

www.datasheet4u.com

STL27N15 N-CHANNEL 150V - 0.045 Ω - 27A PowerFLAT™ LOW GATE CHARGE STripFET™ MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	ID	
STL15N15	150 V	<0.060 Ω	27 A(1)	

- TYPICAL $R_{DS}(on) = 0.045 \Omega$
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- VERY LOW GATE CHARGE

DESCRIPTION

This MOSFET series realized with STMicroelectronics unique "STripFET™" process has specifically been designed to minimize input capacitance and gate charge. It's therefore suitable as primary switch in advanced high efficiency, high frequency isolated DC-DC converter for telecom an computer application. The new PowerFLAT™ package allows e significant reduction in a board space without compromising performance.

APPLICATIONS

- HIGH-EFFICIENCY ISOLATED DC-DC CONVERTERS
- TELECOM AND BATTERY CHARGER ADAPTOR
- SYNCHRONOUS RECTIFICATION

Ordering Information

SALES TYPE	MARKING	PACKAGE	PACKAGING						
STL27N15	L27N15	PowerFLAT	TAPE & REEL						

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	150	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	150	V
V _{GS}	Gate- source Voltage	± 20	V
Ι _D	Drain Current (continuous) at T _C = 25°C (Steady State)	6	A
Ι _D	Drain Current (continuous) at T _C = 100°C	4	A
I _{DM} (3)	Drain Current (pulsed)	24	A
P _{tot} ⁽²⁾	Total Dissipation at $T_C = 25^{\circ}C$ (Steady State)	4	W
P _{tot} ⁽¹⁾	Total Dissipation at $T_C = 25^{\circ}C$	80	W
	Derating Factor	0.03	W/°C
dv/dt (5)	Peak Diode Recovery voltage slope	TBD	V/ns
T _{stg}	Storage Temperature	-55 to 150	°C
Тj	Operating Junction Temperature	00 10 100	Ũ

June 2003

This is preliminary information on a new product forseen to be developped. Details are subject to change without notice

INTERNAL SCHEMATIC DIAGRAM

1/6

STL27N15

THERMAL DATA

Rthj-F	Thermal Resistance Junction-Foot (Drain)	1.56	°C/W
Rthj-pcb(2)	Thermal Operating Junction-pcb	31.2	°C/W

www.datasheet4u.com

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	100			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±100	nA

ON (6)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 3 A		0.045	0.060	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽⁶⁾	Forward Transconductance	$V_{DS} = 50 \text{ V}$ $I_D = 5 \text{ A}$		TBD		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		TBD TBD TBD		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
www.datas	t _{d(on)} t _r	Turn-on Delay Time Rise Time			TBD TBD		ns ns
	Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 50V I _D = 6A V _{GS} =10V		TBD TBD TBD	28	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD}=50 \ V & I_{D}=3 \ A \\ R_{G}=4.7 \Omega, & V_{GS}=10 \ V \\ (\text{Resistive Load, Figure 3}) \end{array} $		TBD TBD		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Condit	Min.	Тур.	Max.	Unit	
I _{SD} I _{SDM} ⁽³⁾	Source-drain Current Source-drain Current (pulsed)					6 24	A A
V _{SD} (6)	Forward On Voltage	$I_{SD} = 3 A V_{GS}$	s = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 6 A$ di/d $V_{DD} = 30 V$ j (see test circuit, Fig	t = 100A/µs = 150°C jure 5)		TBD TBD TBD		ns nC A

57

 $\begin{array}{c} & \\ (1) \mbox{ The value is rated according R_{thj}-F.} \\ (2) \mbox{ When Mounted on FR-4 board of 1 inch2, 2oz Cu} \\ (3) \mbox{ Pulse width limited by safe operating area.} \\ (5) \mbox{ I}_{SD} \leq 6A, \mbox{ di/dt } \leq 300A/\mu s, \mbox{ V}_{DD} \leq V_{(BR)DSS}, \mbox{ T}_j \leq T_{JMAX}. \\ (6) \mbox{ Pulse duration = 300 } \mu s, \mbox{ duty cycle 1.5 } \%. \end{array}$

STL27N15

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

4/6

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

57

www.datash	eet4u.com				-		
	DIM		mm.			inch	
	LAUNT.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
	A	0.80		1.00	0.031		0.039
	A1		0.02			0.001	
	b	0.35		0.47	0.014		0.018
	С		1.61			0.063	
	D		5.00			0.197	
	D2	4.15		4.25	0.163		0.167
	ш		6.00			0.236	
	E2	3.55		3.65	0.140		0.144
	e		1.27			0.049	
	F		1.99			0.078	
	G		2.20			0.006	
	н		0.40			0.015	
			0.219			0.0086	
	L	0.70		0.90	0.028		0.035

PowerFLAT™(6x5) MECHANICAL DATA

www.DataSheet4U.com

www.datasheet4u.com

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

