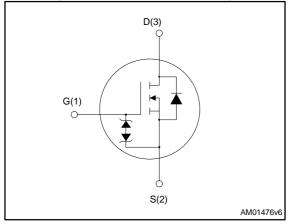
STL24N65M2


Datasheet - production data

N-channel 650 V, 0.205 Ω typ., 14 A MDmesh M2 Power MOSFET in a PowerFLAT™ 8x8 HV package

G(1) G(1) D(2) D(2) PowerFLAT™ 8x8 HV

Figure 1: Internal schematic diagram

Features

Order codes	VDS	R _{DS(on)} max	ID
STL24N65M2	650 V	0.250 Ω	14 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and improved vertical structure, the devices exhibit low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order codes	Marking	Package	Packaging
STL24N65M2	24N65M2	PowerFLAT™ 8x8 HV	Tape and reel

November 2014

DocID027182 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	PowerFLAT 8x8 HV package information	
5	Packag	ing mechanical data	12
6	Povisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
lD	Drain current (continuous) at T _c = 25 °C	14	А
ID	Drain current (continuous) at $T_c = 100 \ ^{\circ}C$	8.8	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	56	А
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$	125	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	- 55 10 150	C

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}I_{SD} \le 14$ A, di/dt ≤ 400 A/µs; V_DS(peak) < V(BR)DSS, V_DD = 80% V(BR)DSS. $^{(3)}V_{DS} \le 520$ V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case max	1	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾		°C/W

Notes:

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	2	А
Eas	Single pulse avalanche energy (starting $T_j=25^{\circ}C$, $I_D=I_{AR}$; $V_{DD}=50V$)	655	mJ

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Table 5: On /off states							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V(BR)DSS	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	650			V	
l	Zero gate voltage	V _{DS} = 650 V			1	μA	
I _{DSS}	drain current (V _{GS} = 0 V)	V _{DS} = 650 V, T _C =125 °C			100	μA	
Igss	Gate-body leakage current (V _{DS} = 0 V)	$V_{GS} = \pm 25 V$			±10	μA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V	
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 7 A		0.205	0.250	Ω	

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1060	•	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, \text{ f} = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	47.5	-	pF
Crss	Reverse transfer capacitance	VGS - 0 V	-	1.65	-	pF
C oss eq. ⁽¹⁾	Equivalent output capacitance $V_{DS} = 0$ to 520 V V _{GS} = 0 V		-	229	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0$	-	7	-	Ω
Qg	Total gate charge		-	29	•	nC
Qgs	Gate-source charge $V_{DD} = 520 \text{ V}, \text{ I}_D = 16 \text{ A},$ $V_{GS} = 10 \text{ V}$		-	3.8	-	nC
Q _{gd}	Gate-drain charge	101	-	14	-	nC

Notes:

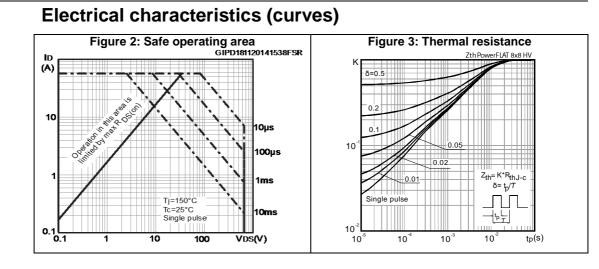
 $^{(1)}$ C $_{\rm oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C $_{\rm oss}$ when V $_{\rm DS}$ increases from 0 to 80% V_DSs

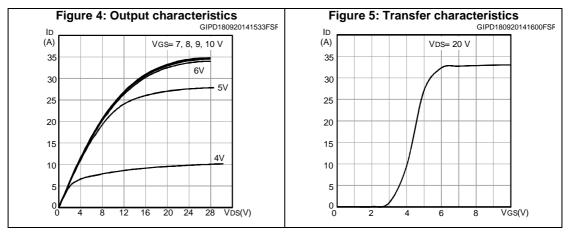
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	10	-	ns
tr	Rise time	V _{DD} = 325 V, I _D = 8 A,	-	9.5	-	ns
t _{d(off)}	Turn-off delay time	$R_G=4.7~\Omega,~V_{GS}=10~V$	-	68	-	ns
t _f	Fall time		-	25.5	-	ns

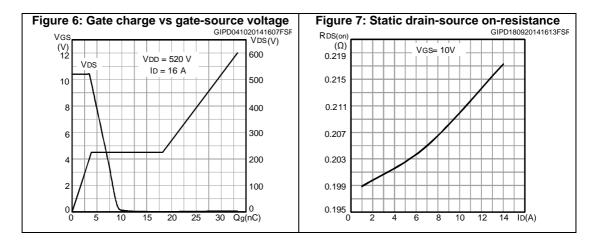
Table 7: Switching times

Electrical characteristics

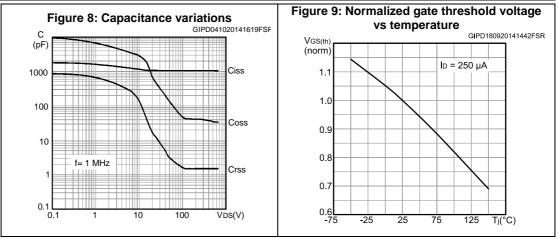
Table 8: Source drain diode							
Symbol							
I _{SD}	Source-drain current		-		16	Α	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		64	Α	
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 16 A, V _{GS} = 0 V	-		1.6	V	
t _{rr}	Reverse recovery time		-	350		ns	
Qrr	Reverse recovery charge	I _{SD} = 16 A, di/dt = 100 A/μs V _{DD} = 60 V	-	4.5		μC	
IRRM	Reverse recovery current	v DD = 00 v	-	26		Α	
t _{rr}	Reverse recovery time		-	496		ns	
Qrr	Reverse recovery charge	I _{SD} = 16 A, di/dt = 100 A/μs V _{DD} = 60 V, T _i = 150 °C	-	6.5		μC	
IRRM	Reverse recovery current	$1 \text{ vol} = 00 \text{ v}, \text{ i}_{j} = 150 \text{ C}$	-	25.5		Α	

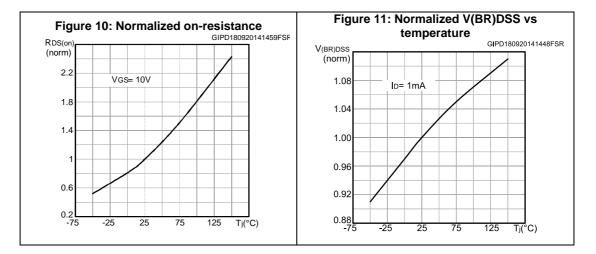

Notes:

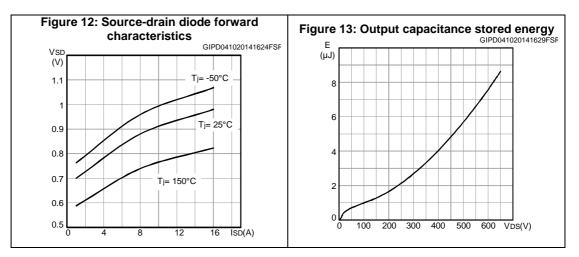

⁽¹⁾Pulse width limited by safe operating area.


