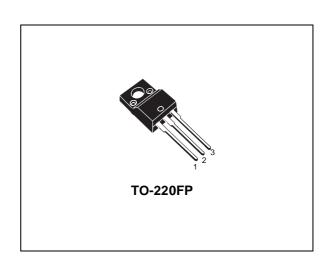


# STP80NF10FP

# N-channel 100V - 0.012 $\Omega$ - 38A - TO-220FP Low gate charge STripFET<sup>TM</sup> II Power MOSFET

### **General features**

| Туре        | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> <sup>(1)</sup> |
|-------------|------------------|---------------------|-------------------------------|
| STP80NF10FP | 100V             | <0.015Ω             | 38A                           |


- Exceptional dv/dt capability
- 100% Avalanche tested
- Application oriented characterization

### **Description**

This Power MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

## **Applications**

■ Switching application



### Internal schematic diagram



### **Order codes**

| Part number | ımber Marking Package |          | Packaging |
|-------------|-----------------------|----------|-----------|
| STP80NF10FP | P80NF10FP             | TO-220FP | Tube      |

Contents STP80NF10FP

# **Contents**

| 1 | Electrical ratings                      |
|---|-----------------------------------------|
| 2 | Electrical characteristics              |
|   | 2.1 Electrical characteristics (curves) |
| 3 | Test circuit                            |
| 4 | Package mechanical data 9               |
| 5 | Revision history                        |

STP80NF10FP Electrical ratings

# 1 Electrical ratings

Table 1. Absolute maximum ratings

| Symbol                         | Parameter                                            | Value      | Unit |
|--------------------------------|------------------------------------------------------|------------|------|
| V <sub>DS</sub>                | Drain-source voltage (V <sub>GS</sub> = 0)           | 100        | V    |
| V <sub>GS</sub>                | Gate- source voltage                                 | ±20        | V    |
| I <sub>D</sub> <sup>(1)</sup>  | Drain current (continuous) at T <sub>C</sub> = 25°C  | 38         | Α    |
| I <sub>D</sub> <sup>(1)</sup>  | Drain current (continuous) at T <sub>C</sub> = 100°C | 27         | Α    |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                               | 152        | Α    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>C</sub> = 25°C           | 45         | W    |
|                                | Derating factor                                      | 0.3        | W/°C |
| dv/dt (3)                      | Peak diode recovery voltage slope                    | 9          | V/ns |
| E <sub>AS</sub> <sup>(4)</sup> | Single pulse avalanche energy                        | 350        | mJ   |
| V <sub>ISO</sub>               | Insulation withstand voltage (DC)                    | 2500       | V    |
| T <sub>stg</sub><br>Tj         | Storage temperature Operating junction temperature   | -55 to 175 | °C   |

<sup>1.</sup> Limited by Package

Table 2. Thermal resistance

| Symbol         | Parameter                                      | Value | Unit |
|----------------|------------------------------------------------|-------|------|
| Rthj-case      | Thermal resistance junction-case Max           | 3.33  | °C/W |
| Rthj-amb       | Thermal resistance junction-ambient Max        | 62.5  | °C/W |
| T <sub>I</sub> | Maximum lead temperature for soldering purpose | 300   | °C   |

<sup>2.</sup> Pulse width limited by safe operating area

<sup>3.</sup>  $I_{SD}$  <80A, di/dt < 300A/ $\mu$ s,  $V_{DD}$ =80%  $V_{(BR)DSS}$ 

<sup>4.</sup> Starting Tj = 25°C,  $I_D$  = 80A,  $V_{DD}$  = 50V

Electrical characteristics STP80NF10FP

# 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

Table 3. On/off states

| Symbol               | Parameter                                                | Test condictions                                   | Min. | Тур.  | Max.    | Unit     |
|----------------------|----------------------------------------------------------|----------------------------------------------------|------|-------|---------|----------|
| V <sub>(BR)DSS</sub> | Drain-source<br>breakdown voltage                        | $I_D = 250\mu A, V_{GS} = 0$                       | 100  |       |         | ٧        |
| I <sub>DSS</sub>     | Zero gate voltage<br>drain current (V <sub>GS</sub> = 0) | $V_{DS}$ = Max rating $V_{DS}$ = Max rating @125°C |      |       | 1<br>10 | μA<br>μA |
| I <sub>GSS</sub>     | Gate-body leakage<br>current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ±20V                             |      |       | ±100    | nA       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                   | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$               | 2    | 3     | 4       | V        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                        | V <sub>GS</sub> = 10V, I <sub>D</sub> = 40A        |      | 0.012 | 0.015   | Ω        |

