

STRH100N10

Datasheet

Rad-Hard 100 V, 48 A N-channel Power MOSFET

Features

V _{DS}	I _D	R _{DS(on)} typ.	Qg
100 V	48 A	30 mΩ	135 nC

Fast switching

- 100% avalanche tested
- Hermetic package
- 50 krad
- SEE radiation hardened

Description

The STRH100N10 is a N-channel Power MOSFET developed with the Rad-hard STripFET technology in hermetic TO-254AA package.

Specifically designed to sustain Total Ionized Dose and immunity to heavy ion effects, it is qualified as per ESCC 5205/021 detail specification. In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Product summary

	Pro	oduct summary	/		
Part number	Quality level	ESCC part number	Package	Lead finish	Radiation level
STRH100N10HY1	10HY1 Engineering - model -			Gold	-
STRH100N10HYG	5000		TO-254AA		
STRH100N10HYT	ESCC flight	5205/021		Solder dip	50 krad

Note: See Table 8. Ordering information.

Product status link
STRH100N10

Electrical ratings

Electrical ratings 1

Table 1	Absolute	maximum	ratings
---------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{DS} ⁽¹⁾	Drain-source voltage (V_{GS} = 0)	100	V
V _{GS} ⁽²⁾	Gate-source voltage	±20	V
I _D ⁽³⁾	Drain current (continuous) at T _{case} = 25 °C	48	Α
ID(a)	Drain current (continuous) at T _{case} = 100 °C	30	Α
I _{DM} ⁽⁴⁾	Drain current (pulsed)	192	Α
P _{TOT}	Total power dissipation at T _{case} = 25 °C	170	W
dv/dt ⁽⁵⁾	Peak diode recovery voltage slope	2.6	V/ns
T _{op}	Operating temperature range	-55 to 150	°C
Tj	Max. operating junction temperature range	150	°C

1. This rating is guaranteed at $T_J \ge 25$ °C (see Figure 9).

2. This value is guaranteed over the full range of temperature.

3. Rated according to the $R_{thj-case} + R_{thc-s}$

4. Pulse width limited by safe operating area.

5. $I_{SD} \le 48 \text{ A}, di/dt \le 100 \text{ A}/\mu s, V_{DD} = 80 \% V_{(BR)DSS}.$

Table 2. Thermal data

Symbol	Parameter				
R _{thj-case}	Thermal resistance junction-case (maximum)	0.52	°C/W		
R _{thc-s}	Thermal resistance case-sink (typical)	0.21	°C/W		

Table 3. Avalanche data

Symbol	Parameter	Value	Unit	
I _{AR}	Avalanche current, repetitive or not-repetitive, (pulse width limited by T_{j} max)	24	А	
E _{AS} ⁽¹⁾	$E_{AS}^{(1)}$ Single pulse avalanche energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)			
E _{AS}	Single pulse avalanche energy (starting T_j = 110 °C, I_D = I_{AR} , V_{DD} = 50 V)	280	mJ	
E _{AR}	Repetitive pulse avalanche energy (V_{DD} = 50 V, I_{AR} = 24 A, f = 10 KHz, T_J = 25 °C, duty cycle = 50%)			
E _{AR}	Repetitive pulse avalanche energy (V _{DD} = 50 V, I _{AR} = 24 A, f = 100 KHz, T _J = 25 °C, duty cycle = 10%)			
⊢AR	Repetitive pulse avalanche energy (V_DD = 50 V, I_{AR} = 24 A, f = 100 KHz, T_J = 110 °C, duty cycle = 10%)	7.7		

