

HIGH RELIABILITY HYBRID RADIATION TOLERANT DC-DC CONVERTERS

DESCRIPTION

The SVTR series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Paramount to the SVTR series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 475 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems. The SVTR series has been characterized and tested for TID (Total Ionizing Dose) at HDR (High Dose Rate) and LDR (Low Dose Rate -ELDRS) per VPT's RHA plan. The SVTR series has also been characterized for SEE (Single Event Effects). VPT's certified radiation program per MIL-PRF-38534, Appendix G is currently under review by DSCC. Please contact DSCC at 614-692-0585 for details. This characterization and testing is performed at the critical semiconductor component piece-part level (RLAT) from traceable semiconductor lots as well as on the SVTR series hybrid converter level produced from the same traceable semiconductor lots evaluated during RLAT.

These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 Class H and Class K and MIL-STD-883.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

FEATURES

- High Reliability
- Very Low Output Noise
- Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704
- Up to 40 Watts Output Power
- Output Voltage Trim Up +10%
- Radiation Immune Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Indefinite Short Circuit Protection
- Current Limit Protection
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Precision Seam Seal Hermetic Package
- High Power Density: > 40 W/in³
- Custom Modified Versions May Be Available
- Additional Environmental Screening Available
- Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMC28 EMI Filter
- Flanged and Non-flanged Versions Available.
- MIL-PRF-38534 Element Evaluated Components Utilized
- Characterized and assured to 30krads(Si), per VPT's RHA plan specified per MIL-PRF-38534, Appendix G, Level P with 2X margin. After radiation exposure, converter testing is performed at 25°C per standard datasheet limits.
- Characterized to 44 MeV-cm2/mg with minor transients only; no dropouts, shutdowns, latch up or burn out.
- Critical semiconductor component piece-parts and assured converter products tested at an HDR of 80 rads(Si)/sec and an LDR of 8 mrads(Si)/sec.

Figure 1 – SVTR2800S / SVTR2800SF DC-DC Converter (Exact marking may differ from that shown)

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	$50 V_{DC}$	Junction Temperature Rise to Case	+15°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	40 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	13 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(49 / 52) Grams

Parameter		Conditions	SVTR283R3S			SVTR2805S			Units
		Conditions	Min	Тур	Мах	Min	Тур	Max	onito
STATIC									
INPUT		Continuous	15	28	50	15	28	50	V
Voltage ^₄		Transient, 1 sec	-	-	80	-	-	80	V
Current		Inhibited	-	-	6	-	-	6	mA
Current		No Load	-	-	90	-	-	90	mA
Ripple Current		Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mA _{p-p}
Inhibit Pin Input⁴			0	-	1.5	0	-	1.5	V
Inhibit Pin Open Circuit Voltage	e ⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
UVLO Turn On			12.0	-	14.8	12.0	-	14.8	V
UVLO Turn Off ⁴			11.0	-	14.5	11.0	-	14.5	V
OUTPUT	V _{OUT}	T _{CASE} = 25°C	3.25	3.30	3.35	4.95	5.00	5.05	V
Voltage	V _{OUT}	T_{CASE} = -55°C to +125°C	3.20	3.30	3.40	4.875	5.00	5.125	V
Power ³			0	-	20	0	-	30	W
Current ³	V _{OUT}		0	-	6.06	0	-	6.0	А
Ripple Voltage	V _{OUT}	Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mV_{p-p}
Line Regulation	V _{OUT}	V _{IN} = 15V to 50V	-	-	20	-	-	20	mV
Load Regulation	V _{OUT}	No Load to Full Load	-	-	50	-	-	50	mV
EFFICIENCY			65	-	-	72	-	-	%
		Overload ⁴	-	-	16	-	-	16	W
LOAD TAGET TOWER DISSIFAT		Short Circuit	-	-	16	-	-	16	W
CAPACITIVE LOAD ⁴			-	-	1000	-	-	1000	μF
SWITCHING FREQUENCY			400	475	550	400	475	550	kHz
SYNC FREQUENCY RANGE		$V_{H} - V_{L} = 5V, DC = 20-80\%$	500	-	600	500	-	600	kHz
ISOLATION		500 V _{DC}	100	-	-	100	-	-	MΩ
MTBF (MIL-HDBK-217F)		SF @ T _C = 55°C	-	752	-	-	752	-	kHrs
DYNAMIC									
Load Step Output Transient	V _{OUT}	Half Load to Full Load	-	-	400	-	-	500	mV_{PK}
Load Step Recovery ²			-	-	500	-	-	500	μSec
Line Step Output Transient ⁴	V _{OUT}	1/1 = 161/1 = 101/1	-	300	600	-	300	600	тV _{РК}
Line Step Recovery ^{2, 4}		v _{IN} – 10V (0 40V	-	300	500	-	300	500	μSec
Turn On Delay	V _{OUT}	1/2 = 01/2 to 281/2	-	-	20	-	-	20	mSec
Turn On Overshoot		$v_{\rm IN} = 0V \ 10 \ 26V$	-	-	15	-	-	25	тV _{РК}

- Notes:1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	$50 V_{DC}$	Junction Temperature Rise to Case	+15°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	40 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	13 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(49 / 52) Grams

Baramotor	Conditions	SVTR2812S			SVTR2815S			Units
Falanielei	Conditions	Min	Тур	Max	Min	Тур	Мах	Onits
STATIC								
INPUT	Continuous	15	28	50	15	28	50	V
Voltage⁴	Transient, 1 sec	-	-	80	-	-	80	V
Current	Inhibited	-	-	6	-	-	6	mA
Current	No Load	-	-	90	-	-	90	mA
Ripple Current	Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mA_{p-p}
Inhibit Pin Input⁴		0	-	1.5	0	-	1.5	V
Inhibit Pin Open Circuit Voltage ⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
UVLO Turn On		12.0	-	14.8	12.0	-	14.8	V
UVLO Turn Off ^₄		11.0	-	14.5	11.0	-	14.5	V
OUTPUT V _{OUT}	T _{CASE} = 25°C	11.88	12.0	12.12	14.85	15.0	15.15	V
Voltage V _{OUT}	T_{CASE} = -55°C to +125°C	11.70	12.0	12.30	14.625	15.0	15.375	V
Power ³		0	-	40	0	-	40	W
Current ³ V _{OUT}		0	-	3.33	0	-	2.67	А
Ripple Voltage V _{OUT}	Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mV_{p-p}
Line Regulation V _{OUT}	V _{IN} = 15V to 50V	-	-	20	-	-	20	mV
Load Regulation V _{OUT}	No Load to Full Load	-	-	50	-	-	50	mV
EFFICIENCY		76	-	-	77	-	-	%
	Overload ⁴	-	-	14	-	-	14	W
	Short Circuit	-	-	14	-	-	14	W
CAPACITIVE LOAD ⁴		-	-	500	-	-	500	μF
SWITCHING FREQUENCY		400	475	550	400	475	550	kHz
SYNC FREQUENCY RANGE	$V_{H} - V_{L} = 5V, DC = 20-80\%$	500	-	600	500	-	600	kHz
ISOLATION	500 V _{DC}	100	-	-	100	-	-	MΩ
MTBF (MIL-HDBK-217F)	SF @ T _c = 55°C	-	752	-	-	752	-	kHrs
DYNAMIC								
Load Step Output Transient V _{OUT}	Half Load to Full Load	-	-	700	-	-	700	тV _{РК}
Load Step Recovery ² Half Load to Full Load		-	-	500	-	-	500	μSec
Line Step Output Transient ⁴ V _{OUT}		-	500	900	-	500	900	тV _{РК}
Line Step Recovery ^{2, 4}	$v_{\rm IN} = 10V$ to 40V	-	300	500	-	300	500	μSec
Turn On Delay V _{OUT}	$\lambda = 0 \lambda = 0 \lambda$	-	-	20	-	-	20	mSec
Turn On Overshoot	$v_{\rm IN} = 0V \text{ (0 } 28V$	-	-	50	-	-	50	тV _{РК}

- Notes:1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	$50 V_{DC}$	Junction Temperature Rise to Case	+15°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	40 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	13 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(49 / 52) Grams

Baramotor	Conditions	S	SVTR285R2S			SVTR282R5S			
Farameter	Continions	Min	Тур	Мах	Min	Тур	Мах	Onits	
STATIC									
INPUT	Continuous	15	28	50	15	28	50	V	
Voltage ⁴	Transient, 1 sec	-	-	80	-	-	80	V	
Current	Inhibited	-	-	6	-	-	6	mA	
Current	No Load	-	-	90	-	-	90	mA	
Ripple Current	Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mA _{p-p}	
Inhibit Pin Input⁴		0	-	1.5	0	-	1.5	V	
Inhibit Pin Open Circuit Voltage ⁴		9.0	11.0	13.0	9.0	11.0	13.0	V	
UVLO Turn On		12.0	-	14.8	12.0	-	14.8	V	
UVLO Turn Off⁴		11.0	-	14.5	11.0	-	14.5	V	
OUTPUT V _{OUT}	T _{CASE} = 25°C	5.14	5.20	5.26	2.47	2.50	2.53	V	
Voltage V _{OUT}	T_{CASE} = -55°C to +125°C	5.07	5.20	5.33	2.46	2.50	2.54	V	
Power ³		0	-	30	0	-	15	W	
Current ³ V _{OUT}		0	-	6.0	0	-	6.0	А	
Ripple Voltage V _{OUT}	Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mV_{p-p}	
Line Regulation V _{OUT}	V_{IN} = 15V to 50V	-	-	20	-	-	20	mV	
Load Regulation V _{OUT}	No Load to Full Load	-	-	50	-	-	50	mV	
EFFICIENCY		72	-	-	63	-	-	%	
	Overload ⁴	-	-	16	-	-	18	W	
	Short Circuit	-	-	16	-	-	18	W	
CAPACITIVE LOAD ⁴		-	-	1000	-	-	1000	μF	
SWITCHING FREQUENCY		400	475	550	400	475	550	kHz	
SYNC FREQUENCY RANGE	$V_{H} - V_{L} = 5V, DC = 20-80\%$	500	-	600	500	-	600	kHz	
ISOLATION	500 V _{DC}	100	-	-	100	-	-	MΩ	
MTBF (MIL-HDBK-217F)	SF @ T _c = 55°C	-	752	-	-	752	-	kHrs	
DYNAMIC									
Load Step Output Transient V _{OUT}	Half Load to Full Load	-	-	500	-	-	400	mV_{PK}	
Load Step Recovery ² Half Load to Full Load		-	-	500	-	-	500	μSec	
Line Step Output Transient ⁴ V _{OUT}		-	300	600	-	250	450	тV _{РК}	
Line Step Recovery ^{2, 4}	$v_{\rm IN} = 10V to 40V$	-	300	500	-	300	450	μSec	
Turn On Delay V _{OUT}	$\lambda = 0 \lambda = 0 \lambda$	-	-	20	-	-	20	mSec	
Turn On Overshoot	$ v_{\rm IN} = 0V$ to 28V	-	-	25	-	-	15	тV _{РК}	

Notes:1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.

OUTPUT VOLTAGE TRIM

The output voltage can be trimmed up by connecting a resistor between the +S pin (PIN 6) and the OUT COM pin (PIN 4). The maximum trim range is +10%. The appropriate resistor values versus the output voltage are given in the trim table below. The -S pin should be connected to the OUT COM pin.

SVTR2	82R5S	SVTR2	83R3S	SVTR	TR2805S SVTR285R2S SVTR2812S SVTR28		SVTR285R2S		SVTR285R2S SVTR2812S		2815S
+V _{ουτ} (V)	R _{TRIM} (Ω)	+V _{out} (V)	R _{trim} (Ω)	+V _{ουτ} (V)	R _{trim} (Ω)	+V _{out} (V)	R _{trim} (Ω)	+V _{ουτ} (V)	R _{trim} (Ω)	+V _{out} (V)	R _{TRIM} (Ω)
2.75	1.05k	3.60	1.13k	5.50	1.05k	5.70	1.09k	13.2	1.09k	16.50	1.09k
2.70	1.33k	3.55	1.36k	5.45	1.18k	5.65	1.22k	13.1	1.19k	16.40	1.18k
2.65	1.82k	3.50	1.72k	5.40	1.33k	5.60	1.39k	13.0	1.33k	16.30	1.28k
2.60	2.86k	3.45	2.32k	5.35	1.54k	5.55	1.60k	12.9	1.49k	16.20	1.4k
2.55	6.67k	3.40	3.59k	5.30	1.82k	5.50	1.89k	12.8	1.7k	16.10	1.54k
2.50	-	3.35	7.87k	5.25	2.22k	5.45	2.31k	12.7	1.98k	16.00	1.71k
		3.30	-	5.20	2.86k	5.40	2.97k	12.6	2.38k	15.90	1.94k
				5.15	4k	5.35	4.16k	12.5	2.96k	15.80	2.22k
				5.10	6.67k	5.30	6.93k	12.4	3.94k	15.70	2.61k
				5.05	20k	5.25	20.8k	12.3	5.86k	15.60	3.16k
				5.00	-	5.20	-	12.2	11.4k	15.50	4k
								12.1	242k	15.40	5.46k
								12.0	-	15.30	8.57k
										15.20	20k
										15.10	Note 1
										15.00	-