Table 4. Dynamic

| Symbol                                                   | Parameter                                                         | Test condictions                                    | Min. | Тур.               | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|------|--------------------|------|----------------|
| g <sub>fs</sub> <sup>(1)</sup>                           | Forward transconductance                                          | V <sub>DS</sub> =25V , I <sub>D</sub> =40 A         |      | 80                 |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance Output capacitance Reverse transfer capacitance | $V_{DS} = 25V, f = 1 \text{ MHz}, $<br>$V_{GS} = 0$ |      | 4300<br>600<br>230 |      | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>     | Total gate charge<br>Gate-source charge<br>Gate-drain charge      | $V_{DD} = 80V, I_{D} = 80A,$<br>$V_{GS} = 10V$      |      | 140<br>23<br>51    | 189  | nC<br>nC<br>nC |

<sup>1.</sup> Pulsed: pulse duration = 300  $\mu$ s, duty cycle 1.5 %

Table 5. Switching times

| Symbol              | Parameter           | Test condictions                                                                            | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|---------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | \/ - 50\/   - 40 \                                                                          |      | 40   |      | ns   |
| t <sub>r</sub>      | Rise time           | $V_{DD} = 50V$ , $I_{D} = 40A$ ,<br>$R_{G} = 4.7\Omega$ , $V_{GS} = 10V$<br>(see Figure 14) |      | 145  |      | ns   |
| t <sub>d(off)</sub> | Turn-off-delay time |                                                                                             |      | 134  |      | ns   |
| t <sub>f</sub>      | Fall time           | (See Figure 14)                                                                             |      | 115  |      | ns   |

Table 6. Source drain diode

| Symbol                                                 | Parameter                                                              | Test condictions                                                     | Min | Тур.             | Max | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|-----|------------------|-----|---------------|
| I <sub>SD</sub>                                        | Source-drain current                                                   |                                                                      |     |                  | 38  | Α             |
| I <sub>SDM</sub> <sup>(1)</sup>                        | Source-drain current (pulsed)                                          |                                                                      |     |                  | 152 | Α             |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                     | I <sub>SD</sub> = 80A, V <sub>GS</sub> = 0                           |     |                  | 1.3 | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD}$ =80A, $V_{DD}$ = 50V<br>di/dt = 100A/ $\mu$ s, $T_j$ =150°C |     | 155<br>850<br>11 |     | ns<br>nC<br>A |

<sup>1.</sup> Pulse width limited by safe operating area

<sup>2.</sup> Pulsed: pulse duration = 300  $\mu$ s, duty cycle 1.5 %

Electrical characteristics STP80NF10FP

### 2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

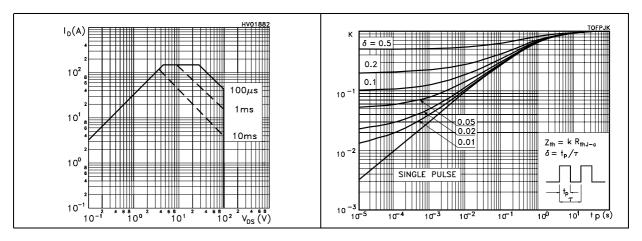



Figure 3. Output characterisics

Figure 4. Transfer characteristics

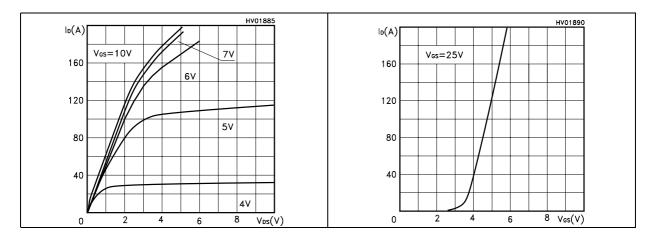
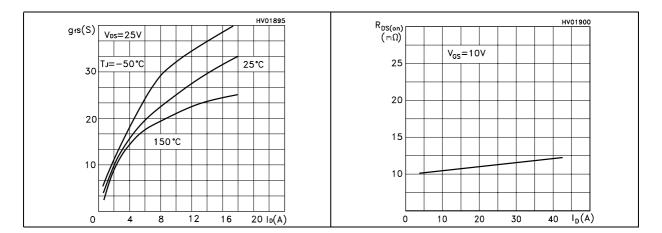




Figure 5. Transconductance

Figure 6. Static drain-source on resistance



47/

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

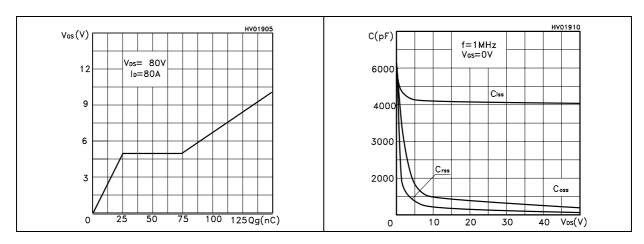



Figure 9. Normalized gate threshold voltage Figure 10. Normalized on resistance vs vs temperature temperature