1. Maximum rating value.

57

2 Electrical characteristics

57

Table 4. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max.	Unit
I	Zero gate voltage drain current	80% BV _{Dss}		10	
I _{DSS}	(V _{GS} = 0)	80% BV _{Dss} , T _C = 125 °C		100	μA
		V _{GS} = 20 V		100	
	Gate body leakage current	V _{GS} = -20 V	-100		
I _{GSS}	(V _{DS} = 0)	V _{GS} = 20 V, T _C = 125 °C		200	nA
		V _{GS} = -20 V, T _C = 125 °C	-200		
BV _{DSS} ⁽¹⁾	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	100		V
		V_{DS} = V_{GS} , I_D = 1 mA, T_C = -55 °C	2.1	5.5	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.0	4.5	V
		$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = 125 \ ^{\circ}C$	1.5	3.7	
Rpc(ar)	Chatia duain accurac an accistance	V _{GS} = 12 V, I _D = 24 A		0.035	0
R _{DS(on)}	Static drain-source on resistance	V_{GS} = 12 V, I _D = 24 A, T _C = 125 °C		0.063	Ω
C _{iss}	Input capacitance		3940	5910	pF
C _{oss} ⁽²⁾	Output capacitance	V_{DS} = 25 V, f = 1 MHz, V_{GS} = 0 V		814	pF
C _{rss}	Reverse transfer capacitance			284	pF
Qg	Total gate charge		108	162	nC
Q _{gs}	Gate-to-source charge	V _{DD} = 50 V, I _D = 48 A, V _{GS} = 12 V		32.4	nC
Q _{gd}	Gate-to-drain ("Miller") charge	-	36	54	nC
$R_{G}^{(2)}$	Gate input resistance	f = 1 MHz gate DC bias = 0 test signal level = 20 mV open drain	1.2	2	Ω
t _{d(on)}	Turn-on delay time		23.6	35.4	ns
tr	Rise time		34.4	51.6	ns
t _{d(off)}	Turn-off delay time	V_{DD} = 50 V, I _D = 24 A, R _G = 4.7 Ω, V _{GS} = 12 V		119	ns
t _f	Fall time	-	33.6	50.4	ns
I _{SD}	Source-drain current			48	А
I _{SDM} ⁽³⁾	Source-drain current (pulsed)			192	А
(4)		I _{SD} = 48 A, V _{GS} = 0 V		1.5	V
$V_{SD}^{(4)}$	Forward on voltage	$I_{\rm SD}$ = 48 A, $V_{\rm GS}$ = 0 V, $T_{\rm c}$ = 125 °C		1.275	V
t _{rr} ⁽²⁾	Reverse recovery time	I_{SD} = 48 A, di/dt = 100 A/µs, V _{DD} = 50 V, T _J = 25 °C	332	498	ns
t _{rr} ⁽²⁾	Reverse recovery time	I _{SD} = 48 A, di/dt = 100 A/µs, V _{DD} = 50 V, T _J = 150 °C	400	600	ns

1. This rating is guaranteed at $T_J \ge 25$ °C (see Figure 9).

2. Not tested in production, garanteed by process.

3. Pulse width limited by safe operating area

4. Pulsed: pulse duration = 300 μ s, duty cycle \leq 1.5%

3 Radiation characteristics

57

This products is guaranteed in radiation as per ESCC 5205/025 and ESCC 22900 specification at 50 krad. Each lot tested in radiation is accepted according to the characteristics as per Table 5.

3.1 Total dose radiation (TID) testing

The bias with V_{GS} = + 15 V and V_{DS} = 0 V is applied during irradiation exposure.

The parameters listed in Table 5 are measured:

- Before irradiation
- After irradiation
- After 24 hrs at room temperature
- after 168 hrs at 100 °C anneal

Table 5. Post-irradiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Drift values ∆	Unit
I _{DSS}	Zero gate voltage drain current (V_{GS} = 0)	80% BV _{DSS}	10	μA
1		V _{GS} = 20 V	20	~^
I _{GSS}	Gate body leakage current	V _{GS} = -20 V	-20	nA
BV _{DSS}	Drain-to-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	-25%	V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	-50% / +10%	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V, I _D = 24 A	±10%	Ω
$V_{SD}^{(1)}$	Forward on voltage	V _{GS} = 0 V, I _{SD} = 48 A	±10%	V

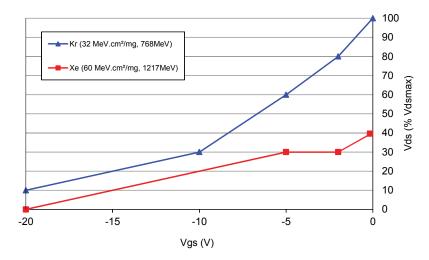
1. Pulsed: pulse duration = 300 µs, duty cycle 1.5%

3.2 Single event effect RBSOA

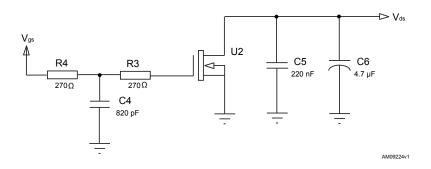
57/

This products is extremely resistant to heavy ion environment for single event effect (as per MIL-STD-750E, method 1080, bias circuit of Figure 2).

SEB and SEGR tests are performed with a fluence of 3e+5 ions/cm² with the following acceptance criteria:


- SEB test: drain voltage checked, trigger level is set to V_{DS} = - 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test:

the gate current is monitored every 200 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 100 nA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².


