
STRHMF16N20

Datasheet

Rad-Hard 200 V, 16 A, N-channel Power MOSFET

SMD.5

Product sta	tus link
Interna	al

Features

•

V _{DS}	۱ _D	R _{DS(on)} typ.	Qg
200 V	16 A	70 mΩ	52 nC

- ESCC qualified as per detail specification 5205/034
- 100 krad total ionizing dose guaranteed
- Wide RBSOA under heavy-ions radiation exposure
- Low R_{DS(on)}
- Low total gate charge
- Fast switching

Description

The STRHMF16N20 is a N-channel Power MOSFET able to operate in extreme environment conditions and severe radiation exposure. It provides superior high reliability performance and high immunity to the total ionizing dose (TID) and single event effects (SEE).

Qualified as per ESCC detail specification 5205/034 and available in SMD.5 hermetic package, it is specifically recommended for space and harsh environment applications and suitable for power conversion, motor control and power switch circuits.

Device summary

Product summary							
Part number	Quality level Package		Lead finish	Radiation level			
STRHMF16N20S1	Engineering model		Gold	-			
STRHMF16N20SG	Flight model	SMD.5	Gold	100 krad			
STRHMF16N20ST	Flight model		Solder dip	100 krad			

Note: See Table 8 for ordering information.

1 Electrical ratings

 T_{amb} = 25 °C unless otherwise specified

Table 1. Absolu	te maximum	ratings
-----------------	------------	---------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V_{GS} = 0)	200	V
V _{GS} ⁽¹⁾	Gate-source voltage	+20/-16	V
I _D ⁽²⁾	Drain current (continuous)	16	А
ID(=)	Drain current (continuous) at T _{amb} = 100 °C	10	А
I _{DM} ⁽³⁾	Drain current (pulsed)	64	А
P _{TOT}	Total power dissipation	66	W
T _{op}	Operating temperature range	-55 to 150	°C
Tj	Max. operating junction temperature range	150	°C

1. This value is guaranteed over the full range of temperature.

2. Rated according to the $R_{thj-case} + R_{thc-s}$

3. Pulse width limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case (maximum)	1.53	°C/W
R _{thCS}	Thermal resistance, case-to-heatsink (typical)	50	°C/W

Table 3. Avalanche data

Symbol	Parameter	Value	Unit
E _{AS}	Single pulse avalanche energy	120	ml
LAS	(starting T _j = 25 °C, V _{DD} = 60 V, I _D = 8 A, R _g = 47 Ω)	120	mJ

2 Electrical characteristics

T_a = 25 °C unless otherwise specified

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Max.	Unit
		V _{DS} = 160 V, V _{GS} = 0 V		10	
IDSS	Zero gate voltage drain current	V_{DS} = 160 V, V_{GS} = 0 V, T_a = 125 °C		100	μA
		V _{GS} = 20 V		100	
		V _{GS} = 20 V, T _a = 125 °C		200	
I _{GSS}	Gate body leakage current	V _{GS} = -16 V	-100		nA
		V _{GS} = -16 V, T _a = 125 °C	-200		
V _{(BR)DSS}	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	200		V
		$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_a = 125 \text{ °C}$	1.5		
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_a = -55$ °C	2.3	5.5	v
		$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2	4.5	
(2)	Otatia dazia anna an anistana	V_{GS} = 12 V, I _D = 16 A		90	
R _{DS(on)} ⁽²⁾	Static drain-source on resistance	V _{GS} = 12 V, I _D = 16 A, T _a = 125 °C		180	mΩ
C _{iss} ⁽¹⁾	Input capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V		5200	pF
C _{oss} ⁽¹⁾	Output capacitance			120	pF
C _{rss} ⁽¹⁾	Reverse transfer capacitance	-		3	pF
Q _g ⁽¹⁾	Total gate charge			78	nC
Q _{gs} ⁽¹⁾	Gate-to-source charge	V _{DS} = 160 V, I _D = 16 A, V _{GS} = 10 V		34	nC
Q _{gd} ⁽¹⁾	Gate-to-drain ("Miller") charge	-		6.1	nC
R _G ⁽¹⁾	Gate input resistance	f = 1 MHz gate DC bias = 0, test signal level = 20 mV open drain		23	Ω
t _{d(on)} (1)	Turn-on delay time			20	
t _r ⁽¹⁾	Rise time			7	
t _{d(off)} ⁽¹⁾	Turn-off delay time	V _{DD} = 100 V, I _D = 8 A, R _G = 4.7 Ω, V _{GS} = 12 V		345	ns
t _f (1)	Fall time			113	
(0)		I _{SD} = 16 A, V _{GS} = 0 V		1.2	
V _{SD} ⁽²⁾ Diode forward voltage	I_{SD} = 16 A, V_{GS} = 0 V, T_a = 125 °C		1.1	V	
t _{rr}	Reverse recovery time	V _{DS} = 100 V, I _{SD} = 8 A, di/dt = 100 A/µs		380	ns

1. Not tested in production, guaranteed by process.

2. Pulse duration = 680 us, duty cycle $\leq 2\%$

3 Radiation characteristics

The STRHMF16N20 is guaranteed in radiation exposure in single event effects (SEE) as per ESCC25100 and total ionizing dose (TID) as per ESCC 22900.

