

SWD-119 V6

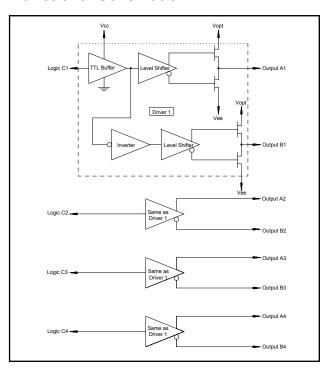
Features

- High Speed CMOS Technology
- Quad Channel
- Positive Voltage Control
- Low Power Dissipation
- Low Cost Plastic SOIC-16 Package

Description

The SWD-119 is a quad channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0V (relative to GND) to optimize the intermodulation products of the control devices at low frequencies.

Ordering Information


Part Number	Package
SWD-119 PIN	Bulk Packaging
SWD-119TR	1000 piece reel

Note: Reference Application Note M513 for reel size information

Truth Table

Input	Outputs				
СХ	A B				
Logic "0"	V _{EE}	V _{OPT}			
Logic "1"	V _{OPT}	V _{EE}			

Functional Schematic

Pin Configuration

Pin No.	Function	Pin No.	Function
1	Vee	9	Output A1
2	Vcc	10	Output B1
3	C4	11	Output A2
4	C3	12	Output B2
5	C2	13	Output A3
6	C1	14	Output B3
7	Vopt	15	Output A4
8	Ground	16	Output B4

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

SWD-119 V6

Guaranteed Operating Ranges

Symbol	Parameter ¹	Unit	Min.	Тур.	Max.
V _{CC}	Positive DC Supply Voltage	V	4.5	5.0	5.5
V _{EE}	Negative DC Supply Voltage	V	-8.5	-5.0	-4.5
V _{OPT} ²	Optional DC Output Supply Voltage	V	0	1.0	2.0
V _{OPT} -V _{EE}	Negative Supply Voltage Range	V	4.5	6.5	8.5
V _{CC} -V _{EE}	Positive to negative Supply Range	V	9.0	10.0	14.0
T _A	Operating Ambient temperature	°C	-40	+25	+85
Іон	DC Output Current - High	mA	_	_	-1.0
I _{OL}	DC Output Current - Low	mA	_	_	1.0
T _{rise} , T _{fall}	Maximum Input Rise or Fall Time	nS	_	_	500

^{1.} All voltages are relative to GND.

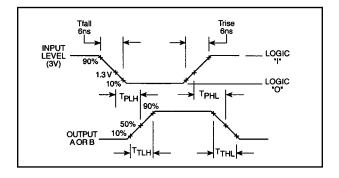
DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions		Units	Min.	Тур.	Max.
V _{IH}	Input High Voltage	Guaranteed Hig	gh Input Voltage	V	2.0	_	_
V _{IL}	Input Low Voltage	Guaranteed Lo	w Input Voltage	V	_	_	0.8
V _{IH}	Output High Voltage	I _{OH} = -1 mA	V _{EE} = Max	V	V _{OPT} -0.1	_	_
V _{OL}	Output Low Voltage	I _{OL} = 1 mA	V _{EE} = Max	V	_	_	V _{EE} +0.1
I _{IN}	Input Leakage Current	V _{IN} = V _{CC} or GND	V _{EE} = Min	μΑ	-1.0	0	1.0
I _{cc}	Quiescent Supply Current	V _{CC} = Max V _{OPT} = Min or Max	V _{EE} = Min V _{IN} = V _{CC} or GND	μΑ	_	250	400
Δ I _{CC}	Additional Supply Current, per TTL Input pin	V _{CC} = Max	$V_{IN} = V_{CC} - 2.1V$	mA	_	_	1.0

^{2.} V_{OPT} is grounded for most applications. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, V_{OPT} can be increased to between 1.0 and 2.0V. The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz. It should be noted that the control current that is on the GaAs MMICs will increase when positive controls are applied.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


SWD-119

AC Characteristics Over Guaranteed Operating Range ³

Symbol	Parameter	-55 to +25°C	<u><</u> +85°C	<u><</u> +125°C	Unit
T _{PLH}	Propagation Delay	22	25	30	nS
T_{PHL}	Propagation Delay	22	25	30	nS
T _{TLH}	Output Rising Transition Time	9.0	9.0	9.0	nS
T _{THL}	Output Falling Transition Time	8.0	8.0	8.0	nS
T _{skew}	Delay Skew, Output A to Output B	4.0	4.0	4.0	nS
C _{IN}	Input Capacitance	10	10	10	pF
C _{PDC}	Power Dissipation Capacitance ⁴	10	10	10	pF
C _{PDE}	Power Dissipation Capacitance ⁴	140	140	140	pF

^{3.} V_{CC} = 4.5V, V_{OPT} - V_{EE} = min or max, V_{OPT} = 0V, C_L = 25 pF, Trise, Tfall = 6nS. These conditions represent the worst case for slow

Switching Waveforms

Absolute Maximum Ratings⁵

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	-0.5	7.0	V
V _{EE}	Negative DC Supply Voltage	-9.0	0.5	V
V _{OPT}	Optional DC Output Supply Voltage	-0.5	Vcc +0.5	V
V _{OPT} -V _{EE}	Output to Negative Supply Voltage Range	-0.5	9.0	V
V _{CC} -V _{EE}	Positive to Negative Supply Voltage Range	-0.5	14.5	V
Vı	DC Input Voltage	-0.5	V _{CC} +0.5	V
l ₁	DC Input Current	-25	25	mA
Vo	DC Output Voltage	V _{EE} -0.5	V _{OPT} +0.5	V
P _D ⁶	Power Dissipation in Still Air	_	500	mW
T _{STG}	Storage Temperature	-65	150	°C

All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.

whatsoever arising out of the use or application of any product(s) or

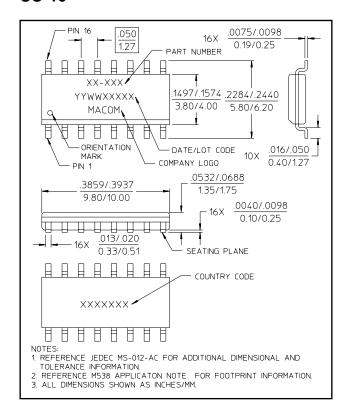
information.

^{4.} Total Power Dissipation is calculated by the following formula: PD = V_{CC} ²fC _{PDC} + $(V_{OPT}-V_{EE})$ ²fC_{PDE}

^{6.} Derate -7 mW/°C from 65°C to 85°C.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266 • Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

SWD-119 V6

SO-16

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298