Table 6. Single Event Effects (SEB and SEGR) RBSOA

lon	Let (Mev/(mg/cm ²)	Energy (MeV)	Range (μm)
Kr	32	768	94
Хе	60	1217	89

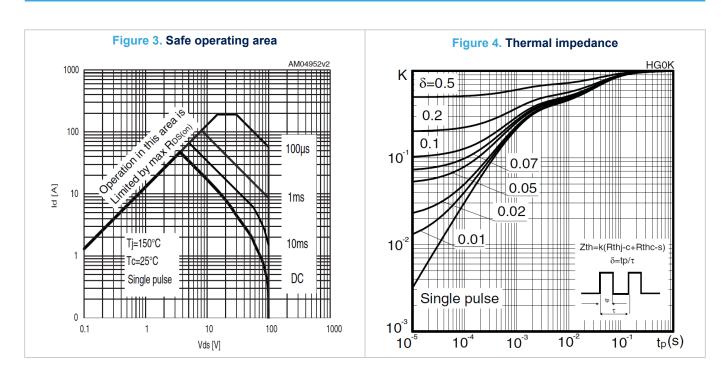
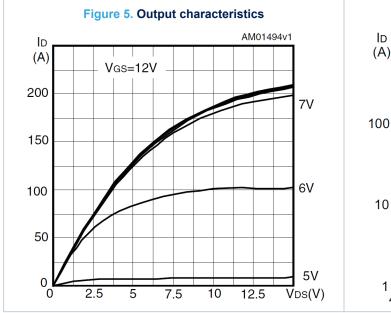
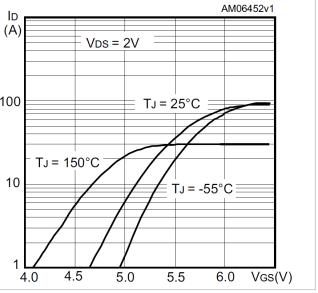


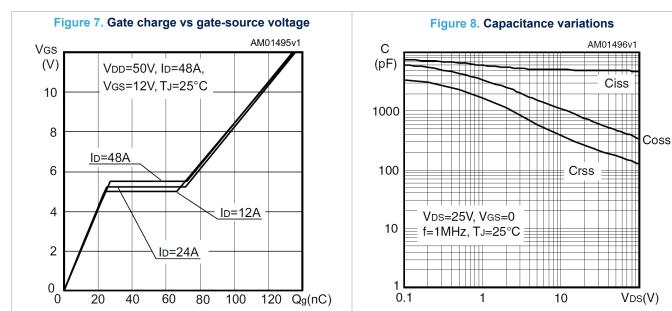
Figure 2. Single event effect, bias circuit



Note: Bias condition during radiation refer to Table 6.


57

4 Electrical characteristics (curves)



HV32740

80

 $I_{D}(A)$

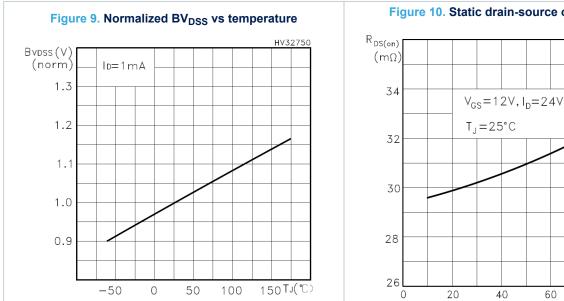
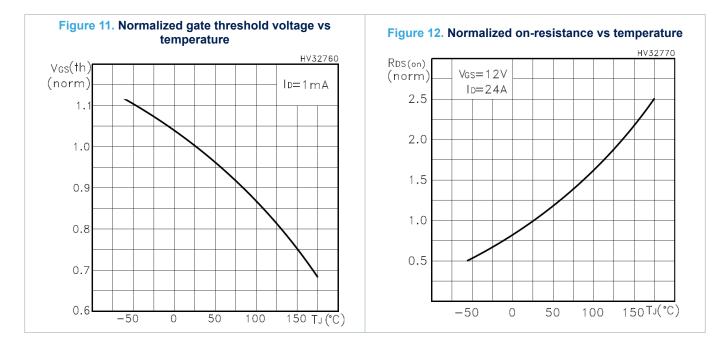
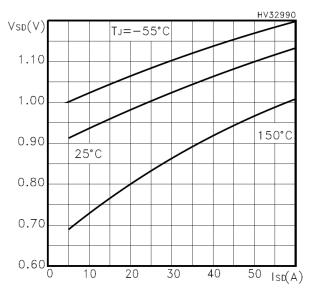
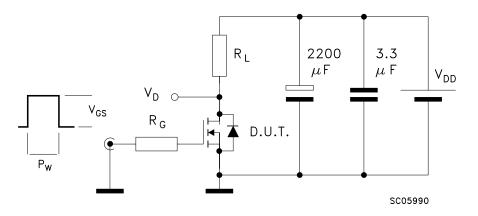




