HITACHI

Electron Tube & Devices Division, Hitachi, Ltd. 3300 Hayano, Mobara City Chiba Pref. 297 Japan TEL : +81-475-25-9005 (DIAL IN) FAX : +81-475-25-5217

www.Datasheethu. Fr For Messrs : HEWLETT PACKARD

Date : Nov. 4, '98

CUSTOMER'S ACCEPTANCE SPECIFICATIONS SX16H003

CONTENTS

No.	Item	Sheet No.	Page
1	COVER	3284PS 2701-SX16H003-5	1-1/1
2	RECORD OF REVISION	3284PS 2702-SX16H003-5	2-1/1
3	MECHANICAL DATA	3284PS 2703-SX16H003-5	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	3284PS 2704-SX16H003-5	4-1/1
5	ELECTRICAL CHARACTERISTICS	3284PS 2705-SX16H003-5	5-1/2~
6	OPTICAL CHARACTERISTICS	3284PS 2706-SX16H003-5	6-1/3~
7	BLOCK DIAGRAM	3284PS 2707-SX16H003-5	7-1/1
8	INTERFACE TIMING CHART	3284PS 2708-SX16H003-5	8-1/6~
9	DIMENSIONAL OUTLINE	3283PS 2709-SX16H003-5	9-1/1
10	APPEARANCE STANDARD	3284PS 2710-SX16H003-5	10-1/5~
11	PRECAUTION IN DESIGN	3284PS 2711-SX16H003-5	<u>10-5/</u> 11-1/3~
12	DESIGNATION OF LOT MARK	3284PS 2712-SX16H003-5	12-1/1
13	PRECAUTION FOR USE	3284PS 2713-SX16H003-5	13-1/1

Electron Tube & Devices Sh. 3284PS 2701-SX16H003 Division, Hitachi, Ltd. No.

Page 1-1/1

RECORD OF REVISION

DATE	SHEET No.	SUMMARY								
APR.29.'98	3284PS 2709-	3. MECHANICAL DATA								
	SX16H003-2	REVISED (2) 7.0typ \rightarrow 7.0max								
	PAGE 3-1/1	$(5) 480(H) \rightarrow 240(H)$								
	3284PS 2706-	6.1 OPTICAL CHARACTERICS OF LCD								
	SX16H003-2	REVISED CONTRAST RETIO (20)typ \rightarrow (30)typ								
	PAGE 6-1/3									
	3284PS 2706-									
	SX16H003-2	$PEV/ISED NOTE II = 1.0mA \times II = (0.8mA)$								
		$REVISED NOTE IE = I.SIIA \to IE = (0.0IIA)$								
	PAGE 0-3/3									
	328425 2708-	8.6 INTERNAL PIN CONNECTION								
	SX16H003-2	CHANGED CN1 MOLEX 53748 (30PIN)								
	PAGE 8-6/6	\rightarrow HIROSE FH12A-24S-0.5SH(24PIN)								
		CHANGED CFL CONNECTOR JST:BHSR-02VS-1								
		\rightarrow JAE:HV-2S-								
		C1								
	3284PS 2709-	9. DIMENSIONAL OUTLINE								
	SX16H003-2	REVISED DIMENSIONAL OUTLINE								
	PAGE 9-1/1									
JULY.27.'98	3284PS 2703-	3. MECHANICAL DATA								
	SX16H003-3	REVISED								
	PAGE 3-1/1	$(3) 0.058(W)mm^*0.208(H)mm \rightarrow$								
		0.0575(W)mm*0.204(H)mm								
		(A) = 0.078(W)mm*0.228(H)mm								
		0.0775(W)mm*0.220(H)mm								
	220400 2705									
	3204P3 2705-	DI ELECTRICAL CHARACTISTICS OF LOD								
		REVISED CONTRASE ADJUSTMENT VOLTAGE								
	PAGE 5-1/2	VCON (1.8) V typ \rightarrow (2.0) V typ								
	3284PS 2705-	5.2 ELECTRICAL CHARACTERICS OF BACKLIGHT								
	SX16H003-3	ADDED (NOTE 6)								
	PAGE 5-2/2									
SEP.28.'98	3284PS 2705-	5.1 ELECTRICAL CHARACTISTICS OF LCD								
	SX16H003-4	REVISED CONTRASE ADJUSTMENT VOLTAGE								
	PAGE 5-1/2	VCON 0.8V min \rightarrow (1.5)V min								
		2.8V max \rightarrow (2.5)V max								
		ADDED								
		(NOTE 6) TEMPERATURE COMPENSATION CIRCUIT								
		IS INCLUDED IN LCM.								
	3284PS 2708-	8.6 INTERNAL PIN CONNECTION								
	SX16H003-4	REV								
	PAGE 8-6/6									
	2284DC 2702									
INUV.4. 98	5204F5 2/US-									
	SA10HUU3-5	$ \begin{array}{c} KEVISED & 1/240DUTY \\ \end{array} \rightarrow & 1/242DUTY \end{array} $								
	PAGE 3-1/1									
	3284PS 2708-	8.1 LIMING CHART								
	SX16H003-5	REVISED X240 \rightarrow DUMMY DATA								
PAGE 8-1/6 240*T \rightarrow (240+n)*T										
ectron Tube	& Devices	NOV 4 '98 Sn. 3284PS 2702-SX16H003-5 PAGE 2-1								
vision, Hitach	ni, Ltd.	No. No.								

