Advance Information Power Module for 3-phase Brushless DC Motor for Automotive

www.onsemi.com

Overview

The STK984-190-E $\,$ is a Power Module designed to be used in brush-less DC motor.

Function

• It is possible to make seven MOSFETs 1 small packages by heat dissipation substrate and transfer mold technology.

Specifications

Absolute Maximum Ratings at Tc = 25°C

		_			
Parameter	Symbol	Cone	ditions	Ratings	Unit
Drain-to-Source Voltage	V _{DSS}			40	V
		Gate COM to +B, 0	Gate 1H to 1,		
Control Input Voltage	V _{IN} max	Gate 2H to 2, Gate	e 3H to 3,	+/–20	V
		Gate 1L, Gate 2L,	Gate 3L to GND		
Continuous Drain Current	ID max	DC		30	Α
Pulsed Drain Current	ID pulse	Pulse (t _p = 10 μs)		85	Α
Power Dissipation	Pd max	Each channel	Tc=25°C	36	W
Junction Temperature	Tj max	Semiconductor De	vice	175	°C
Operating Temperature	Tc	Substrate Tempera	ture	–40 to 150	°C
Storage Temperature	Tstg		-	–40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at -40° C \leq Tc \leq 125 $^{\circ}$ C

rtocommonaca operating	g oomannon	- at 10 0 = 10 = 120 0				
Darameter	Cumbal	Conditions	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	Ullit
Supply Voltage	V+B max	+B to GND	8	13.5	18	V
Control Input Voltage	VIN	Gate COM to +B, Gate 1H to 1,		10	18	V
		Gate 2H to 2, Gate 3H to 3,				
		Gate 1L, Gate 2L, Gate 3L to GND				
Drain Current	ID	Tc=125°C, Gate HU to LW=10V	-	-	25	Α
Operating Substrate Temperature	Tc	Thick Film IC Substrate Temperature	-40	-	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Thermal Resistance

	0 1 1	0 1111	Ratings			
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Chip-Case Resistance	Θј-с	Junction-to-backside of the substrate MOSFET/ch	-	-	4.1	°C /W

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

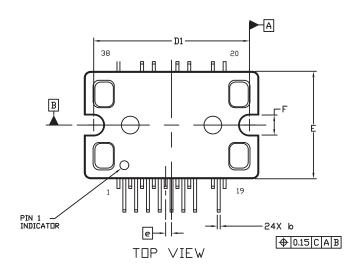
Electrical Characteristics at Ta = 25°C

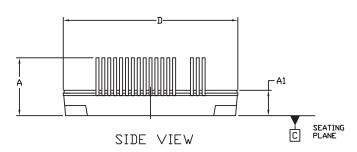
Parameter	Symbol	Conditions	Ratings			Unit
Farameter	Syllibol	Conditions	min	typ	max	Offic
Zero Gate Voltage Drain Current	IDSS	V _{GS} =0V, V _{DS} =40V	1	-	1.0	μΑ
Gate Threshold Voltage	V _{GS} (TH)	V _{GS} =V _{DS} , ID=250µA	1.5	-	3.5	V
Output Saturation Voltage / Each FET (incudes the wiring resistance)	V _{DS} (sat)	V _{GS} =10V, ID=30A 13/14 to 18/19 pin , 13/14 to 10/12 pin 13/14 to 8/9 pin , 13/14 to 2/3 pin 10/12 to 5/6 pin , 8/9 to 5/6 pin 2/3 to 5/6 pin	-	0.285	0.38	V
Forward Diode Voltage	V _{SD}	V _{GS} =0V, ID=30A	-	0.96	1.4	V

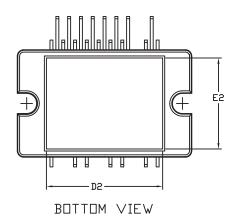
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

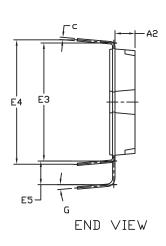
Charges, Capacitances (Note1)