Figure 10. Static drain-source on-resistance

Figure 13. Source drain-diode forward characteristics



57

5 Test circuits

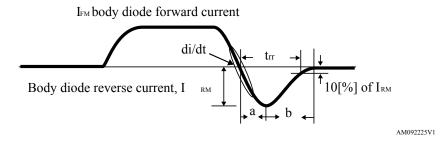
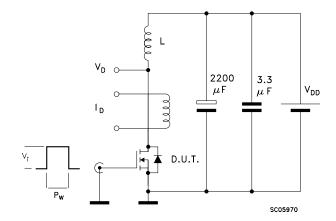
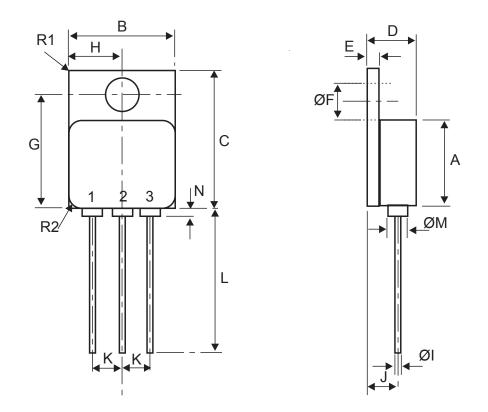

57

Figure 14. Switching times test circuit for resistive load



Note: Max driver V_{GS} slope = 1V/ns (no DUT)

Figure 15. Source drain diode waveform


Figure 16. Unclamped inductive load test circuit (single pulse and repetitive)

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 TO-254AA package information

The TO-254-AA is a metallic package. It is not connected to any pin nor to the inside die. 0005824 rev13

Symbols	Di	imensions (mi	n)	D	imension (inche	s)
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
А	13.59		13.84	0.535		0.545
В	13.59		13.84	0.535		0.545
С	20.07		20.32	0.790		0.800
D	6.30		6.70	0.248		0.264
E	1.00		1.35	0.039		0.054
ØF	3.50		3.90	0.137		0.154
G	16.89		17.40	0.665		0.685
Н		6.86			0.270	
ØI	0.89	1.14	2.00	0.035	0.045	0.079
J		3.81			0.150	
К		3.81			0.150	
L	12.95		14.50	0.510		0.571
ØM		3.05			0.120	
Ν			0.71			0.028
R1			1.00			0.039
R2		1.65			0.065	

Table 7. TO-254AA package mechanical data

7 Order codes

Part number	Agency specification	Quality level	Radiation level	Package	Weight	Lead finish	Marking ⁽¹⁾	Packing	
STRH100N10HY1		Engineering					STRH40P10HY1		
SIRFIUNIUFT		model	-			Gold	+ BeO		
STRH100N10HYG	5205/021/01		50 krod	TO-254AA	25444 40 -	Goiù	520502501R	Strip pack	
STRETUONTURIG	5205/021/01	ESCC	50 krad To	SU KIAU	10-254AA	10 g		+ BeO	Strip pack
STRH100N10HYT	5205/021/02	flight				Solder	520502502R		
	5205/021/02		JU KIAU			dip	+ BeO		

Table 8. Ordering information

 Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: STlogo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about specific conditions for products in die form.

8 Other information

8.1 Traceability information

Date code information is described in the table below.

Table 9. Date codes

Model	Date code ⁽¹⁾
EM	ЗуууwW
ESCC	yywwN

1. *yy* = *year*, *ww* = *week number*, *N* = *lot index in the week*.

8.2 Documentation

Table 10. Documentation provided for each type of product

Quality level	Radiation level	Documentation
Engineering model	-	Certificate of conformance
ESCC	50 krad	Certificate of conformance ESCC qualification maintenance lot reference Radiation data at 25 / 50 krad at 0.1 rad / s.

Revision history

Date	Version	Changes
13-May-2010	1	First release.
14-Jun-2010	2	Updated Table 1: Device summary.
18-Oct-2010	3	Updated Table 1, 5, 9 and 14.
23-Dec-2010	4	Updated Figure 2: Single event effect, SOA. and TO-254AA mechanical data.
25-Jul-2011	5	Updated order codes in Table 1: Device summary and Table 14: Ordering information.
		Minor text changes.
09-Nov-2011	6	Updated dynamic values on Table 6: Pre-irradiation dynamic, Table 7: Switching times (pre-irradiation) and Table 8: Source drain diode (pre- irradiation).
31-May-2013	7	Updated Table 1, Table 12, Table 14, Figure 2 and Section 7: Order codes.
01-May-2010		Minor text changes in Section 3: Radiation characteristics.
09-Apr-2014	8	Modified: Figure 2.
		Minor text changes.
17-Dec-2015	9	Updated features in cover page.
		Updated Table 5, Table 8, Table 9, Table 10, Table 11 and Table 15.
06-Apr-2016	10	Updated Table 8: Source drain diode (pre-irradiation).
		Minor text changes.
19-Jan-2021	11	Updated Product summary, Table 1, Table 4, Table 5, Table 6, Table 8 and Table 10.
		Minor text changes.

Table 11. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved