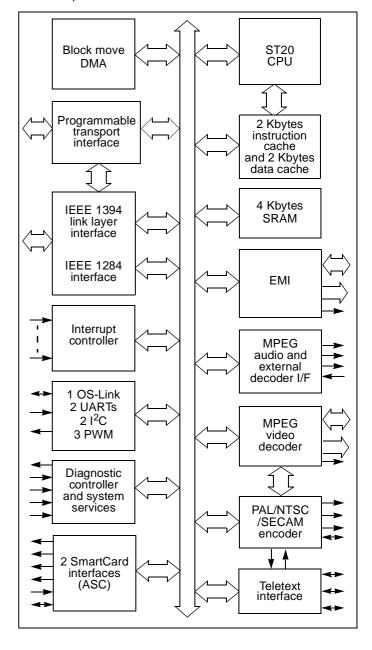


STi5512

SET TOP BOX BACKEND DECODER WITH INTEGRATED HOST PROCESSOR


PRODUCT PREVIEW

- High performance graphics system
 - High resolution chroma mode (4:4:4) for RGB output
 - 2 to 8 bits per pixel OSD options
 - · Link list control
 - 4-bit mixing factor by region or 6-bit mixing for each CLUT entry (anti-aliasing)
 - · 8-bit Y, U and V resolution palette
 - Extra YUV plane for background images or graphics
 - 2D, paced BLT engine with "fill" function
 - · Anti-flicker and anti-flutter filters
- Enhanced 32-bit VL-RISC CPU 60 MHz clock
 - Fast integer/bit operation and very high code density
- High performance memory/cache subsystem
 - 2 Kbytes instruction cache, 2 Kbytes data cache or SRAM, 4 Kbytes SRAM
 - · 200 Mbytes/s maximum bandwidth
- Combined video and audio decoder core
 - Video decoder fully supports MPEG-2 MP@ML.
 Letter box (16:9 and 14:9), 2:1, 3:1, 4:1 downsizing
 - Memory reduction PAL MP@ML in 12 Mbits
 - Audio decoder supports layers 1 and 2 of MPEG 1, and an AC-3 interface to an external decoder
 - Digital YCrCb output in 4:2:2 format
- PAL/NTSC/SECAM encoder
 - Outputs RGB with 10-bit DACs and CVBS, Y, C and component output (YUV) with 10-bit DACS
 - · Separate OSD control for RGB and CVBS outputs
 - · Genlock support
- High performance SDRAM memory interface
 - Supports two 16- or one 64-Mbit 100 MHz SDRAMs
 - · Accessible by MPEG decoder, PTI, DMAs and CPU
 - High bandwidth access from CPU allows high performance OSD operations
- Programmable external memory interface (EMI)
 - · Support for SDRAM included
- Programmable transport interface
 - · Parallel or serial input
 - Supports DVB bit-streams
 - · More than 32 PIDs supported
 - DVB descrambler
 - 32 SI/PSI filters of 8 bytes
- Vectored interrupts 8 prioritized levels
- Interfaces and DMA engines
 - 2 SmartCard interfaces, 2 UARTs, 2 I²C / SPI controllers, 3 PWM outputs, 4 timers, 3 capture timers
 - Block move DMA
 - Teletext interface, input from external source
 - IEEE 1284 port, or IEEE 1394 A/V link layer interface
- Low power controller/real time clock/watchdog

- JTAG Test Access Port
- Professional toolset support
 - ANSI C compiler and libraries
 - Advanced debugging tools
- Non-intrusive debug controller
 - Hardware breakpoints
 - Real time trace

APPLICATIONS

Set top boxes to DVB standards.

10 June 1999 7110123 B

1 Introduction

The STi5512 is one of the OMEGA family of integrated multimedia decoder engines for DVB set top box systems. It offers a high level of integration by reducing the complete set-top box decoding chain from transport demultiplexing to PAL/NTSC/SECAM encoder onto one chip. At the same time it dramatically enhances CPU and graphics performance, and cuts down total system memory cost.

The STi5512 integrates the functions of the MPEG decoder and the PAL/NTSC/SECAM encoder. This single device includes the following subsystems, which are described in more detail below:

- A transport demultiplexor,
- A system microcontroller,
- A MPEG audio decoder,
- A MPEG video decoder,
- A PAL/NTSC/SECAM encoder.

The STi5512 minimizes system costs. The external memory interface module (EMI) contains a zero glue logic DRAM/ SDRAM controller and a low cost 32/16/8-bit EPROM interface. SDRAM is supported at the CPU clock rate, 60 MHz.

The SDRAM memory interface directly supports two 16-Mbit or one 64-Mbit 100MHz SDRAM providing the very high bandwidths to support MPEG decoding and display, on-screen display (OSD) drawing and display, and general system use. Furthermore the ST20 VL-RISC micro-core has the highest code density of any 32-bit CPU, leading to the lowest cost program ROM.

The STi5512 is supported by a range of software and hardware development tools for PC and UNIX hosts including an ANSI-C ST20 software toolset and the ST20 window based debugging toolkit.

Display

The STi5512 provides an enhanced range of display functions and features to improve the video display and add background and foreground graphics and pictures. Features include:

- Five display planes background color, still picture, decompressed video, on-screen display and sub-picture,
- Letterbox filtering,
- Anti-flutter and anti-flicker filters,
- 2- to 8-bits per pixel on-screen display with 24-bit color with anti-aliasing,
- Hardware cursor option,
- Display memory expandable to 64 Mbits of SDRAM,
- 2D BLT block move engine,
- Two additional display modes for full resolution source video using Frame based filtering for Luma and Chroma.

Video decoder

The video decoder fully supports MPEG-2 Main Profile/Main Level (MP@ML), and has the following features:

 A memory reduction architecture, allowing sharing of a single 16-Mbit SDRAM between MPEG decoding, micro and transport functions.

