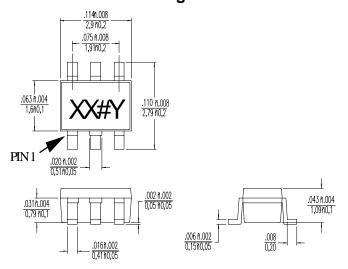
3 Watt Cellular T/R and Antenna Changeover Switch, DC - 3.0 GHz

Features


- Low Cost Plastic SOT-26 Package
- Low Insertion Loss < 0.6dB @ 1900 MHz
- Low Power Consumption <20µA @ +3V
- Very High Intercept Point: 53 dBm IP₃
- Both Positive and Negative 2.5 to 8 V Control
- For CDMA, W-CDMA, TDMA, GSM, PCS and DCS **Applications**

Description

M/A-COM's SW-425 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-425 is ideally suited for applications where very low power consumption (<10µA@5V), low intermodulation products and very small size are required. Typical applications include Internal/External antenna select switch for portable telephones and data radios. In addition, because of its low loss, good isolation and inherent speed, the SW-425 can be used as a conventional T/R switch or as an antenna diversity switch. The SW-425 can be used in power applications up to 3 watts in systems such as celluar PCS, CDMA, W-CDMA, TDMA, GSM and other analog/digital wireless communications systems.

The SW-425 is fabricated using a new 0.5 micron gate length GaAs PHEMT process. The process features full chip passivation for increased performance and reliability.

SOT-26 Plastic Package

Ordering Information

Part Number	Package
SW-425 PIN	SOT-26 Plastic Package
SW-425TR	Forward Tape and Reel 1
SW-425RTR	Reverse Tape and Reel ¹

1. Reference Application Note M513 for reel size information.

Electrical Specifications $T_A = 25$ °C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss DC - 1 GHz		dB		0.4	0.5
Insertion Loss	1- 2 GHz	dB		0.55	0.65
Insertion Loss	2 - 3 GHz	dB		0.7	0.8
Isolation	DC - 1 GHz	dB	18	20	
Isolation	1 - 2 GHz	dB	13	15	
Isolation 2 - 3 GHz		dB	10	12	
VSWR DC - 3 GHz				1.2:1	1.4:1
P _{1dB} (3V supply)	500 MHz - 3 GHz	dBm	32	34	
P _{1dB} (5V supply)	500 MHz - 3 GHz	dBm	34	36	
Input IP ₂	2-Tone, 5 MHz spacing, 0.9 GHz +10 dBm (+13 dBm total) V _{CTL} =3V	dBm	62	70	
Input IP ₃	2-Tone, 5 MHz spacing, 0.9 GHz +10 dBm (+13 dBm total) V _{CTL} =3V	dBm	48	53	
Harmonics 2 nd 3 rd	Pin 30 dBm V _{CTL} = 3V	dBc	65 45	70 48	
Harmonics 2 nd 3 rd	Pin 33 dBm V _{CTL} = 5V	dBc	65 65	75 75	
T _{rise} , T _{fall}	10% to 90% RF, 90% to 10% RF	nS		60	
$\mathbf{T}_{on},\mathbf{T}_{off}$	50% Control to 90% RF, Control to 10% RF	nS		20	
T ransients	In-Band	mV		20	
Gate Leakage Current	$V_{CTL} = 3 V$	μA		10	20

V2.00

Absolute Maximum Ratings¹

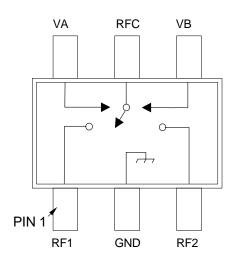
Parameter	Absolute Maximum	
Max. Input Power (0.5 - 3.0 GHz)		
3 V Control	+36 dBm	
5 V Control	+38 dBm	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +150°C	

1. Exceeding any one or combination of these limits may cause permanent damage.

Truth Table

Mode	Control	Control	RFC - RF1	RFC - RF2
(Control)	Α	В		
Positive ¹	0±0.2V	+2.5 to +8V	Off	On
	+2.5 to +8V	0±0.2V	On	Off
Postitive/	-Vc±0.2V	+Vc	Off	On
Negative ^{1,2}	+Vc	-Vc±0.2V	On	Off
Negative ³	0±0.2V	-2.5V to -8V	On	Off
	-2.5V to -8V	0±0.2V	Off	On

- 1. External DC blocking capacitors are required on all RF ports. 39pF capacitors used for positive control voltage.
- 2. $|-V_{CTL}|$, $V_{CTL} \le 8 \text{ V}$
- If negative control is used, DC blocking capacitors are not required on RF Ports.

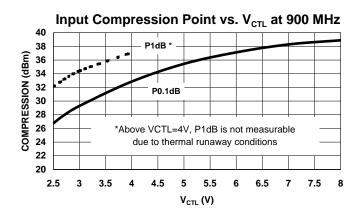

Handling Procedures

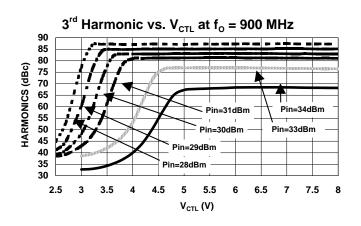
The following precautions should be observed to avoid damage:

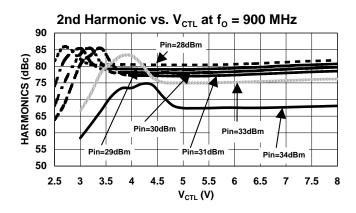
Static Sensitivity

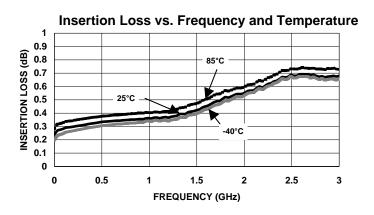
Gallium arsenide Integrated Circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

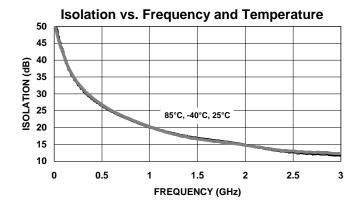
Functional Diagram

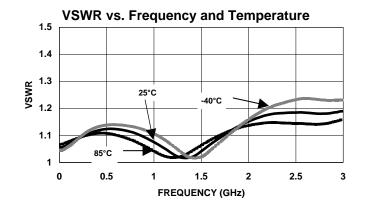

PIN Configuration


PIN No.	Function	Description		
1	RF1	RF in/out		
2	GND	RF Ground		
3	RF2	RF in/out		
4	VB	V Control B		
5	RFC	RF COMMON		
6	VA	V Control A		


Connecting at a level.**


Connecting at a level.**


Typical Performance Curves



V2.00