOut / A_C_Stb no C8

Pcm_Data / A_C_Data no C8

Pio0_0-7 yes S T6

Pio1_0-7 yes S T6

Pio2_0-7 yes S T6

Pio3_0-7 yes S T6

Pio4_0-7 yes S T6

PixClk_27Mhz yes S

R_Out no A

ReadnotWrite yes T6

Sdav_Clk yes S T6

Sdav_Data yes S T6

Sdav_Dir yes S T6

Tck yes S

Tdi yes S

Pin name 5V tol’nce
Pin electrical type

Input Output

Table 33.5 Pin electrical type

STi5500 l

286/287286/289 7110597 A

Tdo yes T6

Tms yes S

V_Ref_Dac_RGB no A

V_Ref_Dac_YCC no A

Vdd - P

Vdda_0-1 - P

Vssa_0-1 - P

Y_Out no A

Pin type code Pin type

P Power

A Analog

T6 TTL, 6mA

T8 TTL, 8mA

C8 CMOS, 8mA

S Schmitt trigger

Table 33.6 Pin type codes in Table 33.5

Pin name 5V tol’nce
Pin electrical type

Input Output

Table 33.5 Pin electrical type

STi5500

287/2897110597 A

Appendix A Channel model
The STi5500 on-chip bus which connects the ST20 processor core and the other modules provides
a unique way of communicating between data processing/interface modules, the CPU and memory
(both on and off chip).

The model relies on three main elements of the system. The microkernel of the CPU, the
interconnect protocol, and the design of the module. Instructions are provided which enable the
programmer to make use of these features in a simple and flexible way.

The CPU uses a group of reserved locations at the base of memory to store the task identifier of a
task using one of the channels, see the memory map for details. When a task performs an
instruction requiring communication via the channel the task identifier is stored in the channel
location (specified by the instruction operand) and the appropriate command (determined by the
instruction) is sent to the module. This task is now considered inactive and will take no further CPU
time. The microkernel will begin executing the next active task from its queue. When the module
has completed the command, an acknowledge is sent to the CPU which signals the microkernel to
remove the task identifier from the channel location and put it on the back of the queue of active
processes waiting for CPU time.

The type of operations this is used for is data transfers into and out of CPU memory. This method
of communication has the advantage that the speed and overhead of the data transfer are not
taking up CPU time. The close coupling of the microkernel and these protocols means that the set-
up, acknowledge and context switch times are very short, less than 500 ns in most cases.

A.1 Example

The CPU executes an in instruction from the Block Move DMA module. Operands to the in
instruction are the base pointer in CPU memory and the size in bytes. The task ID of the task
executing the in instruction is placed in address #80000034. The internal bus sends the channel
number, the in command, the base pointer and the size. This will be received by the correct module
using the channel number. The CPU is now free to continue with another operation. The Block
Move DMA module will now input ‘size’ bytes of data and place them in the addresses above the
base pointer. When the correct number of bytes have been received the module returns an
acknowledge command and the channel number to the CPU. The microkernel takes the task ID
from address #80000034 and adds it to the back of the active list.

STi5500

289/2897110597 A

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of
such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice.

This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical
components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