Notes: 1. Connect R-TRIM = 400Ω from +VOUT (PIN 5) to +S (PIN 6).

FREQUENCY OF RHA TESTING

Every initial wafer lot of critical semiconductor components has been characterized and tested at HDR as well as at LDR to determine if there is ELDRS sensitivity. If a specific component type is determined to have ELDRS sensitivity, all future wafer lots of that specific component will be tested at LDR. If no ELDRS sensitivity is shown in the initial wafer lot testing, future wafer lots of those specific components will not be tested at LDR. All future critical semiconductor component wafer lots are tested at HDR. If the components test to the same level (within 15% of the previous 99/90 RLAT level) or better as the wafer lot used to characterize the converter family, the converter family is not re-characterized. If the components test to a worse level, one of the following actions is performed (depending on the test level passed):

- 1. Component lot is not used in VPT RHA assured product.
- 2. Component lot is used if WCA (Worst Case Analysis) performed on the new lot against the original characterization WCA determines the component level characterized will not negatively impact the assured product characterization level.
- 3. The assured product is re-characterized using the new component lot.

EMI PERFORMANCE CURVES

 $(T_{CASE} = 25^{\circ}C, V_{IN} = +28V \pm 5\%$, Full Load, Unless Otherwise Specified)

DS2X007B

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	28V IN	Positive Input Voltage Connection
2	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.
3	-S	Return Sense
4	OUT COM	Output Common Connection
5	+V OUT	Positive Output Voltage Connection
6	+S	Positive Sense
7	CASE	Case Connection
8	CASE	Case Connection
9	SYNC	Synchronization Signal
10	IN COM	Input Common Connection

ENVIRONMENTAL SCREENING (100% Tested Per MIL-STD-883 as referenced to MIL-PRF-38534)

Screening	MIL-STD-883	Class HB+ /HB+	Engineering Model ⁵ /EM
Non-Destructive Bond Pull	Method 2023	•	•
Internal Visual	Method 2017, 2032 Internal Procedure	•	•
Temperature Cycling	Method 1010, Condition C	•	
Constant Acceleration	Method 2001, 3000g, Y1 Direction	•	
PIND	Method 2020, Condition A ²	•	
Burn-In	Method 1015, 160 hours at +125°C 24 Hours at +125°C	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1 x 10 ⁻³)	•	•
External Visual	Method 2009	•	•

Notes:

1. 100% R&R testing at -55°C, +25°C, and +125°C with all test data included in product shipment.

2. PIND test Certificate of Compliance included in product shipment.

3. Non-Destructive bond pull per Method 2023 performed.

4. Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing options desired.

5. Engineering models utilize only the standard screening specified and are not considered compliant for flight use.

ORDERING INFORMATION

(1)	(2	2)	(3)		(4)	
Product Series	Nominal Input Voltage		Output Voltage		Number o	f Outputs
SVTR	28	28 Volts	2R5 3R3 05 5R2 12 15	2.5 Volts 3.3 Volts 5 Volts 5.2 Volts 12 Volts 15 Volts	S	Single

	(5)		(6)	(7)	
Packa	Package Option Screeni			Additional Screening Code	
None F	Non-Flanged Flanged	/HB+ /EM	HB+ Engineering Model	Contact Sales	

Note: Engineering models utilize only the standard screening specified and are not considered compliant for flight use. These models are intended for low volume engineering characterization. The customer must place the following statement on each line item of their purchase order(s) for /EM units when ordering engineering models:

"(<u>Customer Name</u>) acknowledges that the /EM unit listed in this line item is not permitted for flight use and will be used for Engineering characterization only."

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

 Phone:
 (425) 353-3010

 Fax:
 (425) 353-4030

 E-mail:
 vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.