STL34N65M5

N-channel 650 V, 0.099 Ω typ., 22.5 A MDmesh™ V Power MOSFET in PowerFLAT™ 8x8 HV package

Datasheet - production data

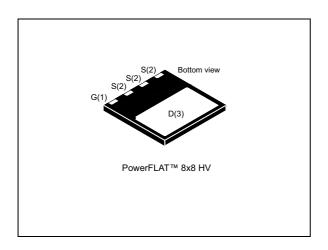
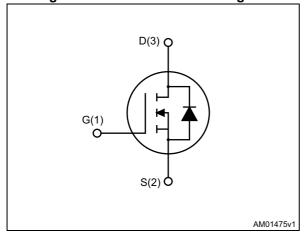



Figure 1. Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STL34N65M5	710 V	$0.120~\Omega$	22.5 A ⁽¹⁾

- The value is rated according to R_{thj-case} and limited by package.
- 100% avalanche tested
- Low input capacitance and gate charge
- · Low gate input resistance

Applications

· Switching applications

Description

This device is an N-channel MDmesh™ V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL34N65M5	34N65M5	PowerFLAT™ 8x8 HV	Tape and reel

Contents STL34N65M5

Contents

1	Electrical ratings	3
2	Electrical characteristics	
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data1	3
6	Revision history 1	15

STL34N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate-source voltage	± 25	٧
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	22.5	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	15	Α
I _{DM} (1),(2)	Drain current (pulsed)	90	Α
I _D (3)	Drain current (continuous) at T _{amb} = 25 °C	3.2	Α
I _D (3)	Drain current (continuous) at T _{amb} = 100 °C	2	Α
P _{TOT} (3)	Total dissipation at T _{amb} = 25 °C	2.8	W
P _{TOT} (1)	Total dissipation at T _C = 25 °C	150	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T_j max)	6	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	510	mJ
dv/dt (4)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

- 1. The value is rated according to $R_{\mbox{\scriptsize thj-case}}$ and limited by package.
- 2. Pulse width limited by safe operating area.
- 3. When mounted on FR-4 board of inch², 2oz Cu.
- $4. \quad I_{SD} \ \leq \ 22.5 \ A, \ di/dt \ \leq \ 400 \ A/\mu s, \ V_{DS(peak)} < V_{(BR)DSS,} \ V_{DD} = 400 \ V.$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.83	°C/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-ambient max	45	°C/W

1. When mounted on FR-4 board of inch2, 2oz Cu.

Electrical characteristics STL34N65M5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			1 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$		0.099	0.120	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2700	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	75	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	6.3	-	pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	V _{GS} = 0,	-	63	-	pF
C _{o(tr)} ⁽²⁾	Equivalent output capacitance time related	$V_{DS} = 0$ to 80% $V_{(BR)DSS}$	-	220	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.95	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 14 A,	-	62.5	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15</i>)	-	17	-	nC
Q _{gd}	Gate-drain charge		-	28	-	nC

Co(er) is a constant capacitance value that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS

4/15 DocID023325 Rev 1

^{2.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time		-	59	-	ns
t _{r(v)}	Voltage rise time	$V_{DD} = 400 \text{ V}, I_D = 18 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	8.7	-	ns
t _{f(i)}	Current fall time	(see Figure 19)	-	7.5	-	ns
t _{c(off)}	Crossing time		-	12	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		22.5	Α
I _{SDM} (1),(2)	Source-drain current (pulsed)		-		90	Α
V _{SD} (3)	Forward on voltage	$I_{SD} = 22.5 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 22.5 A,	-	330		ns
Q_{rr}	Reverse recovery charge	di/dt = 100 A/µs	-	5.3		μC
I _{RRM}	Reverse recovery current	V _{DD} = 100 V (see <i>Figure 16</i>)	-	32.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 22.5 A,	-	412		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs V _{DD} = 100 V, T _i = 150 °C	ı	7.3		μC
I _{RRM}	Reverse recovery current	(see <i>Figure 16</i>)	ı	35.5		Α

^{1.} The value is rated according to $\ensuremath{R_{thj\text{-}case}}$ and limited by package.

^{2.} Pulse width limited by safe operating area.

^{3.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

Electrical characteristics STL34N65M5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

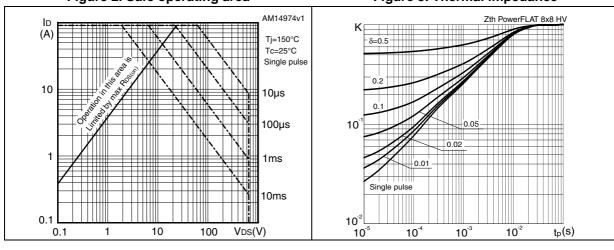


Figure 4. Output characteristics

Figure 5. Transfer characteristics

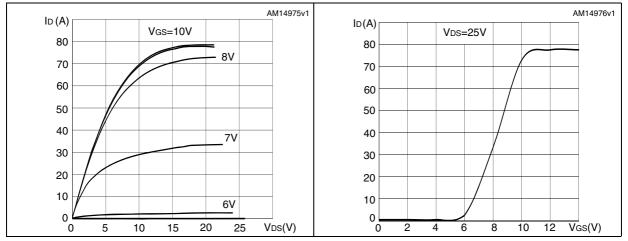
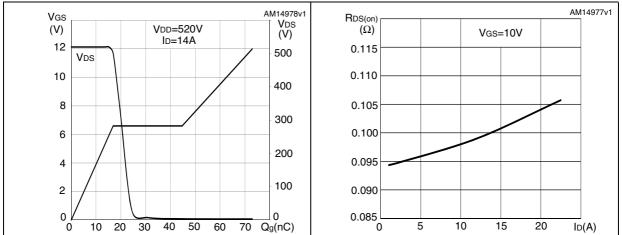
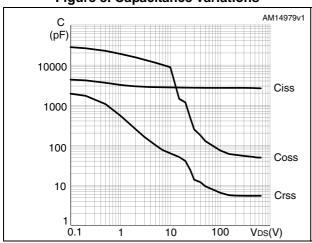



Figure 6. Gate charge vs gate-source voltage


Figure 7. Static drain-source on-resistance

57

Figure 8. Capacitance variations

Figure 9. Output capacitance stored energy

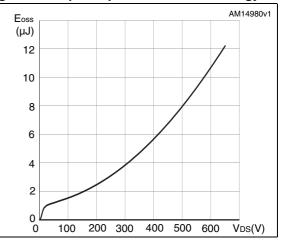
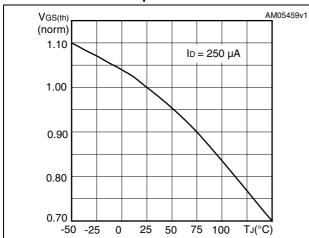



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

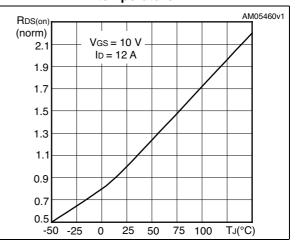
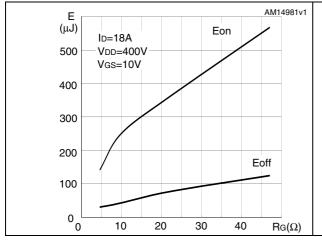
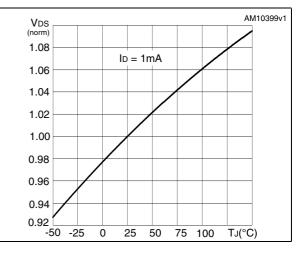




Figure 12. Switching losses vs gate resistance

Figure 13. Normalized V_{DS} vs temperature

1. Eon including reverse recovery of a SiC diode

Test circuits STL34N65M5

3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

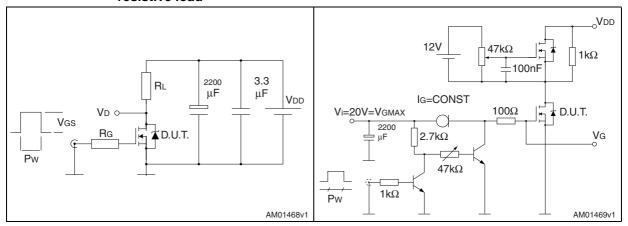


Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive load test circuit

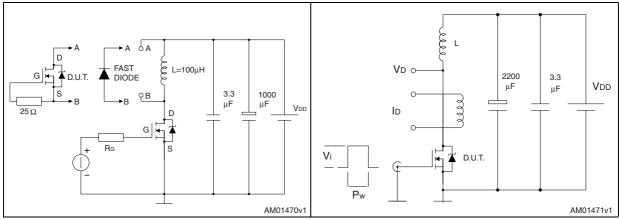
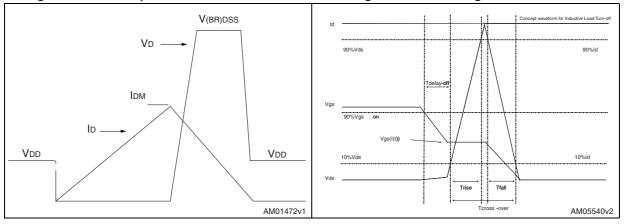



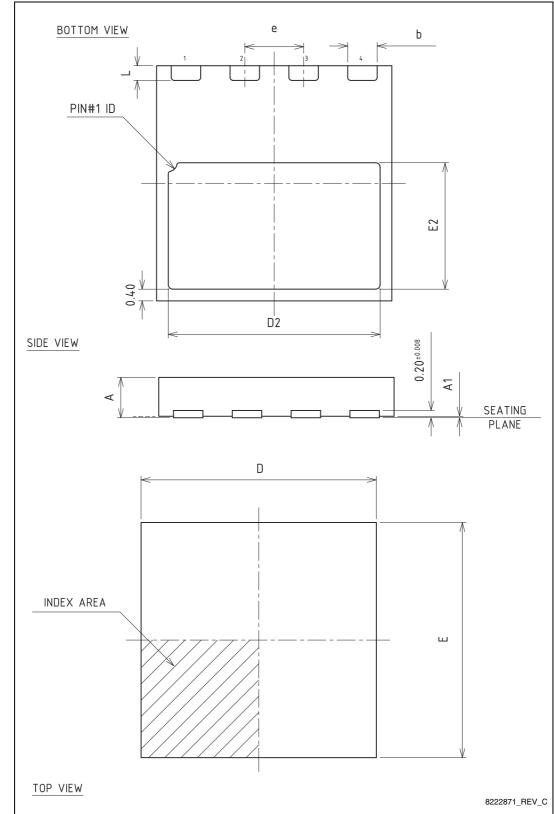
Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

57

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



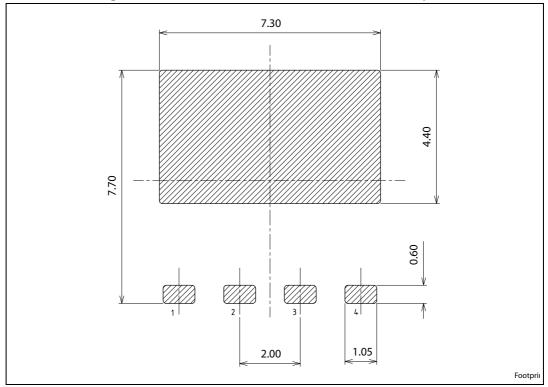
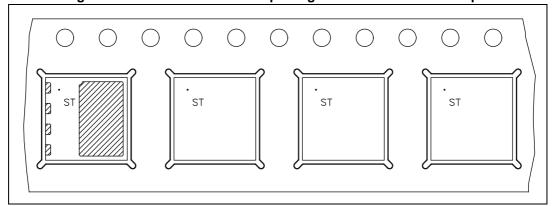

Figure 20. PowerFLAT™ 8x8 HV drawing mechanical data

Table 8. PowerFLAT™ 8x8 HV mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.95	1.00	1.05		
D		8.00			
E		8.00			
D2	7.05	7.20	7.30		
E2	4.15	4.30	4.40		
е		2.00			
L	0.40	0.50	0.60		

Figure 21. PowerFLAT™ 8x8 HV recommended footprint



Packaging mechanical data 5

P2 (2.0±0.1) D1 (ø1.5 Min) K0 (1.10±0.1) SECTION Y-Y Note: Base and Bulk quantity 3000 pcs 8229819_Tape_revA

Figure 22. PowerFLAT™ 8x8 HV tape

Figure 23. PowerFLAT™ 8x8 HV package orientation in carrier tape.

DocID023325 Rev 1 12/15

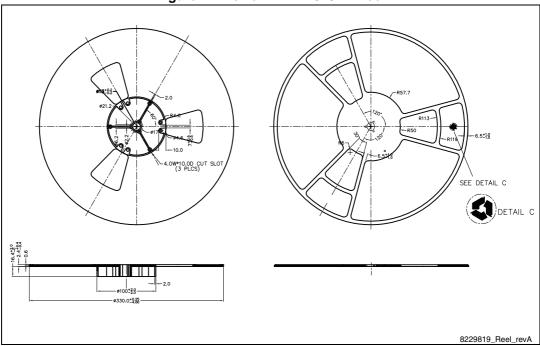


Figure 24. PowerFLAT™ 8x8 HV reel

Revision history STL34N65M5

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
07-Apr-2014	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

