STL10LN80K5

N-channel 800 V, 0.59 Ω typ., 6 A MDmesh™ K5 Power MOSFET in a PowerFLAT™ 5x6 VHV package

Datasheet - production data

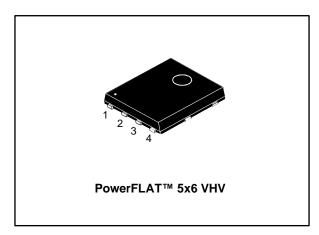
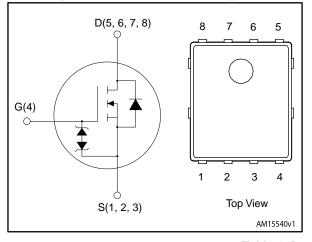



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STL10LN80K5	800 V	0.66 Ω	6 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL10LN80K5	10LN80K5	PowerFLAT™ 5x6 VHV	Tape and reel

Contents STL10LN80K5

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 5x6 VHV package information	11
	4.2	PowerFLAT™ 5x6 packing information	14
5	Revisio	n history	16

STL10LN80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol Parameter		Value	Unit
V_{GS}	Gate-source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	6	Α
I _D	Drain current (continuous) at T _C = 100 °C	3.8	Α
I _D ⁽¹⁾	Drain current pulsed		Α
P _{TOT}	Total dissipation at T _C = 25 °C	42	W
dv/dt (2)	Peak diode recovery voltage slope	4.5	\
dv/dt (3)	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		V/ns
T _j	Operating junction temperature range		°C
T _{stg}	Storage temperature range	- 55 to 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3	°C/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-ambient	59	°C/W

Notes

Table 4: Avalanche characteristics

Symbol	Value	Unit				
I_{AR} Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})		2.7	Α			
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	240	mJ			

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \le 6$ A, dv/dt ≤ 100 A/µs; V_{DS} peak < V(BR)DSS, V_{DD}=640 V

 $^{^{(3)}}V_{DS} \le 640 \text{ V}$

 $^{^{(1)}}$ When mounted on 1inch² FR-4 board, 2 oz Cu

Electrical characteristics STL10LN80K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			V
		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$		0.59	0.66	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	427	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	43	-	pF
C_{rss}	Reverse transfer capacitance	VGS - 0 V	-	0.25	1	pF
$C_{o(tr)}^{(1)}$	Equivalent capacitance time related	V _{DS} = 0 to 640 V,	-	72	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0 V$		27	ı	pF
R_g	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	-	7	ı	Ω
Q_g	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 8 \text{ A}$	-	15	-	nC
Q_gs	Gate-source charge	V _{GS} = 10 V	-	4.2	-	nC
Q_{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	9	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_{D} = 4 A, R_{G} = 4.7 Ω	-	11.8	-	ns
t _r	Rise time	V _{GS} = 10 V (see <i>Figure 15: "Test</i>	-	10	-	ns
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 20: "Switching	-	28	-	ns
t _f	Fall time	time waveform")	-	13	-	ns

Table 8: Source-drain diode

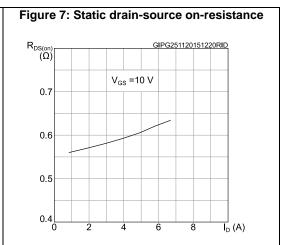
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		6	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		24	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 6 A$, $V_{GS} = 0 V$	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 6 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	350		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 17: "Test circuit	-	3.9		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	22.5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 6 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	505		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 17: "Test circuit	-	5		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	20		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_{D} = 0 A	30			V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.


⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.2 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG090216VK83LSOA (A) Operation in this area is limited by R_{DS(on)} 10¹ t_o=10 μs t_p=100 μs 10⁰ t_p=1 ms T_i≤150 °C t_p=10 ms 10⁻ single pulse 10-2 10° 10¹ 10² 10³ $\overline{V}_{DS}(V)$

Figure 6: Gate charge vs gate-source voltage GIPG151020151235QVG V_{DS} V_{GS} (V) V_{DS} 600 12 V_{DD} = 640 V I_D = 8 A 10 500 400 300 200 100 Q_g (nC) 15 10

STL10LN80K5 Electrical characteristics

Figure 8: Capacitance variations C (pF) GIPG151020151325CVR 10³ C_{ISS} 10² f = 1 MHz $\mathsf{C}_{\mathsf{oss}}$ 10¹ C_{RSS} 10 º 10⁻¹ Ŭ _{DS}(V) 10⁻¹ 10¹ 10^{2}

Figure 9: Normalized gate threshold voltage vs temperature

V GS(III) GIPG151020151142VTH

(NORM.) I D= 100 µA

1.2

1.0

0.8

0.6

0.4

0.2

-50

0 50

100

T (°C)

Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG151020151154RON
(norm.)

2.6 V_{GS} = 10 V

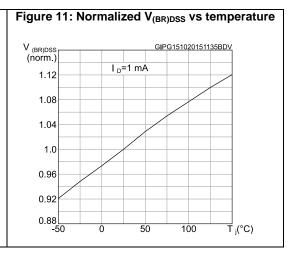
2.2

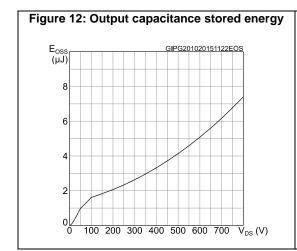
1.8

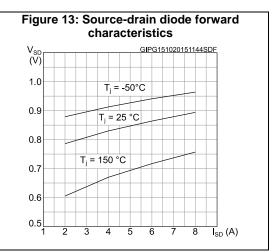
1.4

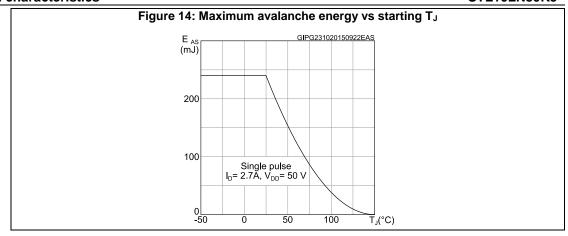
1.0

0.6


0.2


-50


0 50


100

T_j (°C)

STL10LN80K5 Test circuits

3 Test circuits

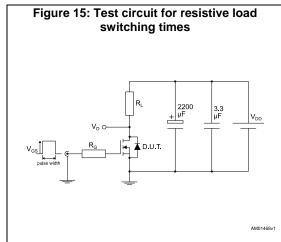
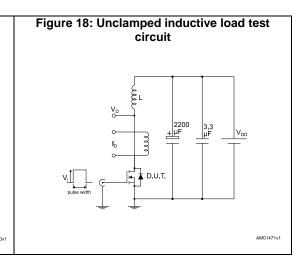
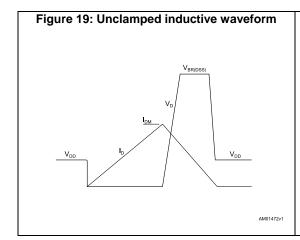
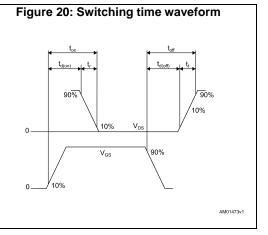


Figure 16: Test circuit for gate charge behavior


12 V 47 KΩ 11 KΩ


Vos pulse width 2200 12 T KΩ


Vos pulse width 2200 147 KΩ

AM01469v1

Figure 17: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STL10LN80K5 Package information

4.1 PowerFLAT™ 5x6 VHV package information

Figure 21: PowerFLAT™ 5x6 VHV Package outline

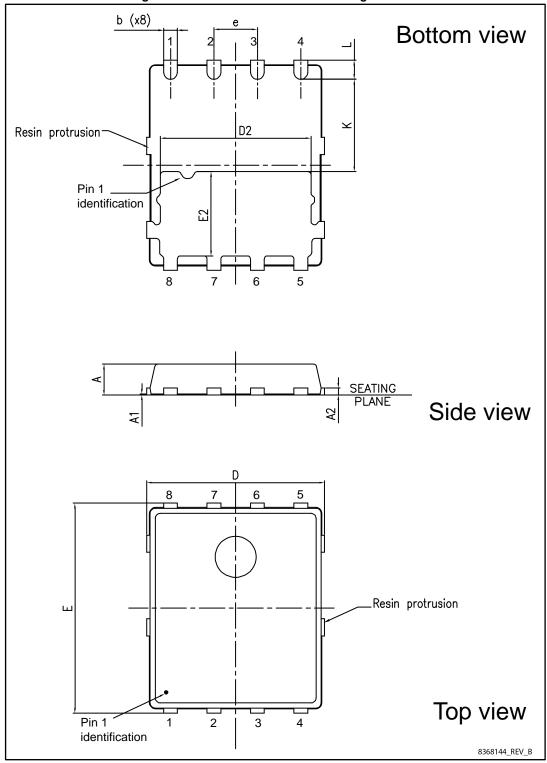


Table 10: PowerFLAT™ 5x6 VHV package mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D	5.00	5.20	5.40		
Е	5.95	6.15	6.35		
D2	4.30	4.40	4.50		
E2	2.40	2.50	2.60		
е		1.27	_		
L	0.50	0.55	0.60		
K	2.60	2.70	2.80		

4.31

0.5

0.77

3.04

Figure 22: PowerFLAT™ 5x6 VHV recommended footprint (dimensions are in mm)

8368144_REV_B_footprint

Package information STL10LN80K5

4.2 PowerFLAT™ 5x6 packing information

Figure 23: PowerFLAT™ 5x6 tape (dimensions are in mm)

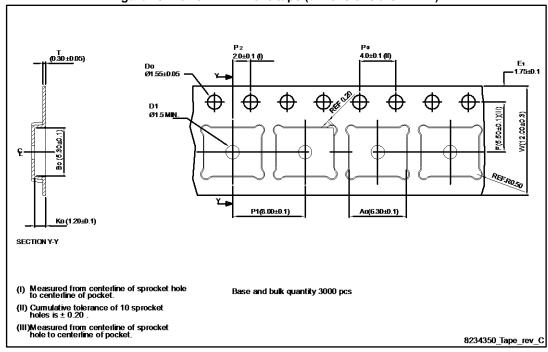


Figure 24: PowerFLAT™ 5x6 package orientation in carrier tape

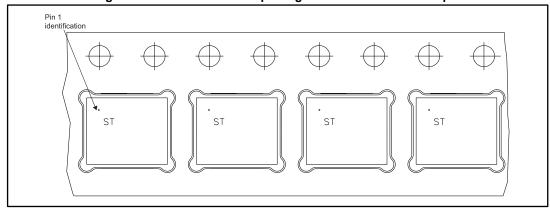


Figure 25: PowerFLAT™ 5x6 reel

PART NO.

R25.00

R25.

Revision history STL10LN80K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
25-Sep-2015	1	First release.
09-Feb-2016	2	Modified: R _{DS(on)} in cover page Modified: <i>Table 2: "Absolute maximum ratings"</i> , <i>Table 3: "Thermal data"</i> , <i>Table 5: "On/off-state"</i> , <i>Table 6: "Dynamic"</i> and <i>Table 8: "Source-drain diode"</i> Added: <i>Section 3.1: "Electrical characteristics (curves)"</i> Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