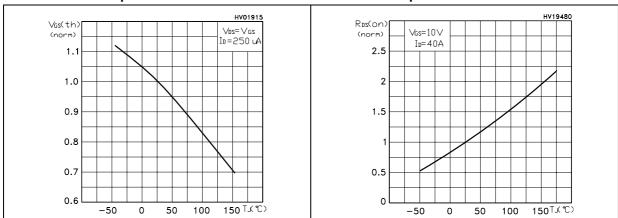
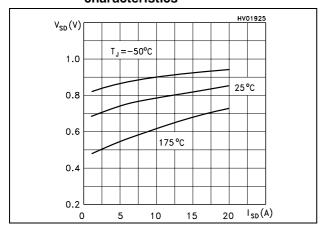




Figure 11. Source-drain diode forward characteristics



Test circuit STP80NF10FP

### 3 Test circuit

Figure 12. Switching times test circuit for resistive load

Figure 13. Gate charge test circuit

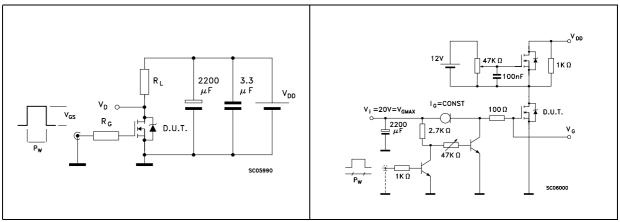



Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

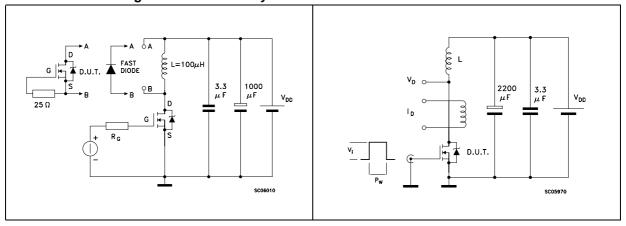
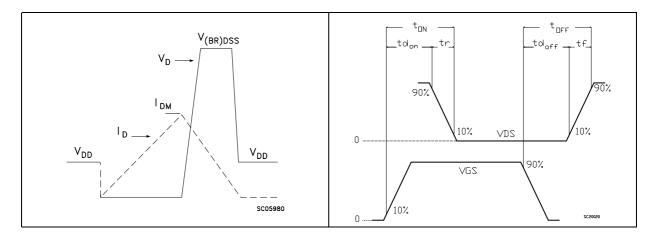
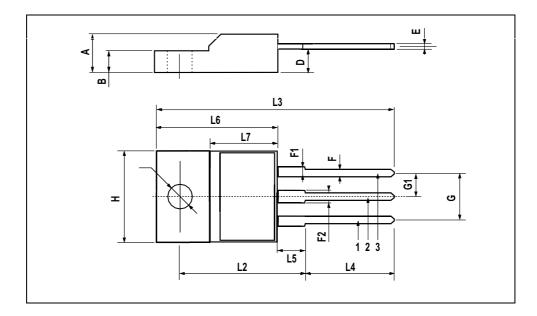




Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform




# 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

**577** 

### **TO-220FP MECHANICAL DATA**

| DIM.   |      | mm. |      |       | inch  |       |
|--------|------|-----|------|-------|-------|-------|
| DIIVI. | MIN. | TYP | MAX. | MIN.  | TYP.  | MAX   |
| Α      | 4.4  |     | 4.6  | 0.173 |       | 0.181 |
| В      | 2.5  |     | 2.7  | 0.098 |       | 0.106 |
| D      | 2.5  |     | 2.75 | 0.098 |       | 0.108 |
| Е      | 0.45 |     | 0.7  | 0.017 |       | 0.027 |
| F      | 0.75 |     | 1    | 0.030 |       | 0.039 |
| F1     | 1.15 |     | 1.7  | 0.045 |       | 0.067 |
| F2     | 1.15 |     | 1.7  | 0.045 |       | 0.067 |
| G      | 4.95 |     | 5.2  | 0.195 |       | 0.204 |
| G1     | 2.4  |     | 2.7  | 0.094 |       | 0.106 |
| Н      | 10   |     | 10.4 | 0.393 |       | 0.409 |
| L2     |      | 16  |      |       | 0.630 |       |
| L3     | 28.6 |     | 30.6 | 1.126 |       | 1.204 |
| L4     | 9.8  |     | 10.6 | .0385 |       | 0.417 |
| L5     | 2.9  |     | 3.6  | 0.114 |       | 0.141 |
| L6     | 15.9 |     | 16.4 | 0.626 |       | 0.645 |
| L7     | 9    |     | 9.3  | 0.354 |       | 0.366 |
| Ø      | 3    |     | 3.2  | 0.118 |       | 0.126 |



STP80NF10FP Revision history

# 5 Revision history

Table 7. Revision history

| Date        | Revision | Changes       |
|-------------|----------|---------------|
| 11-Apr-2006 | 1        | First Release |

**\_**y\_

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577