

Rad-Hard 100 V, 12 A, P-channel Power MOSFET

The case is not connected to any lead

Product status link
STRH12P10

Features

V _{DS}	S I _D R _{DS(on)} typ.		Qg
100 V	12 A	265 mΩ	40 nC

- Fast switching
- 100% avalanche tested
- Hermetic package
- 100 krad TID
- · SEE radiation hardened

Description

The STRH12P10 is a P-channel Power MOSFET able to operate under severe environment conditions and radiation exposure.

It provides high reliability performance and immunity to the total ionizing dose (TID) and single event effects (SEE).

Qualified as per ESCC detail specification No. 5205/029 and available in TO-257AA hermetic package, it is specifically recommended for space and harsh environment applications and suitable for in-Satellite power conversion, motor control and power switch circuits.

In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Product summary

Product summary						
Part numbers	Quality level	ESCC part number	Package	Lead finish	Radiation level	
STRH12P10GY1	Engineering model	-		Gold	-	
STRH12P10GYG	ESCC	TO-257A	TO-257AA		100 krad	
STRH12P10GYT	YT flight	5205/029		Solder dip	100 krad	

Note: See Table 8 for ordering information.

1 Electrical ratings

 T_C = 25 °C unless otherwise specified

Table 1. Absolute maximum ratings (pre-irradiation)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	100	V
V _{GS}	Gate-source voltage	±18	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	12	Α
ID(-)	Drain current (continuous) at T _{case} = 100 °C	7.5	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	48	Α
P _{TOT}	Total power dissipation at T _{case} = 25 °C	75	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	2.4	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
T _j	Max. operating junction temperature range	150	°C

- 1. Rated according to the $R_{thj\text{-case}} + R_{thc\text{-s}}$
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 12~A$, $di/dt \le 36~A/\mu s$, $V_{DD} = 80~\% V_{(BR)DSS}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	1.47	°C/W
R _{thc-s}	Thermal resistance case-sink typ.	0.20	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	6	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V) at 110 °C	112	mJ
E _{AR}	Repetitive pulse avalanche energy $(V_{DS} = 50 \text{ V}, I_{AR} = 6 \text{ A}, f = 10 \text{ KHz},$ $T_J = 25 ^{\circ}\text{C}, \text{ duty cycle} = 50\%)$	17	mJ
-AR	Repetitive pulse avalanche energy $(V_{DS} = 50 \text{ V}, I_{AR} = 6 \text{ A}, f = 10 \text{ KHz},$ $T_J = 110 ^{\circ}\text{C}, \text{ duty cycle} = 50\%)$	5.5	mJ

1. Maximum rating value.

DS8699 - Rev 9 page 2/15

2 Electrical characteristics

For the P-channel MOSFET polarity of voltages and current has to be reversed.

Table 4. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max.	Unit		
I _{DSS}	Zero gate voltage drain current	80% V _{(BR)DSS}		10	μΑ		
		V _{GS} = 16 V		100			
Lead	Cata hady lagkage current	V _{GS} = -16 V	-100		~ Λ		
I_{GSS}	Gate body leakage current	V _{GS} = 16 V, T _C = 125 °C		200	nA 0		
		V _{GS} = -16 V, T _C = 125 °C	-200				
V _{(BR)DSS} ⁽¹⁾	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	100		V		
		$V_{DS} = V_{GS}$, $I_D = 1$ mA	2.0	4.5			
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = 125$ °C	1.6	3.8	V		
		V_{DS} = V_{GS} , I_D = 1 mA, T_C = -55 °C	2.2	5.2			
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V, I _D = 12 A		0.30	Ω		
C _{iss} ⁽²⁾	Input capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V		1410	pF		
C _{oss} (2)	Output capacitance			205	pF		
C _{rss} (2)	Reverse transfer capacitance			85	pF		
Qg	Total gate charge		32	48	nC		
Q _{gs}	Gate-to-source charge	V _{DD} = 50 V, I _D = 12 A, V _{GS} = 12 V	3.5	6.5	nC		
Q _{gd}	Gate-to-drain ("Miller") charge		7	13	nC		
t _{d(on)}	Turn-on delay time		5	15	ns		
t _r	Rise time	,		31	ns		
t _{d(off)}	Turn-off delay time	$V_{DD} = 50 \text{ V}, I_D = 6 \text{ A}, R_G = 4.7 \Omega, V_{GS} = 12 \text{ V}$	18	50	ns		
t _f	Fall time			10.5	ns		
\/s=	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0 V		1.5	V		
V_{SD}	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0 V, T _C = 125 °C		1.25			
t _{rr}	Reverse recovery time	I _{SD} = 6 A, di/dt = 50 A/µs, V _{DD} = 50 V	178	310	ns		
t _{rr}	Reverse recovery time	I _{SD} = 6 A, di/dt = 50 A/µs, V _{DD} = 50 V, T _J = 150 °C	225	400	ns		

^{1.} This rating is guaranteed at $T_J \le 25$ °C (see Figure 9. Normalized $V_{(BR)DSS}$ vs temperature).

DS8699 - Rev 9 page 3/15

^{2.} Not tested, guaranteed by process.

3 Radiation characteristics

The STRH12P10 is guaranteed in radiation for single event effects (SEE) as per ESCC25100 and total ionizing dose (TID) as per ESCC 22900.

3.1 Total dose radiation (TID) testing

Each lot is tested in radiation and accepted according to the parameters of Table 5 at the following conditions.

- V_{GS} = 15 V and V_{DS} = 0 V applied during irradiation exposure.
- · Before irradiation
- · After irradiation
- · After 24 hrs at room temperature
- after 168 hrs at 100 °C anneal

Table 5. Post-irradiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Drift values Δ	Unit	
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% V _{(BR)DSS}	+1	μA	
looo	Cata hady lookaga gurrant	V _{GS} = 12 V	1.5	nA	
I _{GSS}	Gate body leakage current	V _{GS} = -12 V	-1.5		
V _{(BR)DSS}	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	+5%	V	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	+ 150%	V	
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 12 A	-4% / +35%	Ω	
V _{SD} (1)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 12 A	±5%	V	

^{1.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

DS8699 - Rev 9 page 4/15

89

3.2 Single event effect SOA

Single event burnout (SEB) and single event gate rupture (SEGR) are performed according to MIL-STD-750E, method 1080, using bias circuit shown in Figure 2. Single event effect, bias circuit, at the following conditions.

- Fluence of 3e+5 ions/cm
- · Acceptance criteria:

Xe

- SEB (test): drain voltage checked, trigger level is set to V_{DS} = 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 200 ms. The test is halted as soon as the gate current reaches 100 nA during irradiation or during post irradiation gate stress (PIGS) or if the fluence reaches 3e+5 ions/cm².

lon	Let (Mev/(mg/cm²)	Energy (MeV)	Range (μm)
Kr	32	768	94
NI	32	756	92
Cu	28	285	43

Table 6. Single event effect (SEE), safe operating area (SOA)

Figure 1. Single event effect, SOA

1217

60

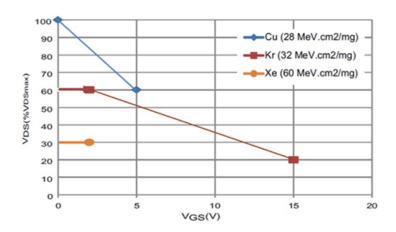
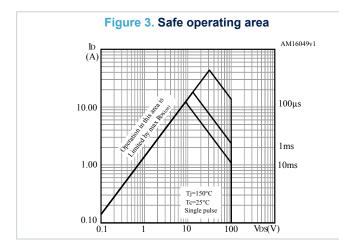



Figure 2. Single event effect, bias circuit

DS8699 - Rev 9 page 5/15

4 Electrical characteristics (curves)

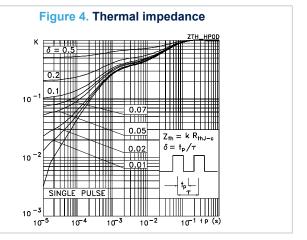
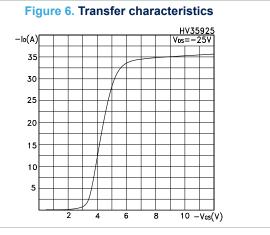
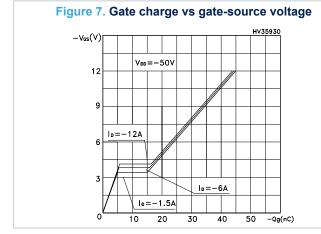
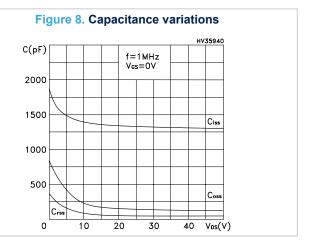





