

MESSRS	S. :			
AGENT	:			

SPECIFICATION of PYROELECTRIC PASSIVE INFRARED SENSOR

MODEL NO. :	SW-ULP23-20
-------------	-------------

NIPPON CERAMIC CO., LTD.

176-17 Hirooka, Tottori-shi, 689-1193 JAPAN TEL: +81-857-53-4666 FAX: +81-857-53-3532

APPROVED BY	CHECKED BY	DRAWN BY

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	1/7	NIPPON CERAMIC CO., LTD.

1. SCOPE

This specification describes a Pyroelectric Passive Infrared Sensor supplied by Nippon Ceramic Co., Ltd.

2. TYPE of SENSOR

Balanced differential type. (series opposed type.) Built - in amplifier circuit.

3. PHYSICAL CONFIGURATION

Table 1

	PARAMETER	SPECIFICATION
3.1.	Package	TO-5 metal can with dimensions shown in Fig.1. (Nickel-plated)
3.2.	Element geometry	Four sensitive areas 2.3 mm * 0.75 mm and spaced 0.6 mm apart.
3.3.	Element orientation	See Fig.1
3.4.	Lead configuration	See Fig.1

4. ELECTRICAL CHARACTERISTICS

{ at 25 (+/-) 5 [degrees Celsius] , Vdd = 3.3V}

Table 2

	PARAMETER	CONDITION	SPECIFICATION
4.1.	Supply Voltage(Vdd)	Single Power Supply	1.8 ~ 3.4 V
4.2.	Output Voltage	Single Power Supply	0 ~ Vdd V
4.3.	Offset Voltage	Without Incident Infrared Energy	1.65 (+/-) 0.1 V
4.4.	Current consumption	-	Max. 1 μ A (Typ. 0.8 μ A)
4.4.	Signal Output	Incident Infrared Energy: 13 microW / cm ² from 420 K Black Body Chopping Frequency: 1 Hz by Measurement method shown in Fig. 2.	Min. 0.75 Vp-p (Typ. 1.5 Vp-p)
4.5.	Noise Output	Under shut out from Infrared Energy by Measurement method shown in Fig. 2.	Max. 250 mVp-p (Typ. 100 mVp-p)
4.6.	Balance Output	Incident Infrared Energy: 13 microW / cm ² from 420 K Black Body Chopping Frequency: 1 Hz by Measurement method shown in Fig. 2.	[Bo / SA+SB] =< 0.15
		Bo : Balance output SA : Signal output on Element A SB : Signal output on Element B	
4.8.	Waiting Time after supplied Power	-	Max. 90 sec.
4.9.	Circuit Configuration	See Fig. 3	

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	2/7	NIPPON CERAMIC CO., LTD.

5. OPTICAL CHARACTERISTICS

Table 3

	PARAMETER	SPECIFICATION
5.1.	Field of View	134° from center of element on axis X
		120° from center of element on axis Y
		See Fig. 1
5.2.	Response wavelength band	Filter Substrate : Silicon
		Cut On (5 %T ABS) : 5.0 (+/-) 0.5 micron
		Transmission : >= 70 % Average 7 ~ 14 micron
5.3.	Transmission Characteristics	See Fig. 4
	of Filter	

6. ENVIRONMENTAL REQUIREMENTS

Table 4

PARAMETER		SPECIFICATION
6.1.	Operating Temperature	- 40 ~ 70 degrees Celsius
6.2.	Storage Temperature	- 50 ~ 80 degrees Celsius
6.3.	Relative Humidity	The Sensor shall operate without increase in Noise Output when exposed to 90 \sim 95 $\%$ RH at 30 degrees Celsius continuously.
6.4.	Hermetic Seal	The Sensor shall be sealed withstand a vacuum of 21.28 kPa.

7. NOTES

7.1. Design restrictions/precautions

If used for outdoor applications, be sure to apply suitable supplementary optical filter, drip-proof and anti-dew construction. This Sensor is designed for indoor use.

In cases where secondary accidents due to operation failure or malfunctions can be anticipated, add a fail safe function to the design.

7.2. Usage restrictions/precautions

To prevent Sensor malfunctions, operational failure or any deterioration of its characteristics, do not use this Sensor in the following, or similar, conditions.

- 7.2.1. In rapid environmental temperature changes.
- 7.2.2. In strong shock or vibration.
- 7.2.3. In a place where there are obstructing materials (Glass, Fog, etc.) through which infrared rays cannot pass within detection area.
- 7.2.4. In fluid, corrosive gases and sea breeze.
- 7.2.5. Continual use in high humidity atmosphere.
- 7.2.6. Exposed to direct sun light or headlight of automobiles.
- 7.2.7. Exposed to direct wind from a heater or air conditioner.

7.3. Assembly restrictions/precautions

7.3.1. Soldering

- a. Use soldering irons when soldering.
- b. Avoid keeping pins of this Sensor hot for a long time as excessive heat may cause deterioration of its quality. (e.g. within 5 sec. at 350 degrees Celsius.)

7.3.2. Washing

- a. Be sure to wash out all flux after soldering as remainder may cause malfunctions.
- b. Use a brush when washing. Washing with an ultrasonic cleaner may cause operational failure.