 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

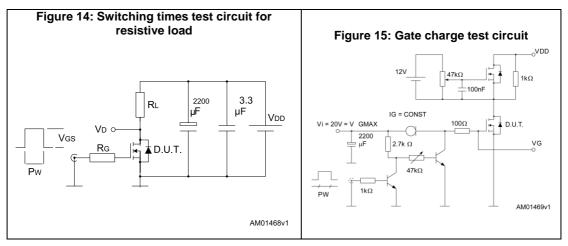
2.1

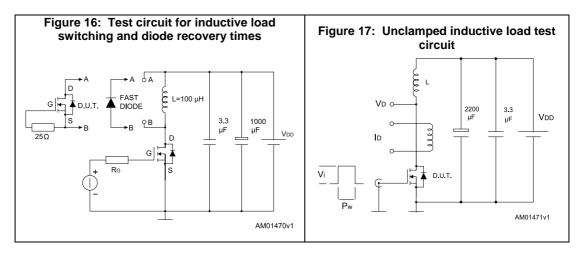


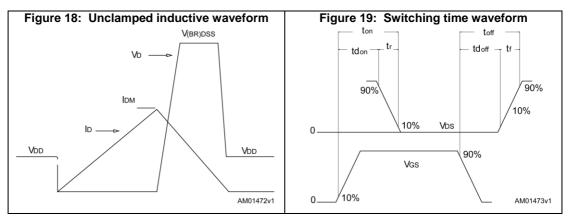



DocID027182 Rev 1

Electrical characteristics







57

3 Test circuits

4 Package mechanical data

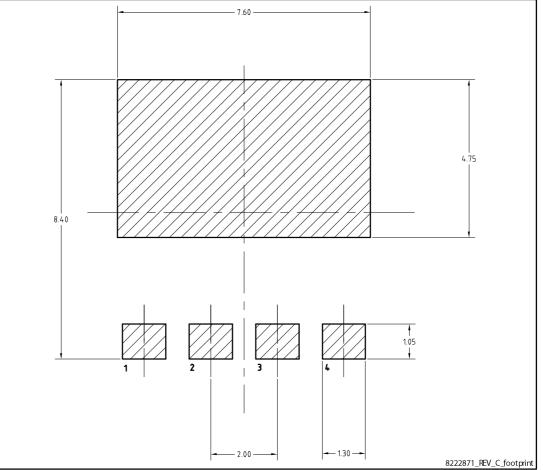
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 20: PowerFLAT™ 8x8 HV drawing BOTTOM VIEW e Ь PIN#1 ID E2 0.4.0 7 D2 SIDE VIEW 0.20±0.008 ٩ SEATING PLANE D INDEX AREA ш TOP VIEW 8222871_REV_0

4.1 **PowerFLAT 8x8 HV package information**

10/15

DocID027182 Rev 1



STL24N65M2

Package mechanical data

Table 9: PowerFLAT™ 8x8 HV mechanical data				
Dim		mm		
Dim.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.95	1.00	1.05	
D		8.00		
E		8.00		
D2	7.05	7.20	7.30	
E2	4.155	4.30	4.40	
е		2.00		
L	0.40	0.50	0.60	

All the dimensions are in millimeters.

DocID027182 Rev 1

5 Packaging mechanical data

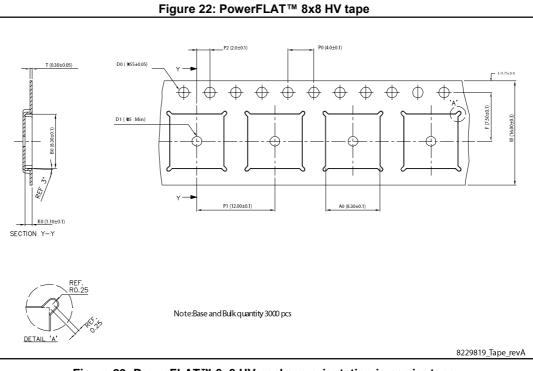
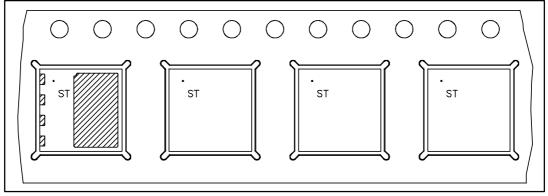
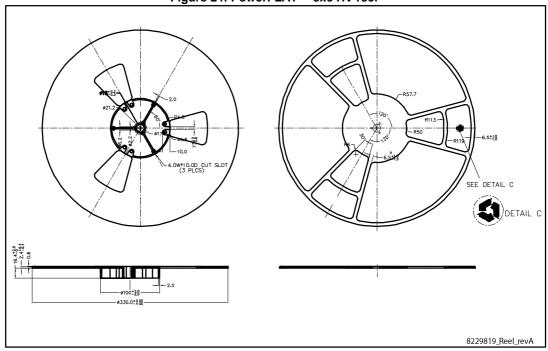




Figure 23: PowerFLAT™ 8x8 HV package orientation in carrier tape

6 Revision history

Table 10: Document revision history

Date	Revision	Changes
19-Nov-2014	1	First release.

STL24N65M2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