Figure 5. Output characteristics

-lo(A)
-lo

DS8699 - Rev 9 page 6/15

Figure 9. Normalized V_{(BR)DSS} vs temperature

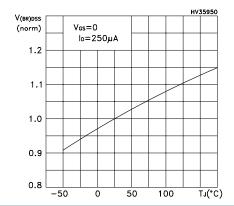


Figure 10. Static drain-source on-resistance

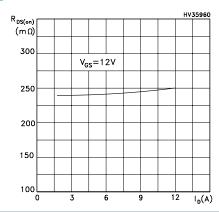


Figure 11. Normalized gate threshold voltage vs temperature

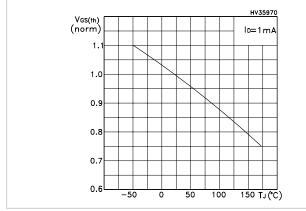


Figure 12. Normalized on-resistance vs temperature

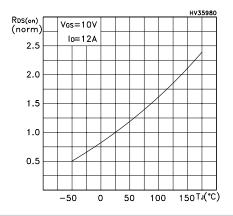
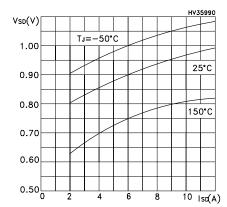
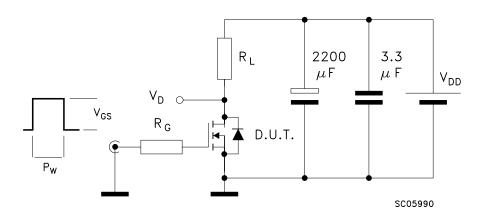



Figure 13. Source drain-diode forward characteristics



DS8699 - Rev 9 page 7/15

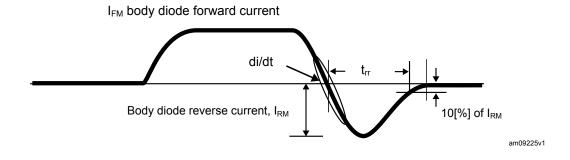

5 Test circuits

Figure 14. Switching times test circuit for resistive load

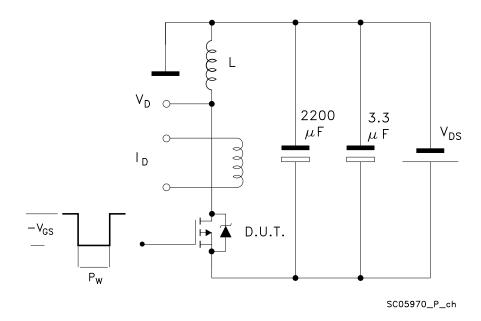
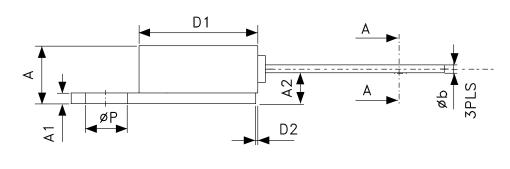

Note: $Max driver V_{GS} slope = 1V/ns (no DUT)$

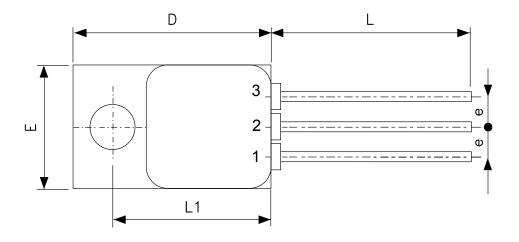
Figure 15. Source drain diode waveform

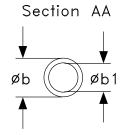
DS8699 - Rev 9 page 8/15

Figure 16. Unclamped inductive load test circuit (single pulse and repetitive)

