

STW14NM50

N-CHANNEL 550V @ Tjmax - 0.32Ω - 14A TO-247 MDmesh™ MOSFET

Table 1: General Features

TYPE	V _{DSS} (@Tjmax)	R _{DS(on)}	I _D
STW14NM50	550 V	< 0.35 Ω	14 A

- TYPICAL $R_{DS}(on) = 0.32 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE RATED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTORING YIELDS

DESCRIPTION

The MDmesh™ is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprierati strip technique yields overall dynamic performance that is significantly better than that of similar completition's products.

APPLICATIONS

The MDmesh[™] family is very suitablr for increase the power density of high voltage converters allowing system miniaturization and higher efficiencies.

Figure 1: Package

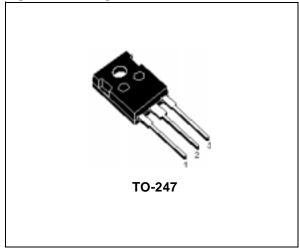
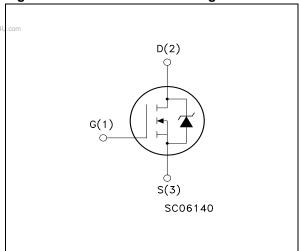



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STW14NM50	W14NM50	TO-247	TUBE

July 2004 1/9

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source Voltage	±30	V
I _D	Drain Current (continuous) at T _C = 25°C	14	Α
I _D	Drain Current (continuous) at T _C = 100°C	8.8	Α
I _{DM} ⁽¹⁾	Drain Current (pulsed)	56	А
P _{TOT}	Total Dissipation at T _C = 25°C	175	W
	Derating Factor	1.28	W/°C
dv/dt	Peak Diode Recovery voltage slope	6	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

^(•)Pulse width limited by safe operating area

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.715	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	12	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	400	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 6 A		0.32	0.35	Ω

2/9

^(*)Limited only by maximum temperature allowed

 $⁽¹⁾I_{SD} \leq 14A, \ di/dt \leq 100A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_j \leq T_{JMAX}.$

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 6A$		5.2		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,} $ $V_{GS} = 0$		1000 180 25		pF pF pF
Coss eq (3).	Equivalent Output Capacitance	V _{GS} = 0 V, V _{DS} = 0 to 400 V		90		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.6		Ω
$\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$V_{DD} = 250 \text{ V, } I_{D} = 6 \text{ A,}$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 15)		20 10 19 8		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V, } I_{D} = 12 \text{ A,}$ $V_{GS} = 10 \text{ V}$ (see Figure 18)		28 8 15	38	nC nC nC

Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				14 56	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 12 A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{V}$ (see Figure 16)		270 2.23 16.5		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 100 \text{V, T}_j = 150 ^{\circ}\text{C}$ (see Figure 16)		340 3 18		ns µC A

⁽¹⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area.
(3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area

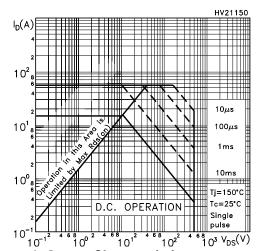


Figure 4: Output Characteristics

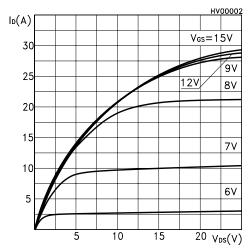


Figure 5: Transconductance

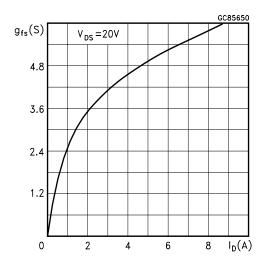
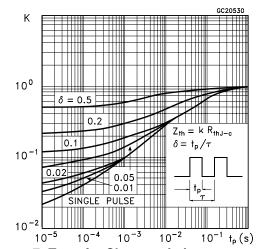



Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

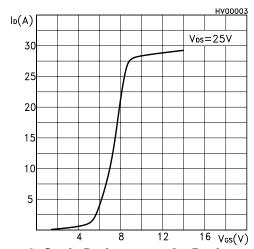
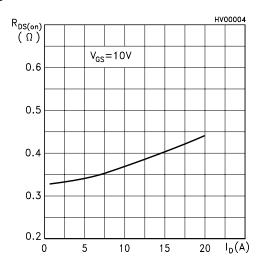



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

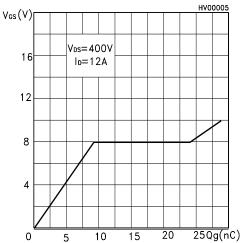


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

Figure 11: Dource-Drain Diode Forward Characteristics

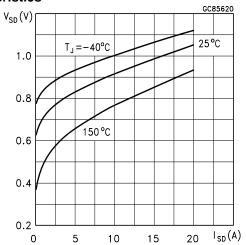


Figure 12: Capacitance Variations

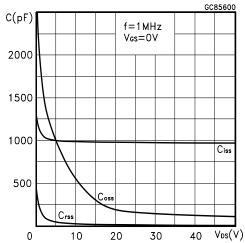


Figure 13: Normalized On Resistance vs Temperature

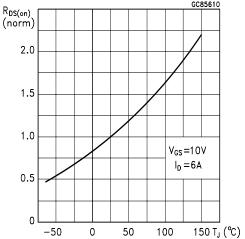


Figure 14: Unclamped Inductive Load Test Circuit

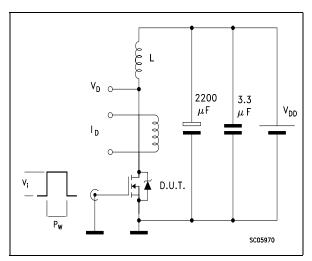


Figure 15: Switching Times Test Circuit For Resistive Load

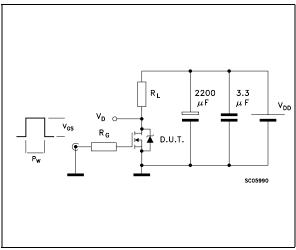


Figure 16: Test Circuit For Inductive Load Switching and Diode Recovery Times

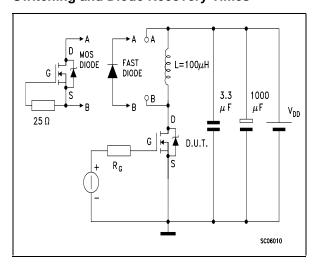


Figure 17: Unclamped Inductive Wafeform

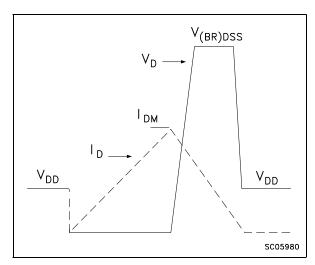
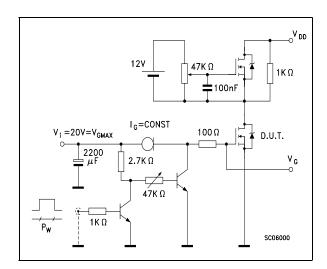
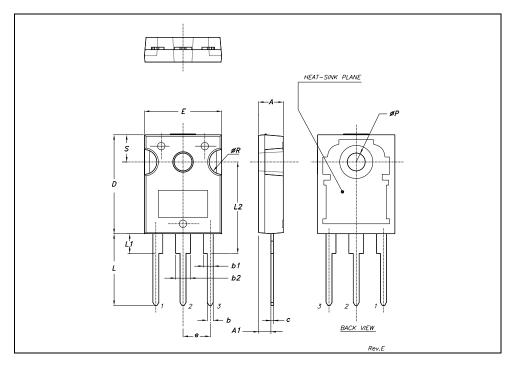




Figure 18: Gate Charge Test Circuit

TO-247 MECHANICAL DATA

DIM.		mm.				
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
Е	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øΡ	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 9: Revision History

Date	Revision	Description of Changes	
05-July-2004	5	The document change from "PRELIMINARY" to "COMPLETE".	
		New Stylesheet.	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