PAL/NTSC/SECAM encoder with teletext and closed caption

The on-chip digital encoder provides analog video output to PAL, NTSC and SECAM standards, with the following features:

- RGB and YUV outputs:
 - CVBS, Y, C outputs,
 - Close caption,
 - Double DENC function,
 - Support for placement of teletext, WSS (wide screen signalling) and VPS on any line,
 - VBI insertion in square pixel mode,
 - Genlock support for locking to external source and display of OSD over analogue source using SCART fast switch facility.

Transport demultiplexor

The STi5512 Programmable Transport Interface features:

- Inputs from a LinkIC or IEEE 1394 link layer controller
- A DVB Descrambler
- Demultiplexing of transport stream by PID
- Section filtering
- DMA and buffering of streams in memory

MPEG audio decoder

The STi5512 incorporates a 2-channel MPEG-1 audio decoder, with an interface for connection to external audio decoders. The audio decoder supports layer I and layer II.

System microcontroller

The STi5512 incorporates a ST20-C2 CPU. The ST20 micro-core family has been developed by STMicroelectronics to provide the tools and building blocks to enable the development of highly integrated application specific 32-bit devices at the lowest cost and fastest time to market. The ST20 macrocell library includes the ST20Cx family of 32-bit VL-RISC (variable length reduced instruction set computer) micro-cores, embedded memories, standard peripherals, I/O, controllers and ASICs. The STi5512 32-bit VL-RISC for host functions and application code runs at up to 60 MHz.

The performance offered by the ST20 32-bit micro-core allows the following operations to be performed in software:

- Device drivers and synchronization
- System management functions
- · Electronic program guide and user interface
- Conditional access control
- Interpretation and execution of loadable application programs

The use of a 32-bit CPU enables advanced graphics routines to be employed for on-screen display functions, allowing fast turnaround of system upgrades. Source code software licences are available from STMicroelectronics for items 1 and 2 in the list above, and a library of graphics functions to assist with the Electronic program guide and user interface.

7110123 B 3/23

The STi5512 uses the ST20 macrocell library to provide all of the peripheral hardware modules required. These include:

- High performance internal SRAM and cache subsystem
- I²C interfaces to other devices in the set top box
- Interrupt controller for internal and external interrupts
- Programmable memory interface supporting ROM, SRAM and DRAM/SDRAM. SDRAM is supported at the CPU clock rate, 60 MHz.
- PWM/timer module for control of system clock VCXOs
- Programmable I/O pins
- UART serial I/O interface to modem and auxiliary ports including hardware handshake
- Smart card interfaces including the ability to use the 16 byte transmit and receive FIFOs

2 Architecture overview

A block diagram of a DVB digital set top receiver is shown in Figure 1 below.

The STi5512 includes the following hardware modules:

- Transport demultiplexor
- System microcontroller
- MPEG video decoder
- · MPEG audio decoder
- PAL/NTSC/SECAM encoder

The STi5512 directly interfaces to external memory and peripherals with no extra glue logic, keeping the system cost to a minimum. The STi5512 architectural block diagram is shown below.

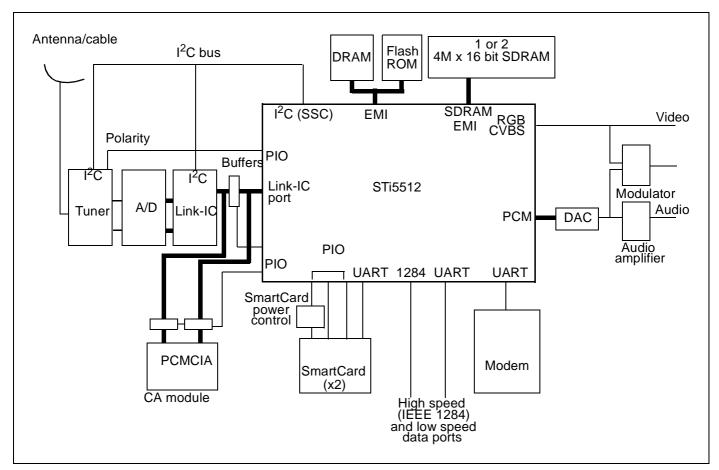


Figure 1 Digital set top box block diagram

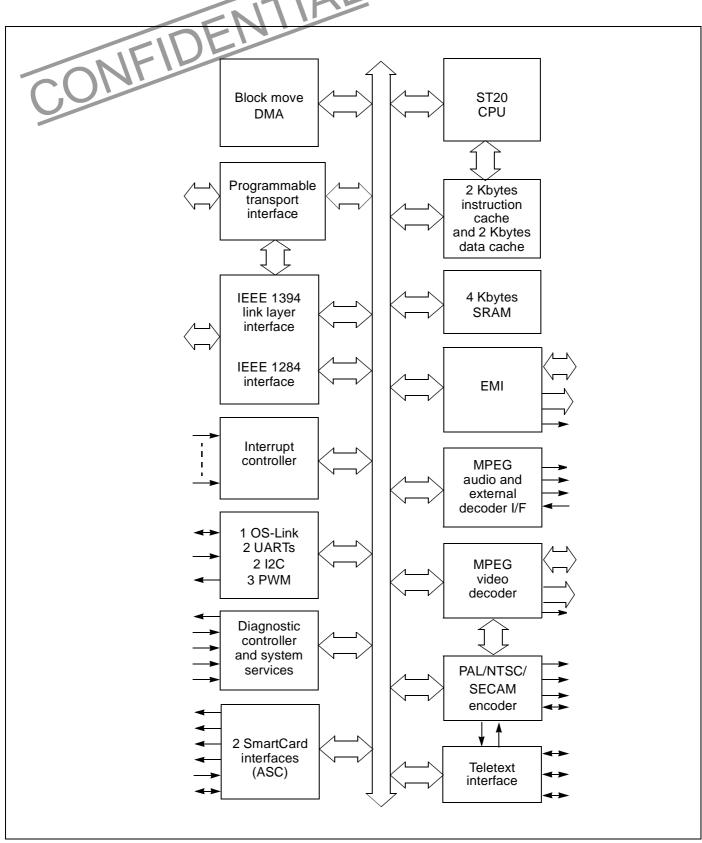


Figure 2 STi5512 architecture block diagram

2.1 STi5512 functional modules

STi5512 architecture block diagram on page 6 shows the subsystem modules that comprise the STi5512. These modules are outlined below.

Processor

The Central Processing Unit (CPU) on the STi5512 is the enhanced ST20-C2 32-bit processor core running at 60 MHz clock rate. It contains instruction processing logic, instruction and data pointers, and an operand register. It directly accesses the high speed on-chip caches and SRAM, which can store data or programs. The processor can also access memory via the External Memory Interface (EMI) and SDRAM interface.

MPEG-2 video and MPEG-1 audio decoder subsystems

This subsystem takes the MPEG compressed data streams and decompresses them, outputting digital YUV data in the case of the video decoder, and stereo PCM samples in the case of the audio decoder. The decoded video is fed to the display subsystem. An interface is provided to output an audio bit-stream for decoding by an external MPEG or AC-3 decoder to support multi-channel (surround) audio.

The video decoder implemented on the STi5512 uses a patented memory reduction/bandwidth reduction scheme to offer the user the best compromise between bandwidth and memory size. The algorithm is lossless and uses "on-the-fly" decoding to reduce the memory requirements to two frame buffers in memory size reduction mode. When used in bandwidth reduction mode, the memory usage is the normal three buffers, but the bandwidth required by the decoder is significantly reduced over a classical implementation.

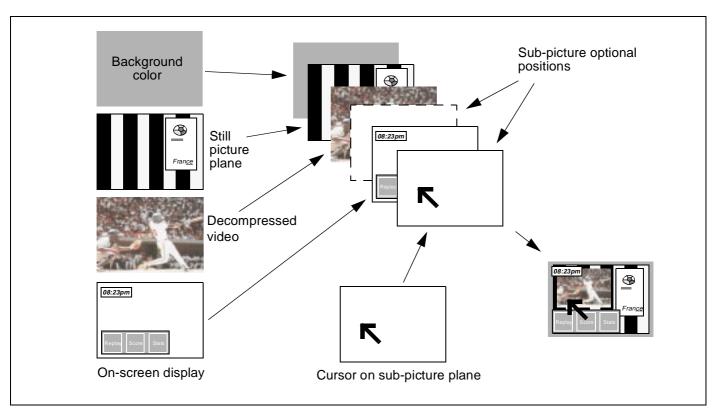


Figure 3 Display planes

The SDRAM interface includes all the signals necessary for control of the memory. Refresh is handled automatically by the decoder. The SDRAM interface supports two 16-Mbit or one 64-Mbit 100 MHz SDRAMs. The memory is used to hold the bit buffer, store decoded pictures and provide the display buffer. It also holds the user-defined on-screen display (OSD) bitmaps and can be used by the CPU for private storage of data. For the decoding of PAL MP@ML sequences, 12 Mbits of SDRAM are required.

7110123 B 7/23

Graphics and display subsystem

The display unit is part of the MPEG video decoder. It can overlay several display planes, as shown in Figure 3 on page 7.

It takes the decompressed MPEG video data and performs the following functions:

- Optionally perform horizontal resampling of both luminance and chrominance data
- Reconstruct vertical data to create 4:2:2 sample format
- Generate on-screen display bit map for superposition onto picture output
- Allow sub-picture decoder output to be mixed onto picture output
- Optionally perform anti-flicker and anti-flutter filtering
- Optionally perform vertical resampling of both luminance and chrominance data
- Still picture plane with graphics capability
- 2D block move to copy rectangular sections of the display
- 4:4:4 chroma resolution for RGB output.
- 4:2:2 chroma resolution for CVBS output
- Separate control on OSD between CVBS and YC on one hand and RGB and YUV on the other

The sub-picture decoder can also be used as a hardware cursor unit. The priority of the sub-picture is first raised by programming a register so it is above all the other display planes. A cursor can be defined using an optionally compressed (run-length encoded) bitmap stored in external SDRAM. The bitmap can be any size up to a full screen. Per-pixel alpha-blending factors can be defined for each cursor to provide anti-aliasing with the background. The cursor is then moved around using register writes into X and Y coordinate registers.

The digital video data is fed to the PAL/NTSC/SECAM encoder subsystem.

PAL/NTSC/SECAM encoder

Integrated into this subsystem is all the digital processing and the digital to analog convertors required to process the digital video output from the MPEG video decoder and produce RGB, YUV, YC and CVBS analog outputs. The output of the teletext interface is filtered and re-inserted into the blanking interval in this subsystem.

Programmable Transport Interface

The transport demultiplexing function is performed in a programmable hardware module, the programmable transport interface (PTI). Its operation is as described below.

The input interface may select between either a LinklC stream or an IEEE 1394 controller as the source for the transport stream. Data packets from the input interface are input into a FIFO while the PID is checked to see if it is currently selected for processing or is to be discarded. A selected packet is parsed by the module to determine its type and to extract data from it. If the packet is encrypted using the DVB Standard the correct key is written into the DVB decryption core in the transport module and the packet is decrypted.

After parsing and descrambling the packet, the data is either transferred to buffers in external memory or directly to the MPEG audio and video decoders. If the audio and video data is buffered then the data can be transferred by DMA from the buffer to the MPEG decoders.

DVB standard sections are filtered by a set from 32 possible 8-byte filters to look for a match. Matching sections are then transferred to memory buffers for processing by software.

Error conditions, system time clock recovery, and control of the hardware module are handled by software running on the ST20.

Memory subsystem

The STi5512 on-chip memory system provides 200 Mbytes/s internal data bandwidth, supporting pipelined 2-cycle internal memory access at 20 ns cycle times at 60 MHz. The STi5512 memory subsystem consists of instruction and data caches, SRAM and an external memory interface (EMI).

The STi5512 product has 4 Kbytes of on-chip SRAM. The advantage of this is the ability to store on-chip any time-critical code, such as interrupt routines, software kernels or device drivers, and even frequently used data.

The instruction and data caches are direct mapped with a write-back system for the data cache. The caches support burst accesses to the external memories for refill and write-back which are effective for increasing performance with page-mode DRAM memories. The data cache may also be configured as an additional 2 Kbytes of internal SRAM.

The STi5512 EMI controls access to the external memory and peripherals including the DMA data ports. It can access a 16 Mbyte physical address space in each of the three memory banks, or greater if DRAM is used. It provides sustained transfer rates of up to 80 Mbytes/s for SRAM, and up to 40 Mbytes/s using page-mode DRAM.

The 32-bit programmable EMI supports ROM, SRAM and DRAM/SDRAM for the ST20. SDRAM is supported at the CPU clock rate, 60 MHz. The STi5512 supports boot bank width ROM/Flash population options using the address shift mechanism.

The SDRAM interface supports the use of two 16 Mbits or one 64 Mbits of external 100 MHz SDRAM. This memory is used to store the display data generated by the MPEG decoder and the CPU and read by the display unit.

Interrupt subsystem

The STi5512 interrupt subsystem supports eight prioritized interrupt levels. Four external interrupt pins are provided. Level assignment logic allows any of the internal or external interrupts to be assigned to any interrupt level. Interrupt level sharing is supported for level-sensitive interrupts.

Serial communications

To facilitate the connection of this system to a modem for a pay-per-view type system and other peripherals, two UARTs (ASC2s) are included in the device. The UARTs provide an asynchronous serial interface and can be programmed to support a range of baud rates and data formats, for example, data size, stop bits and parity. The UARTs are buffered with 16 byte FIFOs for transmit and receive data.

Two synchronous serial communications (SSC2) interfaces are provided on the device. These can be used to control, via an I²C or SPI bus, the tuner, Link-IC, E²PROM (if used) and the remote control devices in the application.

Block move engine

High performance block data transfer can be performed as a memory to memory DMA operation using the block move module.

IEEE 1284 interface

An 8-bit wide parallel interface (conforming to the IEEE 1284 standard) supports a high speed data input/output port to and from the set top receiver. The interface has a dedicated DMA controller to transfer data between memory and the port with little CPU overhead.

The STi5512 has a new mode called '1284_master_mode'. In this mode, pairs of the 1284 interface swap functionality and direction. The control signal for this mode comes from bit 15 of the EMIConfigpadlogic signal. When low, the 1284 is in slave mode and behaves as on the STi5510. When high, the 1284 is in master mode.

7110123 B 9/23

The 5 pairs of signals are	The 5	pairs	of	signa	ls ar	e
----------------------------	-------	-------	----	-------	-------	---

5 pairs of signals are:	NTIAL	
SONFID	1284notSelectIn	1284notFault
COL	1284notInit	1284Select
	1284notAutoFd	1284PError
	1284HostLogicH	1284Busy
	1284notStrobe	1284notAck

Table 1 1284 mode signals

IEEE 1394 Link Layer Interface

The Link Layer Interface (LLI) facilitates the transfer of MPEG (or other) data from PID streams selected in the PTI to an external IEEE 1394 A/V Link layer controller. The LLI is bidirectional and so may also receive MPEG and other data which can be fed back into the PTI for demultiplexing or descrambling or both. The external link layer controller must support the IEC 61883 A/V digital interface specification and all its time-stamping requirements.

SmartCard interfaces

The SmartCard interfaces support SmartCards that are compliant with ISO7816-3 and use asynchronous protocol. Each interface is implemented with a UART (ASC), dedicated programmable clock generator, and eight bits of parallel IO port.

PWM and counter module

This module includes three separate pulse width modulator (PWM) generators using a shared counter, plus four timercompare and three capture channels sharing a second counter.

The counters can be clocked from a pre-scaled clock, using the 27 MHz ClockIn for the PWM counter and the system clock for the capture/compare counter. The event on which the timer value is captured is also programmable.

The PWM counter is 8-bit with 8-bit registers to set the output high time. The capture/compare counter and the compare and capture registers are 32-bit.

Parallel IO module

Forty bits of parallel IO are provided. Each bit is programmable as an output or an input. The output can be configured as a totem pole or open drain driver. Input compare logic is provided which can generate an interrupt on any change of any input bit.

Many pins of the STi5512 device are multi-functional, and can either be configured as PIO or connected to an internal peripheral signal such as a UART or SSC.

Teletext

The teletext connects to the internal digital encoder using a request and data protocol. It translates teletext data to and from memory. It has two modes of operation; teletext data in and teletext data out.

In teletext data out mode, the teletext interface uses DMA to retrieve teletext data from memory, and serializes the data for transmission to the composite video encoder.

In teletext data in mode, teletext data is extracted from the composite video signal and is fed into the teletext interface as a serial stream. The teletext interface assembles the data and uses DMA to pass this data to memory.

Low power controller module

The low power controller module provides low power modes and a watchdog timer.

Diagnostic controller

The Diagnostic Controller Unit (DCU) is accessed via the JTAG test access port. It is the main access for communication with a host for development, including loading code and debugging. It provides:

- Bootstrapping and debugging during development
- Hardware breakpoint and watchpoint facilities
- Real-time tracing
- External LSA triggering support

OS-Link serial port

The OS-Link serial port can provide communication with a host for development, including loading code and debugging. This is provided for compatibility with previous silicon and software products.

System services module

The STi5512 system services module includes:

- A Phase Locked Loop (PLL) which accepts 27 MHz input and generates all the internal high frequency clocks needed for the CPU and the OS-Link
- A second PLL which is used to generate all the MPEG decoder and display clocks
- A Test Access Port which is JTAG compatible
- Reset controller

7110123 B 11/23

3 Differences between the STi5512 and the STi5510

The new features of the STi5512 compared to the STi5510 are as follows.

- Software and pinout compatible with STi5510.
- Genlock system can lock to an external analogue source and switch between STi5512 generated OSD and picture in RGB.
- Digital YCrCb Output in 4:2:2 format to CCI.
- Support for 16 and 64 Mbit JEDEC or PC100 SDRAMs on the EMI.
- Support for boot bank width population options on customers boards (16 or 32 bit) by optionally applying address shift based on bank width after reset.
- LMC (local memory interface) will support two 16 or one 64 Mbit JEDEC or PC100 SDRAMs with x16 bit configuration. The ST20 system and the MPEG decoder and display are able to access all 64 Mbits of memory. The caching of data in this area allows any of the 8 Mbytes of memory to be cached.
- Increased performance:
 - 60 MHz CPU and system clock rate (also on STi5510)
 - 72 Mbits/s transport stream input processing rate due to clock rate increase, with the restriction when
 processing more than 11 matching scrambled sections per packet for more than 2 consecutive packets the
 maximum data rate will drop to 60 Mbps.
 - UART hardware RTS/CTS and ability to use FIFO's in SmartCard mode (T=0 protocol) with auto-repeat transmit
 of characters when NAKed from the SmartCard and precise record of characters in error which have been
 NAKed automatically on receive.
 - EMI supports SDRAM.
- External micro support using the ability to tristate all of the EMI data, address and strobe signals on a external DMA request (MReq).
- DENC enhancements:
 - Support for placement of teletext, WSS and VPS on any line.
 - VBI insertion in square pixel mode.
- Two additional display modes for full resolution source video using Frame based filtering for Luma and Chroma
 - Luma/chroma downsampling for 16:9 Letterbox display.
 - Chroma upsampling for full resolution display.

4 STi5512 Pin list

Signal names are prefixed by **not** if they are active low; otherwise they are active high.

Power supplies

Pin	Number	Function	
VDD	13	Power supply.	
GND	16	Ground.	
VClamp1-3	3	Power supply for clamp diodes.	
VDDA0-1	2	Analog power supply for PAL/NTSC/SECAM encoder.	
VSSA0-1	2	Analog ground for PAL/NTSC/SECAM encoder.	
RTCVDD	1	Real time clock supply.	
VDD_VPLL	1	Analog power supply for video PLL.	
VSS_VPLL	1	Analog ground for video PLL.	

Table 1 STi5512 supply pins

System services

Pin	In/Out	Function	
ClockIn	in	System input clock - PLL or TimesOneMode.	
SpeedSelect0-1	in	LL speed selector.	
notRST	in	System reset.	
CPUAnalyse / TrigIn	in	Error analysis / External trigger input to DCU.	
CPUReset	in	Soft reset for analyzing from OS-Link.	
ErrorOut / TrigOut ¹	in/out, out	Error indicator / Signal to trigger external debug circuitry (e.g. LSA).	

Table 2 STi5512 system services pins

1. This pin is tri-stated during reset and then sampled at the end of the reset to determine whether the OS-Link is active and to determine the function of the shared CPUAnalyse / TrigIn and the ErrorOut / TrigOut, as described in the System Services chapter. If the ErrorOut pin is sampled high (i.e at VDD) then the DCU signals (TrigIn and TrigOut) are selected and a low value indicates OS-Link signals (i.e. CPUAnalyse, ErrorOut) are to be used. External 10KΩ pull-up or pull-down resistors should be fitted to the ErrorOut according to the functionality desired.

External interrupts

Pin	In/Out	Function
Interrupt0-1	in	Interrupt.

Table 3 STi5512 External interrupt pins

Video output interface

Pin	In/Out	Function
R_OUT	out	Red output.
G_OUT	out	Green output.
B_OUT	out	Blue output.
C_OUT	out	Chroma output.
CV_OUT	out	Composite video output.
Y_OUT	out	Luma output.

Table 4 Video output interface pins

7110123 B 13//23

Pin	In/Out	Function
I_REF_DAC_RGB	in	DAC current reference.
I_REF_DAC_YCC	in	DAC current reference.
V_REF_DAC_RGB	in	DAC voltage reference.
V_REF_DAC_YCC	in	DAC voltage reference.
OSD_ENABLE	in/out	OSD enable.
notHSYNC	in/out	Horizontal sync.
ODD_OR_EVEN	in/out	Vertical sync.
YC0-7 ¹	output	Digital YUV output.
CFC	input	Color frequency control input.

Table 4 Video output interface pins

1. The **YC0** pin is tri-stated during reset and then sampled at the end of the reset to determine whether the EMI pins are in STi5510 or STi5512 mode. If the **YC0** pin is sampled high (i.e at VDD) then the STi5510 mode is selected for the EMI pins and a low value selects STi5512 mode. For details see the *External Memory interface* chapter. In STi5512 mode the address shift for bank 3 is dependent on the boot bank width and the strobe pins are tri-stated when the EMI bus is granted to an external DMA device. External 10KΩ pull-up or pull-down resistors should be fitted to the **YC0** according to the functionality desired. If this pin is left *not* connected, the pin will be pulled high by an internal pull-up and will default the EMI pins to STi5510 mode.

Audio output interface

Pin	In/Out	Function	
SCLK/A_C_STB	out	Serial clock or AC3 data strobe.	
PCM_DATA/A_C_DATA	out	PCM data out or AC3 data out.	
PCMCLK	in/out	PCM clock.	
LRCLK/A-WORD_CLK	out	Left/right clock or AC3 word clock.	
A_C_REQ	in	AC3 data request.	
A_PTS_STB	in	AC3 audio PTS strobe.	

Table 5 AC3/MPEG1 audio output interface pins

External memory interface

Pin	In/Out	Function	
MemAddr2-23	out	Address bus.	
MemData0-31	in/out	Data bus. MemData0 is the least significant bit (LSB) and MemData31 is the most significant bit (MSB).	
MemRdnotWr	out	ReadnotWrite strobe.	
MemReq	in	Direct memory access request.	
MemGrant	out	Direct memory access granted.	
MemWait	in	Memory cycle extender.	
notMemCAS0,2	out	CAS strobes for SDRAM/DRAM in Banks 0 and 1	
notMemCAS1	out	CAS strobe for DRAM or SDRAM clock	
notMemCAS3	out	CAS strobe for DRAM or sub-bank chip select for bank 3.	
notMemRAS0	out	RAS strobe for SDRAM/DRAM in Bank 0, chip select for Bank0 or	
		RAS strobe for lowest DRAM sub-bank in Bank0	
notMemRAS1	out	RAS strobe for highest DRAM sub-bank in Bank0 or	
		SDRAM Chip select signal for highest sub-bank of Bank0	
notMemRAS2	out	RAS strobe for SDRAM/DRAM in bank 1, chip select for Bank1 or	
		RAS strobe for lowest DRAM sub-bank in Bank1	
notMemRAS3	out	RAS strobe for highest DRAM sub-bank in Bank1 or	
		SDRAM Chip select signal for Bank1	
notSDRAMCS0	out	SDRAM Chip select signal for Bank0 or lowest sub-bank of Bank0	
notMemCSROM	out	Chip select strobe for bank3 or highest sub-bank in Bank3	
notMemOE	out	Output enable strobe - banks 0-3.	
notMemBE0-3	out	Byte enable strobes - banks 0-3.	
		DQM signals for SDRAM	
notMemCS2	out	Chip select strobe for memory in bank 2.	
BootSource0-1	in	Boot from ROM or from link.	
ProcClockOut	out	Processor clock	

Table 6 STi5512 external memory pins

Shared SDRAM interface

Pin	In/Out	Function
AD0-12	out	SDRAM address bus.
DQ0-15	in/out	SDRAM data bus (lower byte).
notSDCS0	out	SDRAM chip select for first SDRAM
notSDCS1/AD13	out	SDRAM chip select for second SDRAM or AD13
notSDCAS	out	SDRAM CAS.
notSDRAS	out	SDRAM RAS.
notSDWE	out	SDRAM write enable.
MEMCLKIN	in	SDRAM memory clock input.
MEMCLKOUT	out	SDRAM memory clock output.
DQML	out	DQ mask enable (lower).
DQMU	out	DQ mask enable (upper).

Table 7 Shared SDRAM interface pins

7110123 B 15//23

Clocks

			STi5512
Clocks			
Pin	In/Out	Function	
LPClockIn	in	Low power input clock.	
LPClockOsc	in/out	Low power clock oscillator.	
AUX_CLK_OUT	out	Auxiliary clock for general use.	

Table 8 STi5512 low power controller and real time clock pins

Parallel input/output

Pin	In/Out	Function
PIO0[0-7]	in/out	Parallel input/output pin or alternative function (see Table 15).
PIO1[0-7]	in/out	Parallel input/output pin or alternative function (see Table 15).
PIO2[0-7]	in/out	Parallel input/output pin or alternative function (see Table 15).
PIO3[0-7]	in/out	Parallel input/output pin or alternative function (see Table 15).
PIO4[0-7]	in/out	Parallel input/output pin or alternative function (see Table 15).

Table 9 STi5512 PIO pins

OS-Link

Pin	In/Out	Function
LinkIn	in	Serial data input channel.
LinkOut	out	Serial data output channel.

Table 10 STi5512 OS-Link pins

Transport stream input

Pin	In/Out	Function
TSInByteClk	in	Link IC byte clock.
TSInByteClkValid	in	Link IC byte clock valid edge.
TSInData0-7	in	Link IC data.
TSInError	in	Link IC packet error.
TSInPacketClk	in	Link IC packet strobe.

Table 11 STi5512 link IC pins

Teletext interface

Pin	In/Out	Function
TtxtEvennotOdd	in	Teletext even not odd vertical sync signal.
TtxtHsync	in	The hsync signal input when the teletext interface is operating in the input mode.

Table 12 STi5512 teletext interface pins

The teletext clock and data inputs are shared PIO pins, as shown in Table 15.

High speed data port

These pins have a dual function, and can be used either to interface to an external IEEE 1394 link layer controller or provide an IEEE 1284 parallel port interface.

16//23 7110123B

Pin	In/Out	Function
1284Data0-7 / AVData0-7	in/out	IEEE 1284 port data or AV data.
1284notSelectIn	in	IEEE 1284 port control signals or AV signals.
1284notlnit / AVPacketTag3	in	
1284notFault / AVPacketTag2	out	
1284notAutoFd / AVPacketTag1	in	
1284Select / AVPacketTag0	out	
1284PError / AVByteClkValid	out, in/out	
1284Busy / AVPacketClk	out, in/out	
1284notAck / AVByteClk	out	
1284notStrobe/AVPacketError	in	

Table 13 STi5512 high speed data port pins

Test access port (TAP)

Pin	In/Out	Function
TDI	in	Test data input.
TDO	out	Test data output.
TMS	in	Test mode select.
TCK	in	Test clock.
notTRST	in	Test logic reset.

Table 14 STi5512 TAP pins

4.1 PIO pins and alternative functions

To improve flexibility and to allow the STi5512 to fit into different set-top box application architectures, the input and output signals from some of the peripherals are not directly connected to the pins of the device. Instead they are assigned to the alternative function inputs and outputs of a PIO port bit. This scheme allows these pins to be configured as general purpose PIO if the associated peripheral input or output is not required in that particular application.

7110123 B 17//23

Peripheral inputs connected to the alternative function input of a PIO bit are permanently connected to the input pin. The output signal from a peripheral is only connected when the PIO bit is configured into either push-pull or open drain driver alternative function mode.

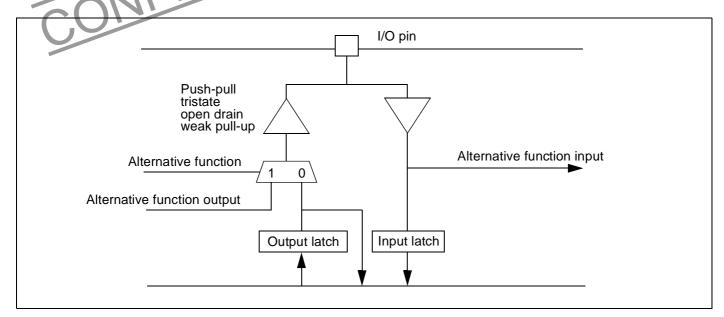


Figure 4 I/O port pin

Table 15 shows the assignment of the alternative functions to the PIO bits. Parentheses () in the table indicate suggested or possible pin usages as a PIO, not an alternative function connection.

Dout hit	Alternative function of PIO pins								
Port bit	PIO port 0	PIO port 1	PIO port 2	PIO port 3	PIO port 4				
0	ASC0TxD or Sc1DataOut	SSC0 MTSR	ASC2TxD or Sc0DataOut	SSC1 MTSR	ASC3TxD				
1	ASC0TRxD or Sc1DataIn	SSC0 MRST	ASC2RxD or Sc0DataIn	SSC1 MRST	ASC3RxD				
2	Sc1ClkGenExtClk	SSC0 SClk	Sc0ClkGenExtClk	SSC1 SClk	TtxtClockIn				
3	Sc1Clk	PWMOut0	Sc0Clk	CaptureIn0	1284PeriphLogicH/ ASC3 CTS				
4	(Sc1RST)	PWMOut1	(Sc0RST)	CaptureIn1	1284HostLogicH/ASC3 RTS				
5	(Sc1CmdVcc)	ASC1TxD	(Sc0CmdVcc)	CaptureIn2	Interrupt2				
6	(Sc1CmdVpp) Sc1Dir	ASC1RxD	(Sc0CmdVpp) Sc2Dir	CompareOut2	Interrupt3				
7	(Sc1Detect)	PWMOut2	(Sc0Detect)	1284InnotOut	TtxtData				

Table 15 Alternative function of PIO pins

5 STi5512 Package specifications

5.1 Package diagram

The STi5512 is packaged in a 256-pin ball grid array (BGA) with 16 additional central ground balls.

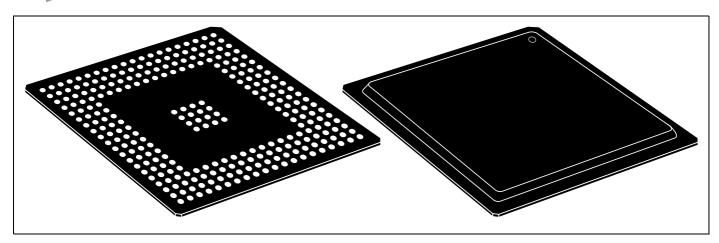


Figure 5 256-pin BGA package

5.2 Package pinout

The following pages give the allocation of pins to the package, shown from the top looking down. The uses of the pins are given in Chapter 4.

NC indicates that the pin is reserved; do not connect these pins.

5.3 Package dimensions

Table 16 gives the values of the dimensions marked in Figure 6.

<u> 577</u>

7110123 B 19//23

	1	2	3	4	5	6	7	8	9	10
	PIO4[3]/			T	J	•	•		,	10
A	1284Periph LogicH/ ASC3 CTS	PIO4[6]/ Interrupt3	Interrupt1	PIO4[1]/ ASC3RxD	MemData 31	MemData 28	MemData 25	Vclamp3	MemData 19	MemData 15
В	PIO4[4]/ 1284Host LogicH/ ASC3 RTS	PIO4[5]/ Interrupt2	Interrupt0	PIO4[0]/ ASC3TxD	MemData 30	MemData 27	MemData 24	MemData 21	MemData 18	MemData 14
С	1284notInit/ AVPacket Tag3	1284not SelectIn	PIO3[7]/ 1284Innot Out	PIO1[6]/ ASC1 RxD	MemData 29	MemData 26	MemData 23	MemData 20	MemData 17	MemData 13
D	1284Select/ AVPacket Tag0	1284not AutoFd/AV PacketTag1	1284not Fault/AV PacketTag2	YC7	PIO1[5]/ ASC1 TxD	VDD	MemData 22	YC0	MemData 16	VDD
E	1284Data0/ AVData0	1284notAck/ AVByteClk	1284Busy/ AVPacket Clk	1284PError/ AVByteClk Valid						
F	1284Data1/ AVData1	1284Data2/ AVData2	1284Data3/ AVData3	VDD						
G	Vclamp1	1284Data4/ AVData4	1284Data5/ AVData5	1284Data6/ AVData6						
Н	1284Data7/ AVData7	1284not Strobe/AV PacketError	TCK	TtxtEven notOdd						
J	notTRST	TMS	TDO	TDI					GND	GND
K	LPClock In	LPClockOsc	RTCVDD	VDD					GND	GND
L	notRST	PIO4[2]/ TtxtClockIn	PIO4[7]/ TtxtData	OSD_ ENABLE					GND	GND
M	LRCLK/A- WORD_ CLK	notHSYNC	ODD_OR_E VEN	TtxtHsync					GND	GND
N	PCM_DATA/ A_C_DATA	A_C_REQ	PCMCLK	A_PTS_ STB						
Р	V_REF_DA C_YCC	I_REF_DAC_ YCC	SCLK/ A_C_STB	VDD						
R	VSSA1	CV_OUT	C_OUT	Y_OUT						
т	V_REF_DA C_RGB	I_REF_DAC_ RGB	VDDA1	CFC						
U	VSSA0	B_OUT	R_OUT	G_OUT	VDD	PIO0[6]/ Sc1Dir	YC6	PIO3[1]/ SSC1 MRST	VDD	PIO3[5]/ Capture In2
٧	VDDA0	PIO2[0]/ ASC2TxD	PIO2[2]/ Sc0ClkGen ExtClk	PIO0[0]/ ASC0TxD	PIO0[3]/ Sc1Clk	PIO0[7]/ (Sc1 Detect)	PIO1[1]/ SSC0 MRST	PIO3[2]/ SSC1 SClk	PIO1[7]/ PWMOut2	PIO3[6]/ Compare Out2
w	PIO2[1]/ ASC2RxD	PIO2[3]/ Sc0Clk	PIO2[5]/ Sc0Cmd Vcc	PIO0[1]/ ASC0RxD	PIO0[4]/ (Sc1RST)	Vclamp2	PIO1[2]/ SSC0 SClk	PIO1[3]/ PWMOut0	PIO3[3]/ CaptureIn 0	ErrorOut/ TrigOut
Y	PIO2[4]/ (Sc0RST)	PIO2[6]/ Sc0Dir	PIO2[7]/ Sc0Detect	PIO0[2]/ Sc1ClkGenE xtClk	PIO0[5]/ (Sc1Cmd Vcc)	PIO1[0]/ SSC0 MTSR	PIO3[0]/ SSC1 MTSR	PIO1[4]/ PWMOut1	PIO3[4]/ CaptureIn 1	CPU Analyse/ TrigIn

				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
11	12	13	14	15	16	17	18	19	20	
MemData	MemData8	MemData5	MemData1	MemAddr 22	MemAddr 18	MemAddr 15	MemAddr 11	MemAddr8	MemAddr7	A
MemData 11	MemData7	MemData4	MemData0	MemAddr 21	MemAddr 17	MemAddr 14	MemAddr 10	MemAddr9	MemAddr6	В
MemData 10	MemData6	MemData3	MemAddr 23	MemAddr 20	MemAddr 16	MemAddr 13	MemAddr3	MemAddr4	MemAddr5	С
MemData9	YC1	MemData2	VDD	MemAddr 19	YC2	MemAddr 12	notMem CAS2	notMem CAS3	MemAddr2	D
						VDD	notMem RAS3	notMem CAS0	notMem CAS1	E
						notMem RAS2	notMem CSROM	notMem RAS0	notMem RAS1	F
						not SDRAM CS0	notMem BE2	notMem BE3	Mem RdnotWr	G
		_				Proc Clockout	notMem CS2	notMem BE0	notMem BE1	н
GND	GND					VDD	MemWait	Boot Source0	Boot Source1	J
GND	GND					Speed Select1	MemGrant	MemReq	notMem OE	K
GND	GND					YC3	TSInError	TSInByte Clk	Speed Select0	L
GND	GND					TSInData6	TSInData7	TSIn PacketClk	TSInByte ClkValid	М
						VDD	TSInData3	TSInData4	TSInData5	N
						vss_vpll	TSInData0	TSInData1	TSInData2	Р
						YC4	DQ15	aux_clk_ out	vdd_vpll	R
						DQ11	DQ12	DQ13	DQ14	т
YC5	ClockIn	VDD	AD6	AD12	MEMCLK OUT	VDD	DQ8	DQ9	DQ10	U
CPUReset	AD0	AD3	AD7	AD10	notSDWE	notSDCS0	DQ0	DQ6	DQ7	v
LinkOut	AD1	AD4	AD8	AD11	not SDCAS	notSDCS1/ AD13	DQ1	DQ3	DQ5	w
LinkIn	AD2	AD5	AD9	MEMCLK IN	not SDRAS	DQMU	DQML	DQ2	DQ4	Y

7110123 B 21//23

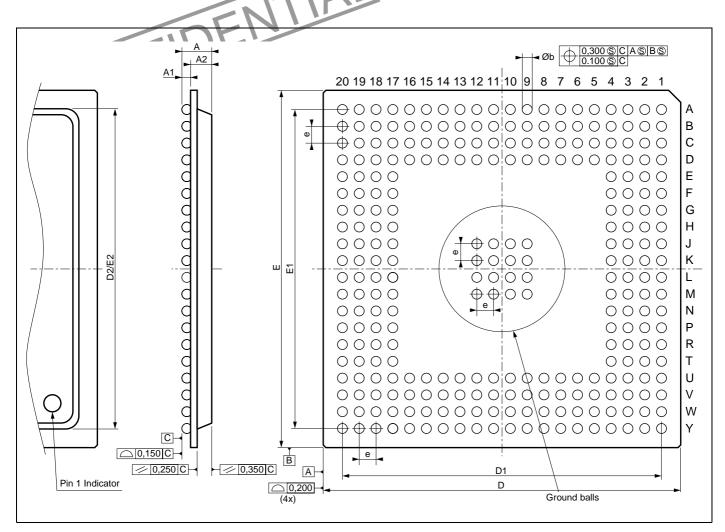


Figure 6 Package dimensions

Dimension		Millimeters		Inches			
	Minimum	Typical	Maximum	Minimum	Typical	Maximum	
A	2.125		2.595	0.083		0.102	
A1	0.50		0.70	0.020		0.027	
A2	1.625		1.895	0.064		0.074	
b	0.60		0.90	0.024		0.035	
D	26.82	27.00	27.18	1.055	1.063	1.070	
D1		24.13 basic			0.951 basic		
D2	23.90		24.10	0.941		0.949	
е		1.27 basic			0.050 basic		
Е	26.82	27.00	27.18	1.055	1.063	1.070	
E1		24.16 basic			0.951 basic		
E2	23.90		24.10	0.941		0.949	

Table 16 Package dimensions

CONFIDENTIA STi5512

AC-3® is a trademark of Dolby Laboratories. Supply of this Implementation of Dolby Technology does not convey a license nor imply a right under any patent, or any other Industrial or Intellectual Property Right of Dolby Laboratories, to use this Implementation in any finished enduser or ready-to-use final product. Companies planning to use this Implementation in products must obtain a license from Dolby Laboratories Licensing Corporation before designing such products.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© 1999 STMicroelectronics - All Rights Reserved

Purchase of I²C components from ST Microelectronics conveys a licence under the Philips I²C patent. Rights to use these components in a I²C system are granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

is a registered trademark of STMicroelectronics.

STMicroelectronics Website: http://www.st.com STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco -The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

7110123 B 23/23