DS8699 - Rev 9 page 9/15




6 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 TO-257AA package information

Figure 17. TO-257AA package outline

Pin 1: Drain Pin 2: Source Pin 3: Gate

0117268 E

DS8699 - Rev 9 page 10/15

Table 7. TO-257AA package mechanical data

Cumbala	D	imensions (m	m)	D	imensions (inche	es)
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.83		5.08	0.190		0.200
A1	0.89		1.14	0.035		0.045
A2		3.05			0.120	
b	0.64		1.02	0.025		0.040
b1	0.64	0.76	0.89	0.025	0.030	0.035
D	16.38		16.89	0.645		0.665
D1	10.41		10.92	0.410		0.430
D2	-	-	0.97			0.038
е		2.54			0.100	
E	10.41		10.67	0.410		0.420
L	15.24		16.51	0.600		0.650
L1	13.39		13.64	0.527		0.537
Р	3.56		3.81	0.140		0.150

Note: The case is not connected to any lead.

DS8699 - Rev 9 page 11/15

7 Order codes

Table 8. Ordering information

Part number	Agency specification	Screening option	Radiation level	Package	Weight	Lead finish	Marking ⁽¹⁾	Packing
STRH12P10GY1		Engineering					STRH12P10GY1	
STRHIZPIUGTT		model	del			Cold	+ BeO	
STRH12P10GYG	5205/029/01		100 krad			520502901R	Ctrin nook	
STRHIZPTUGTG	5205/029/01	ECCC flight	100 krad TO-257AA 5 g	D-257AA 5 g		+ BeO	Strip pack	
STDUASD40CVT	E20E/020/02	ESCC flight	100 krad			Solder	520502902R	
31KH12P10G11	STRH12P10GYT 5205/029/02 100 krad			dip	+ BeO			

Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: STlogo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about the specific conditions for products in die form.

DS8699 - Rev 9 page 12/15

8 Other information

Table 9. Traceability and documentation

Screening type	Date code ⁽¹⁾	Radiation level	Documentation
Engineering model	3yywwN	-	Certificate of conformance
Flight model	yywwN	100 krad	Certificate of conformance ESCC qualification maintenance lot reference Radiation verification test (RVT) report at 25/50 /70/100 krad at 0.1 rad/s.

^{1.} yy = year, ww = week number, N = lot index in the week.

DS8699 - Rev 9 page 13/15

Revision history

Table 10. Document revision history

Date	Version	Changes
07-Oct-2011	1	First release.
		Document status promoted form preliminary data to production data.
		- Modified: Figure 1
		- Modified: EAS, EAR parameter and values in Table 4
		- Modified: IGSS, and added note 1 in Table 5
24-Jun-2013	2	- Added: note 1 in Table 6
		- Modified: trr, qrr and IRRM parameter in Table 8
		 Modified: RDS(on) test conditions in Table 9, the entire test conditions in Table 10
		- Modified: Figure 4
25-Nov-2013	3	- Modified: package drawing and Figure 1.
40 D 0040		- Updated Table 1: Device summary and Table 14: Ordering information.
18-Dec-2013	4	- Updated Section : Total dose radiation (TID) testing.
40 1-4 0045	_	- Updated Table 13.: TO-257AA mechanical data
19-Jan-2015	5	- Minor text changes
02-May-2019	6	Updated Table 7. Pre-irradation source drain diode and Table 4. Preirradiation on/off states.
,		Minor text changes
29-Feb-2020	7	Updated Table 10 and TO-257 AA package information.
21-Jan-2021	8	Updated Product summary, Table 4, Table 5, Table 6, Figure 1, Table 8 and Table 10.
		Updated features in cover page.
05-May-2022	9	Updated Table 4. Electrical characteristics (T _{amb} = 25 °C unless otherwise specified), Section 3 Radiation characteristics, Section 3.1 Total dose radiation (TID) testing, Section 3.2 Single event effect RBSOA and Traceability information.
		Minor text changes.

DS8699 - Rev 9 page 14/15

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

DS8699 - Rev 9 page 15/15