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	3/7	NIPPON CERAMIC CO., LTD.

7.4. Handling and storage restrictions/precautions

To prevent Sensor malfunctions, operational failure, appearance damage or any deterioration of its characteristics, do not expose this Sensor to the following or similar, handling and storage conditions.

- 7.4.1. Vibration for a long time.
- 7.4.2. Strong shock.
- 7.4.3. Static electricity or strong electromagnetic waves.
- 7.4.4. High temperature and humidity for a long time.
- 7.4.5. Corrosive gases or sea breeze.
- 7.4.6. Dirty and dusty environments that may contaminate the optical window.

Sensor troubles resulting from misuse, inappropriate handling or storage are not the manufacturer's responsibility.

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	4/7	NIPPON CERAMIC CO., LTD.

Configuration (Figure 1)

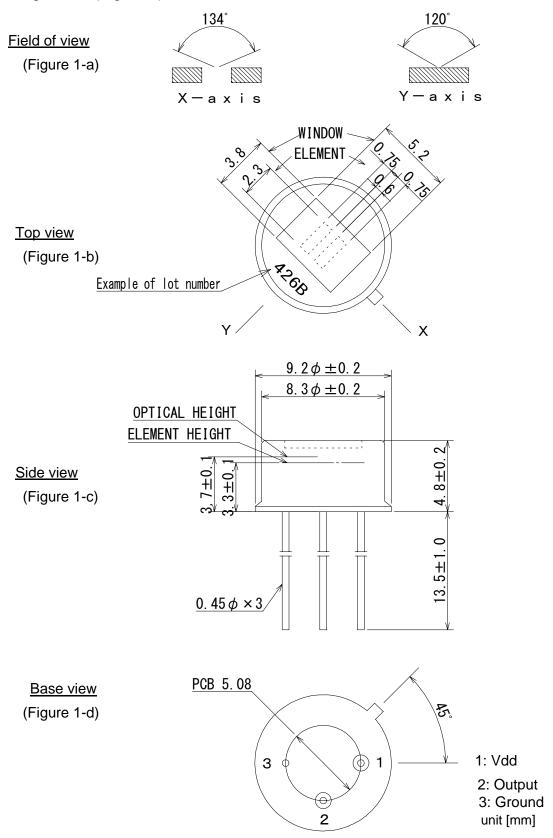
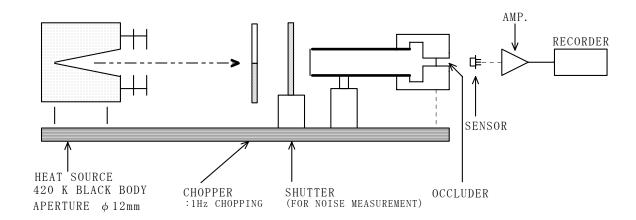



Fig. 1 : Dimensions (Flat package type)

MODEL NO. :	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	5/7	NIPPON CERAMIC CO., LTD.

Occluder Position

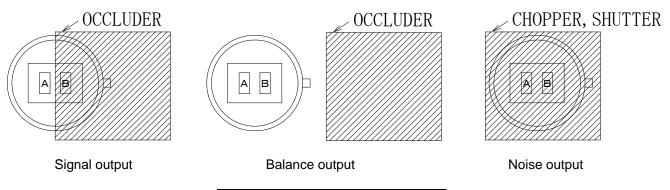


Fig. 2 : Test Set-up Block Diagram

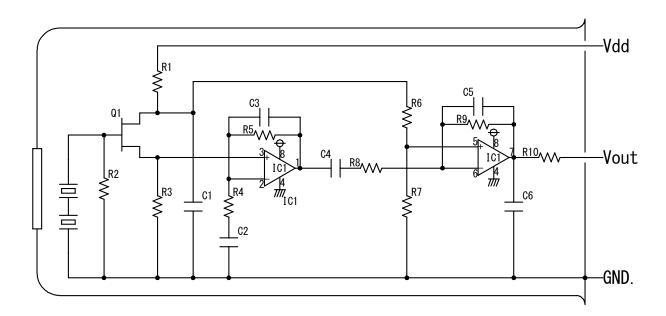


Fig. 3 : Circuit Configuration

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	6/7	NIPPON CERAMIC CO., LTD.

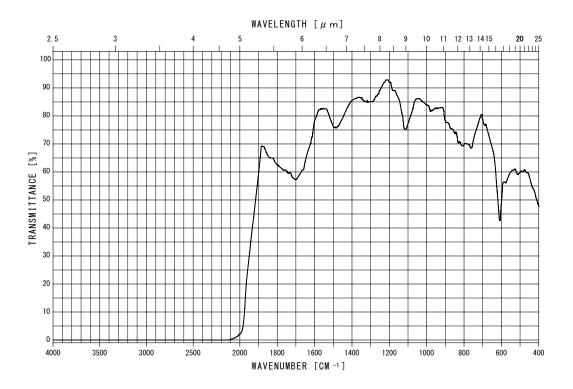


Fig. 4 : Typical Transmission Characteristics of Filter

MODEL NO.:	DRAWING NO.:	REV:	PAGE	
SW-ULP23-20				
PART NO. :		Α	7/7	NIPPON CERAMIC CO., LTD.