Each lot is tested in radiation and accepted according to the characteristics of Table 5.

3.1 Total dose radiation (TID) testing

During the irradiation exposure the device is biased at V_{GS} = + 15 V and V_{DS} = 0 V.

The parameters listed in Table 5 are measured:

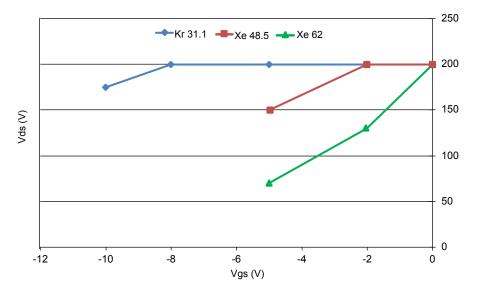
- Before irradiation
- After irradiation
- After 24 hrs at room temperature
- After 168 hrs at 100 °C anneal

Table 5. Post-irradiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max.	Unit
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = 160 V, V_{GS} = 0 V		10	μA
lass	Gate body leakage current(V _{DS} = 0)	V_{GS} = 20 V		100	nA
I _{GSS}	Gate body leakage current(vDS - 0)	V _{GS} = -16 V	-100		ПА
V _{(BR)DSS}	Drain-to-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	200		V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	2	4.5	V
R _{DS(on)}	Static drain-source on resistance	V_{GS} = 12 V, I _D = 16 A		90	mΩ
V _{SD} ⁽¹⁾	Diode forward on voltage	V _{GS} = 0 V, I _{SD} = 16 A		1.2	V

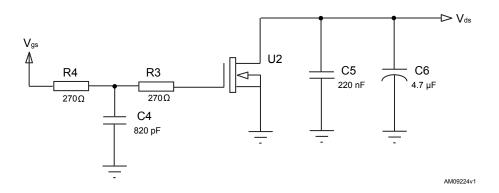
1. Pulse duration = 680 us, duty cycle $\leq 2\%$

3.2 Single event effect RBSOA


The STRHMF16N20 is able to withstand heavy ions exposure according to the MIL-STD-750E test method 1080. Reverse Biased Safe Operating Area is characterized using the circuit depicted in Figure 2.

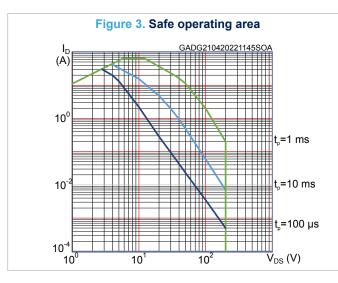
SEB and SEGR tests are performed with a fluence of 3e+5 ions/cm² with the following acceptance criteria:

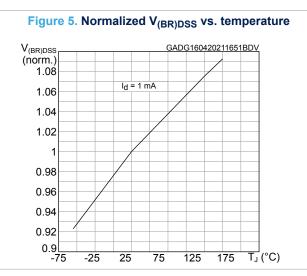
- SEB test: drain voltage checked, trigger level is set to V_{DS} = 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 200 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 100 nA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².

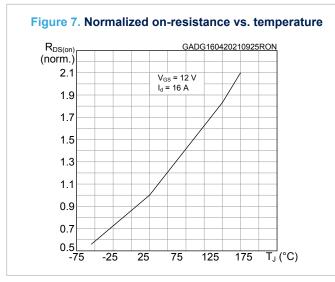

Table 6. Single event effect (SEE), safe operating area (SOA)

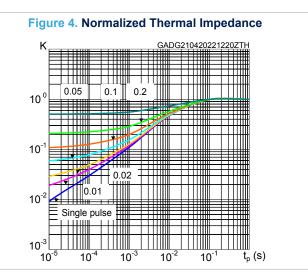
lon	Let	Energy	Range
1011	(Mev/(mg/cm²))	(MeV)	(μm)
Kr	31.1	845	111
Xe	48.5	2059	155
Xe	62	1091	81