Input Capacitance	Ciss	V _{GS} =0V, f=1.0MHz V _{DS} =25V	-	1725	-	pF
Total Gate Charge	Qg	V _{GS} =10V, V _{DS} =32V ID=30A	-	33	80	nC

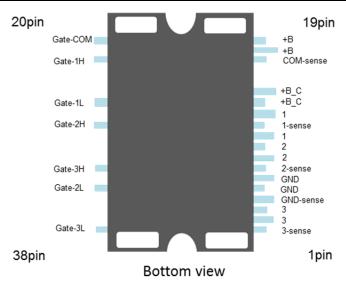

Note 1 : Ciss & Qg : Design reference value


Package Dimensions

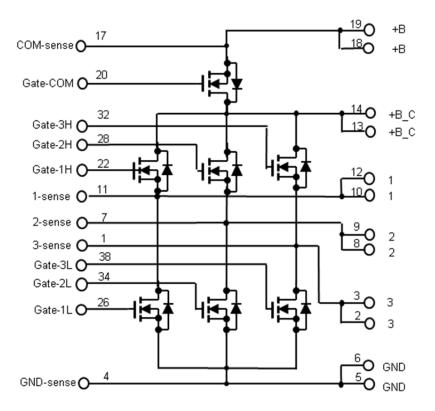

unit: mm


MODULE SPCM24 29.6x18.2 DIP S3 CASE MODBL

ISSUE O

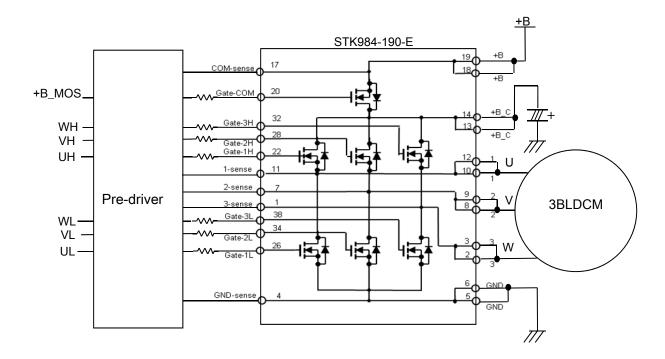

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION & APPLIES TO THE PLATED LEAD AND IS MEASURED BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP.
- PACKAGE IS MISSING PINS: 15, 16, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, AND 37.

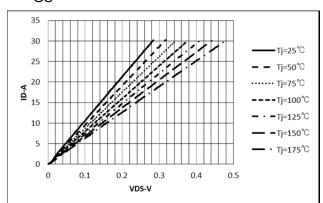

	MILLIMETERS		
DIM	MIN.	MAX.	
Α	9.30	10.30	
A1	3.80	4.80	
A2	2.90	3.90	
b	0.45	0.70	
C	0.35	0.60	
D	29.10	30.10	
D1	26.30	26.50	
D2	19.20	20.20	
E	17.70	18.70	
E2	14.90	15.90	
E3	19.50	20.50	
E4	21.10 REF		
е	1.00 BSC		
F	2.90	3.90	
G	4°	6*	

Pin Assignment

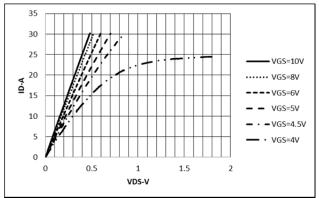
Pin No.	Pin Name	Description
1	3-sense	Sense_Upper_3_Source
2	3	3 phase Output
3	3	3 phase Output
4	GND-sense	Sense_GND
5	GND	GND
6	GND	GND
7	2-sense	Sense_Upper_2_Source
8	2	2 phase Output
9	2	2 phase Output
10	1	1 phase Output
11	1-sense	Sense_Upper_1_Source
12	1	1 phase Output
13	+B_C	Power Supply Common
14	+B_C	Power Supply Common
15	NC	-
16	NC	-
17	COM-sense	Sense_Power Supply Common
18	+B	Power Supply
19	+B	Power Supply
20	Gate-COM	Common_Gate
21	NC	-
22	Gate-1H	Upper_1_Gate
23	NC	-
24	NC	-
25	NC	-
26	Gate-1L	Lower_1_Gate
27	NC	
28	Gate-2H	Upper_2_Gate
29	NC	-
30	NC	-
31	NC	-
32	Gate-3H	Upper_3_Gate
33	NC	-
34	Gate-2L	Lower_2_Gate
35	NC	-
36	NC	-
37	NC	-
38	Gate-3L	Lower_3_Gate


Block Diagram

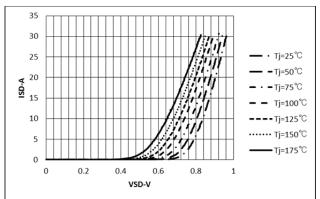
The terminal to give next can change 1 terminal to the Sense terminal by an arbitrary change in the group of 3 output common terminal.

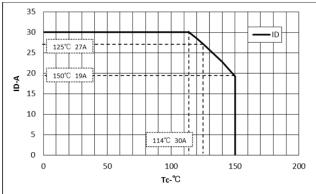

1 terminal within each group.
1, 2, 3 terminal, 4, 5, 6 terminal, 7, 8, 9 terminal, 10, 11, 12 terminal, 17, 18 and 19 of the terminal

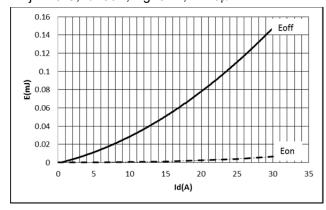
Application Circuit Example

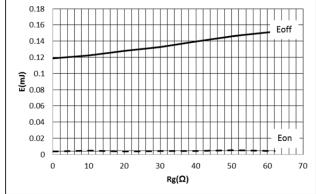


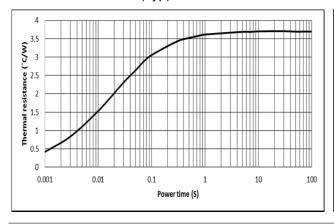
Characteristics (Typ)

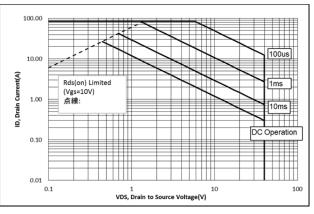

1. V_{DS} – Tj (Typ) V_{GS}=10V

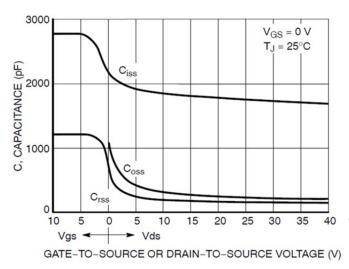

2. V_{DS} – V_{GS} (Typ) Tj=175°C

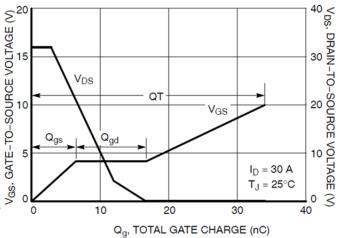

3. VSD (TYP) - Tj (Typ)


4. Derating Curve


5. Switching Loss – Drain current (Typ) $Tj=175^{\circ}C$, Id=30A, $Rg=51\Omega$, $L=40\mu H$


6. Switching Loss – Gate Resistance (Typ) Tj=175°C, Id=30A, L=40μH


7. Thermal resistance (Typ)


8. ASO (Tc=125 °C)

9.Capacitnace - V_{DS} (Typ)

10.Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Note: Excerpt from discrete data (No. 9 and 10)

Electrostatic Discharge / ESD

Item	Condition	Value
HBM	100pF,1.5KΩ, 3time	±1000V
MM	200pF,0Ω, 1time	±200V

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK984-190-E	MODULE SPCM24 29.6x18.2 DIP S3 (Pb-Free)	TBD/Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re