3.MECHANICALDATA

(1)	PART NAME	SX16H003
(2)	MODULE SIZE	173.0(W)mm*70.0(H)mm*7.0max.(D)mm
(3)	DOT SIZE	0.0575(W)mm*0.204(H)mm
(4)	DOT PITCH	0.0775(W)mm*0.224(H)mm
(5)	NUMBER OF DOTS	640*3(R,G,B)(W)*240(H) DOTS
(6)	DUTY	1/242
(7)	LCD	FILM TYPE (NEGATIVE TYPE)
		THE UPPER POLARIZER IS GLARE TYPE.
		THE BOTTOM POLARIZER IS
		TRANSMISSIVE TYPE.
(8)	VIEWIN GDIRECTION	6 OʻCLOCK
(9)	POWER CONSUMPTION	(0.56w) (EXCEPT INVERTER)
	(TOTAL)	
(10)	BRIGHTNESS	(70)cd/m ² TYP.
(11)	POWER SUPPLY VOLTAGE	3.3V ONLY

Electron	Tube &	Devices		NOV 4 '98 Sh.	3284PS 2703-SX16H003-5	PAGE	3-1/1
Division,	Hitachi,	Ltd.	DATE	NOV.4. 90 No.	32041 8 27 03-87 101 1003-3		5-171

4. ABSOLUTE MAXIMUM RATINGS

1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS. VSS=0V:STANDARD								
ITEM	SYMBOL	MIN.	MAX.	UNIT	COMMENT			
POWER SUPPLY FOR LOGIC	VDD-VSS	0	6.0	V				
CONTRAST ADJUSTMENT VOLTAGE	VCON-VSS	0	VDD	V				
INPUT VOLTAGE	Vi	-0.3	VDD+0.3	V	NOTE 1			
INPUT CURRENT	li	0	1	А				
STATIC ELECTRICITY	-	-	-	V	NOTE 2			

NOTE(1): DISP.OFF, FLM, CL1, CL2, D0~D7.

NOTE(2):.MAKE CERTAINS YOU ARE GROUNDED WHEN HANDLING LCM.

4.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS.

			-		
ITEM	OPERATING		STORAGE		COMMENT
	MIN.	MAX.	MIN.	MAX.	
AMBIENT TEMPERATURE	5°C	40°C	-20°C	60°C	NOTE 2,3,4
HUMIDITY	N	OTE 1	N	NOTE 1	WITHOUT CONDENSATION
HUMIDITY	-	-	-	-	DEPENDS ON HOUSING DESIGN.
SHOCK	-	-	-	-	DEPENDS ON HOUSING DESIGN.
CORROSIVE GAS	NOT AC	CEPTABLE	NOT A	CCEPTABLE	

NOTE (1) Ta<=40°C :85%RH max. Ta>40°C :ABSOLUTE HUMIDITY MUST BE LOWER THAN THE HUMIDITY OF 85%RH AT 40°C.

- NOTE (2) Ta AT -20°C-----< 48HRS,AT 60°C-----< 168HRS.
- NOTE (3) BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT TEMPERATURE.

THIS PHENOMENON IS REVERSIBLE.

NOTE (4) WHEN LCM WILL BE OPERATED AT 5°C,THE LIFE TIME OF CFL WILL BE REDUCED. NEED TO MAKE SURE OF VALUE OF IL AND CHARACTERISTICS OF INVERTER. ALSO THE RESPONSE TIME AT 5°C WILL BE SLOWER.

Electron	Tube &	Devices			Sh.	3284PS 2704-SX16H003-5	DAGE	1-1/1
Division,	Hitachi,	Ltd.	DATE	1100.4.90	No.	5204F 5 2704-57 TOI 1005-5	FAGE	4-1/1

5. ELECTRICAL CHARACTERISTICS

5.1 ELECTRICAL CHARACTERISTICS OF LCD VSS=0V

SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT		
VDD	VDD-VSS=3.3V	3.15	3.30	3.45	V		
VCON	-	0.8	-	2.8	V		
Vi	"H" LEVEL	0.8VDD	-	VDD	V		
	"L" LEVEL	0	-	0.2VDD	V		
IDD	VDD-VSS=3.3V	-	(20)	(30)	mA		
ICON (NOTE 5)	VCON=0.8~2.8V	-	-	(20)	۵		
IIN (NOTE 2)	Vin=VDDORVSS	-	-	+/-1.0	μΑ		
	Ta= 5°C , φ=0°	(1.5)	(2.0)	-			
VCON	Ta=25°C , φ=0°	-	(2.0)	-	V		
	Ta=40°C . φ=0°	-	(2.0)	(2.5)			
fFLM	-	60	70	80	Hz		
	SYMBOL VDD VCON Vi IDD ICON (NOTE 5) IIN (NOTE 2) VCON fFLM	$\begin{tabular}{ c c c c } \hline SYMBOL & CONDITION \\ \hline VDD & VDD-VSS=3.3V \\ \hline VCON & - \\ \hline & & \\ \hline Vi & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \\$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

(NOTE 1) IN PROPORTION AS THE VCON VOLTAGE DECREASE THE BRIGHTNESS WILL INCREASE.

(NOTE 2) DISP OFF , FLM , CL1 , CL2 , D0~D7.

(NOTE 3) fFLM=70Hz , Ta=25° , DISPLAY PATTERN : CHECKER PATTERN.

(NOTE 4) RUSH CURRENT OF POWER ON : A(PK)* ms + A(PK)* ms

(NOTE 5) VCON

- (NOTE 6) RECOMMENDED CONTRAST ADJUSTMENT VOLTAGE FLUCTATES ABOVE +/-0.3V BY EACH MODULE. TEMPERATURE COMPENSATION CIRCUIT IS INCLUDED IN LCM. (ONLY TYP VALUSE)
- (NOTE 7) NEED TO MAKE SURE OF FLICKERING AND RIPPLING OF DISPLAY WHEN SETTING THE FRAME FREQUENCY IN YOUR SET.

Electron	Tube &	Devices			Sh.	3284PS 2705-SX16H003-5	PAGE	5-1/2
Division,	Hitachi,	Ltd.	DATE	NOV.4. 90	No.	5204F 5 27 05-5X 101 1005-5	FAGE	J-1/2

5.2 ELECTRICAL CHARACTERISTICS OF BACKLIGHT

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
LAMP VOLTAGE	VL	-	(560)	-	Vrms	Ta=25°C
FREQUENCY	fL	-	(60)	-	KHz	
LAMP CURRENT (1LAMP)	П	_	(0.8)	_	mΔ	Ta-25°C
NOTE 7	15		(0.0)	_	ША	14=20 0
STARTING	VS	(1400)	_	_	Vrme	To- 5°C
DISCHARGE VOLTAGE	(NOTE 2)	(1400)	-	-	VIIII5	1a= 5 C

(NOTE 1) PLEASE DESIGN YOUR LAMP DRIVING CIRCUIT(INVERTER) ACCORDING TO THE ABOVE SPECIFICATIONS, AND INFORM HITACHI OF IT.

(NOTE 2) STARTING DISCHARGE VOLTAGE IS INCREASED WHEN LCM IS OPERATING AT LOWER TEMPERATURE. PLEASE CHECK THE CHARACTERISTICS OF YOUR INVERTER BEFORE APPLING TO YOUR SET.

(NOTE 3) AVERAGE LIFE TIME OF CFL WILL DECREASED WHEN LCM IS OPERATING AT LOWER TEMPERATURE.

(NOTE 4) UNDER LOWER DRIVING FREQUENCY OF AN INVERTER, A CERTAIN BACKLIGHT SYSTEM (CFL & CFL REFLECTION SHEET) MAY GENERATE A SOUND NOISE. BEFORE DESIGNING THE INVERTER, PLEASE CONSIDER THE DRIVING FREQUENCY AND THE NOISE.

(NOTE 5) WHEN IL IS OVER 3.0mA, IT MAY CAUSE UNEVEN CONTRAST NEAR CFL LOCATION, DUE TO HEAT DISPERSION FROM CFL.

(NOTE 6) ABSOLUTE MAXIMUM RATINGS VOLTAGE OF CFL CABLE FOR THIS MODULE IS AS FOLLOWS. VCFL SIDE : 2KV VSS SIDE : 300V THS INVERTER DESIGN SHALL NOT EXCEED THE RATED VOLTAGE.

Electron	Tube &	Devices			Sh.	3284DS 2705-SX16H003-5	DAGE	5-2/2
Division,	Hitachi,	Ltd.	DATE	1100.4.90	No.	3204F 3 27 03-37 101 1003-3	FAGE	J-2/2

6. OPTICAL CHARACT	FERISTI	CS									
6.1 OPTICAL CHARACTERISTICS OF LCD Ta=25°C(BACKLIGHT ON)											
ITEM		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	NOTE			
VIEWING AREA		φ2-φ1	θ=0°,K>=2.0	-	(40)	-	deg	1),2)			
CONTRAST RATIO		K	$\phi = 0^{\circ} \theta = 0^{\circ}$	-	(30)	-	-	3),5),6)			
RESPONSE TIME (F	RISE)	tr	$\phi = 0^{\circ} \theta = 0^{\circ}$	-	(250)	-	ms	4)			
RESPONSE TIME (F	FALL)	tf	$\phi = 0^{\circ} \theta = 0^{\circ}$	-	(200)	-	ms	4)			
COLOR TONE F	RED	Х		-	(0.55)	-	-				
(PRIMARY COLOR)		Y		-	(0.34)	-	-				
C	GREEN	Х		-	(0.29)	-	-				
		Y	$\phi = 0^{\circ}$	-	(0.55)	-	-	7)			
E	BLUE	Х	$\theta = 0^{\circ}$	-	(0.17)	-	-				
		Y		-	(0.22)	-	-				
V	NHITE	Х		-	(0.29)	-	-				
		Y		-	(0.37)	-	-				

(MEASUREMENT CONDITION ; HITACHI STANDARD) NOTE 1)~7) : SEE NEXT PAGE.

Electron	Tube &	Devices		Sh.	3284PS 2706-SX16H003-5	PAGE	6-1/3
Division,	Hitachi,	Ltd.	110 0.4. 30	No.		I AOL	0 1/0

6.2 POTICAL CHARACTERISTICS OF BACKLIGHT

IIEM	MIN.	IYP.	MAX.	UNIT	NOTE
BRIGHTNESS	-	70	-	cd/m ²	(IL=0.8mA)
					NOTE 1,2
RISE TIME	-	(3)	-	MINUTE	IL=4.0mA
					BRIGHTNESS 80%
BRIGHTNESS	-	-	+/-25	%	UNDERMENTIONED
UNIFORMITY					NOTE 1,3

(MEASUREMENT CONDITION:HITACHI STANDARD)

CFL : INITIAL, Ta=25°C,

DISPLAY DATA SHOULD BE ALL "ON". THE LCD DRIVING VOLTAGE SHOULD BE ADJUSTED AT THE VOLTAGE WHERE THE PEAK CONTRAST IS OBTAINED, WHEN SET PATTERN IS ALL "Q"

NOTE 1 MEASUREMENT AFTER 10 MINUTES OF CFL OPERATING. AVERAGE VALUE OF 9 POINTS (NOTE 3)

NOTE 2 BRIGHTNESS CONTROL: 100%.