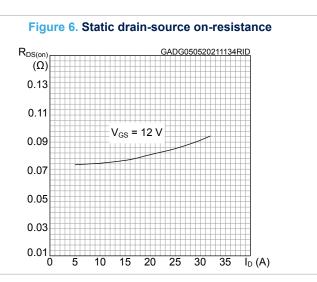
Figure 1. Single event effect, SOA








3.3 Electrical characteristics (curves)


57/



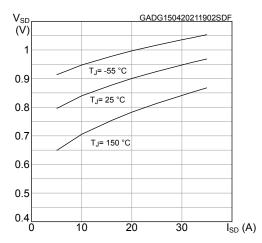
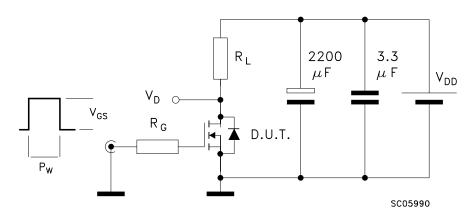


Figure 8. Normalized gate threshold voltage vs. temperature


Figure 9. Source-drain diode forward characteristics

4 Test circuits

Figure 10. Switching times test circuit for resistive load

Figure 11. Source drain diode waveform

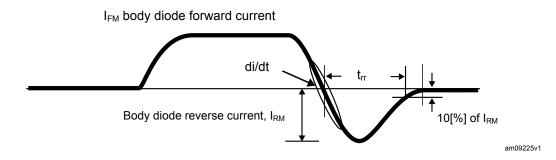
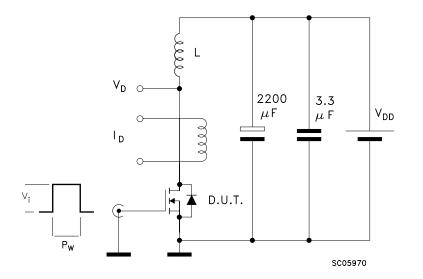
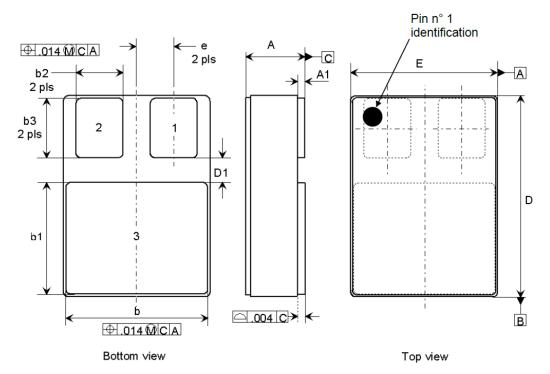



Figure 12. Unclamped inductive load test circuit (single pulse and repetitive)



5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

5.1 SMD.5 package information

Figure 13. Surface mount SMD.5 package outline (3-terminal)

Table 7. SMD.5 package mechanical data

Quanta da		Dimensions (mr	n)	D	imensions (inch	es)
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
A	2.84		3.30	0.112		0.130
A1	0.25	0.38	0.51	0.010	0.015	0.020
b	7.13	7.26	7.39	0.281	0.286	0.291
b1	5.58	5.72	5.84	0.220	0.225	0.230
b2	2.28	2.41	2.54	0.090	0.095	0.100
b3	2.92	3.05	3.18	0.115	0.120	0.125
D	10.03	10.16	10.28	0.395	0.400	0.405
D1	0.76			0.030		
E	7.39	7.52	7.64	0.291	0.296	0.301
e		1.91			0.075	

6 Order codes

Part number	ESCC specification	Screening type	Radiation level	Package	Weight	Lead finish	Marking	Packing		
STRHMF16N20S1	-	Engineering model	-			Gold	STRHMF16N20S1			
STRHMF16N20SG	5205/034/01	Flight model	100 krad	SMD.5	1 g	Gold	520503401	Strip pack		
STRHMF16N20ST	5205/034/02	Flight model	100 krad	•					520503402	

Table 8. Ordering information

 Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: STlogo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about specific conditions for products in die form.

7 Other information

Table 9. Traceability and documentation

Screening type	Date code ⁽¹⁾	Radiation level	Documentation
Engineering model	3yywwN	-	Certificate of conformance
Flight model	yywwN	100 krad	Certificate of conformance ESCC qualification maintenance lot reference Radiation verification test (RVT) report at 25 / 50 / 70 / 100 krad at 0.1 rad / s.

1. yy = year, ww = week number, N = lot index in the week.

Revision history

Table 10. Document revision history

Date	Revision	Changes
02-Aug-2021	1	First release.
27-Jul-2022	2	Updated <i>Features</i> , <i>Table 4</i> and <i>Figure 4</i> . Added <i>Figure 3</i> and <i>Section 3.1</i> . Minor text changes.
02-Jan-2023	3	Updated Table 6 and Figure 1.
05-May-2023	4	Updated Table 4.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved