

N-channel 250 V, 0.14 Ω, 17 A, PowerFLAT™ (6x5) low gate charge STripFET™ II Power MOSFET

Preliminary data

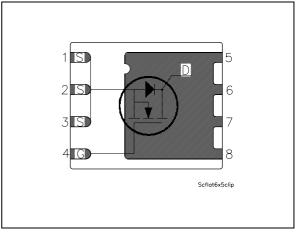
STL17NF25

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STL17NF25	250 V	< 0.165 Ω	17 A

- Improved die-to-footprint ratio
- Very low profile package (1 mm max)
- Exceptional dv/dt capability
- Low gate charge

Application


Switching applications

Description

This application specific Power MOSFET is the latest generation of STMicroelectronics unique "STripFET™" technology. The resulting transistor is optimized for low on-resistance and minimal gate charge. The chip-scaled PowerFLAT™ package allows a significant board space saving, still boosting the performance.

verFLAT™(6x5)

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging	
STL17NF25	17NF25	PowerFLAT™ (6x5)	Tape and reel	

Doc ID 15598 Rev 1

www.st.com

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

www.DataSheet4U.com

1 Electrical ratings

www.datasheet4u.com

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	250	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at $T_C = 25 \text{ °C}$	17	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C =100 °C	10	Α
I _D ⁽²⁾	Drain current (continuous) at T _C =25 °C	3.5	Α
$I_{DM}^{(3)}$	Drain current (pulsed)	68	Α
P _{TOT} ⁽¹⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$	60	W
P _{TOT} ⁽²⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$	4	W
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	10	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
TJ	Max. operating junction temperature	150	°C

1. This value is rated according R_{thj-c}

2. This value is according to ${\sf R}_{thj\text{-}pcb}$

3. Pulse width limited by safe operating area

4. $I_{SD} \leq 17$ A, di/dt ≤ 200 A/µs, $V_{DD} = 80\%$ $V_{(BR)DSS}$

	Table 3.	Thermal data
--	----------	--------------

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-ambient max	31.3	°C/W

1. When mounted on FR-4 board of 1 inch², 2 oz Cu, t < 10 sec

Electrical characteristics

www.datasheet4u.com

2

Table 4. On/off states

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	250			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = Max rating, V _{DS} = Max rating,Tc=125 °C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 8.5 A		0.14	0.165	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D = 8.5 A	-	14	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0	-	1000 178 28	-	pF pF pF
C _{oss eq}	Equivalent output capacitance	Vgs=0, Vbs =0 to 200 V	-	135	-	pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =200 V, I_D = 17 A V_{GS} =10 V (see Figure 3)	-	29.5 4.8 15.6	-	nC nC nC
R _G	Gate input resistance	f=1 MHz gate DC bias=0 test signal level=20 mV open drain	-	2	-	Ω

1. Pulsed: pulse duration=300 $\mu s,$ duty cycle 1.5%

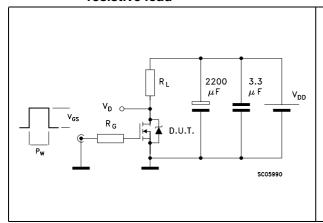
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	V_{DD} =125 V, I _D =8.5 A, R _G =4.7 Ω , V _{GS} =10 V (see Figure 2)	-	8.8 17.2	-	ns ns
t _{d(off)} t _f	Turn-off delay time Fall time	V_{DD} =125 V, I _D =8.5 A, R _G =4.7 Ω , V _{GS} =10 V (see Figure 2)	-	21 8.8	-	ns ns

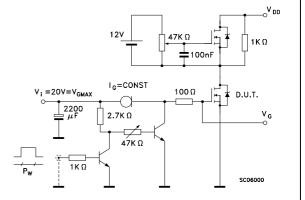
Table 6.Switching times

Table 7.Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		17 68	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =17 A, V _{GS} =0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 17$ A, di/dt = 100 A/µs, V _{DD} = 50 V (see Figure 4)	-	157 0.91 11.6		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 17 A, di/dt = 100 A/μs, V _{DD} = 50 V, Tj=150 °C (see Figure 4)	-	196 1.34 13.7		ns μC Α

1. Pulse width limited by safe operating area


2. Pulsed: pulse duration=300µs, duty cycle 1.5%



3 Test circuits

. Switching times test circuit for resistive load

Gate charge test circuit

Figure 3.

Figure 4. Test circuit for inductive load F switching and diode recovery times

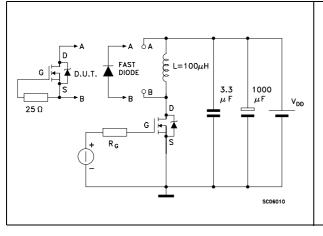
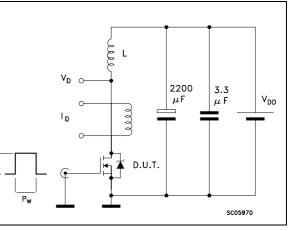
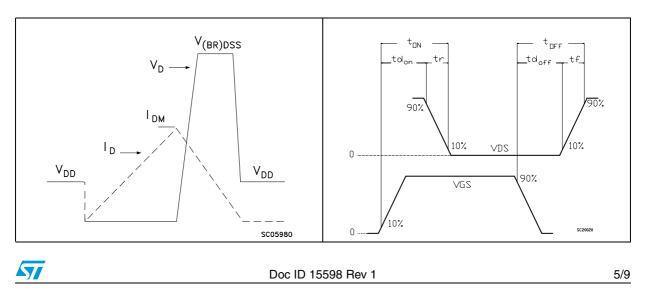
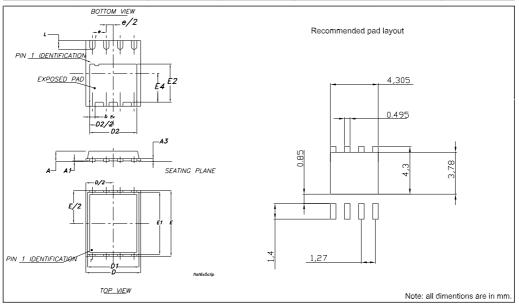




Figure 5. Unclamped inductive load test circuit

V,

4 Package mechanical data

www.datasheet4u.com


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

57

PowerFLAT™ (6x5)mechanicaldata

5.14		mm.			inch	
D M .	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.83	0.93	0.031 0.32		0.036
A1		0.02	0.05		0.0007	0.0019
A3		0.20			0.007	
b	0.35	0.40	0.47	0.47 0.013 0.015		0.018
D		5.00			0.196	
D1		4.75			0.187	
D2	4.15	4.20	4.25	0.163	0.165	0.167
Е		6.00		0.236		
E1		5.75			0.226	
E2	3.43	3.48	3.53	0.135 0.137		0.139
E4	2.58	2.63	2.68		0.103 0.	
e		1.27		0.050		
L	0.70	0.80	0.90	0.027	0.031	0.035

Doc ID 15598 Rev 1

5 Revision history

www.datasheet4u.com

Table 8.Document revision history

Date	Revision	Changes
17-Apr-2008	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15598 Rev 1