NOTE 3 MEASUREMENT OF THE FOLLOWING 9 PLACES ON THE DISPLAY.

NOTE 4 DEFINITION OF THE BRIGHTNESS TOLERACE.

(MAX BR	GHTNE	SS OR	MIN BRIG	HTN	ESS - AVERAGE BRIGHTNESS)	/100		
AVERAGE BRIGHTNESS										
Electron	Tube &	Devices			Sh.	3284PS 2706_SX16H003_5	DAGE	6-3/3		
Division,	Hitachi,	Ltd.	DATE	NOV.4. 96	No.	3284F3 2700-3×10H003-3	FAGE	0-3/3		

7. BLOCK DIAGRAM

8. IN 8.1 TI	TERF MING C	ACE T	IMIN	G CHAR	Т							
CL1					Т							
CL2		data			X1				 X	2		
D7			в					G		\bigcirc		
D6			R									
D1		$\mathbb{R}^{\frac{1}{2}}$						V1914				
D0			Y16					B		\bigcirc		
EL M	_		30 ns r	nim			30 ns r	nim.	K_			
(Redu	ction)			חחר							1	
CL1			[(L 240+n)*T	<u></u>							
D0~D7	7			\$\$		_		- \$\$				
D0~D7	7	X1	x2 \(\ssr_s)	X239X240	Dumm	ny data	X_X_	\sum_{n}^{n}		$\left \right $	\times	
						·						
Electron -	Tube &	Devices			Sh.	200/	109 270	8-CV16	പററാ	-5		8-1/6
Division,	Hitachi,	Ltd.	DATE	110 0.4.90	No.	5202	1 0 210		003	-J	I AGE	0-1/0

8.2 TIMING CHARACTERISTICS

ITEM	SYMBOL	MIN.	TYP.	MAX.	UMIT
CL1 PULSE WIDTH "H"	tWHCL1	100	-	-	ns
CLOCK CYCLE TIME	tCYC	60	-	I	ns
CL2 PULSE WIDTH	tWCL2	30	-	-	ns
CLOCK SET UP TIME	tSCL2	40	-	I	ns
CLOCK HOLD TIME	tHCL1	80	-	-	ns
CLOCK RISE FALL TIME	tr,tf	-	-	30	ns
DATA SET UP TIME	tDSU	20	-	I	ns
DATA HOLD TIME	tDH	20	-	-	ns
"FLM" SET UP TIME	tFS	100	-	-	ns
"FLM" HOLD TIME	tFH	50		-	ns

Electron	Tube &	Devices		NOV 4 '98 Sh.	3284PS 2708-SX16H003-5	PAGE	8-3/6
Division,	Hitachi,	Ltd.	DATE	No.		I AOL	0 0/0

8.4 POWER SUPPLY FOR LCM

Example 1

Example 2

IC=3-terminal Voltage Regulator.

Electron	Tube &	Devices			Sh.	2294DS 2709 SX16H002 5	DACE	0 1/6
Division,	Hitachi,	Ltd.	DATE	NOV.4.98	No.	3284F3 2708-3×10H003-3	FAGE	0-4/0

8.5 DATA RESPOND

DATA	D	D	D	D	D	D	D	D	D	D	D	D	 D	D	D	D	D
SIGNAL	7	6	5	4	3	2	1	0	7	6	5	4	 4	3	2	1	0
Y	1	2	3	4	5	6	7	8	9	10	11	12	1	1	1	1	1
													 9	9	9	9	9
													 1	1	1	1	2
X													6	7	8	9	0
1	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
2	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
3	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
4	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
5	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
										•		•					
138	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
139	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
140	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
141	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
142	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
143	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
144	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
145	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
																	•
•					-		•	-	•	•	•		•		•		•
•	•	•	•	•	•	•	•	•	•	•	•		 •	•	•		•
238	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
239	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В
240	R	G	В	R	G	В	R	G	В	R	G	В	G	В	R	G	В

R : RED

G : GREEN

B : BLUE

3284PS 2708-SX16H003-5

PIN No	SIGNAI	LEVFI	FUNCTION				
1	FLM	<u> </u>	FIRST LINE MARKER				
2	VSS	-	GND				
3		H					
4	VSS	-	GND				
5							
6							
7	VSS		GND				
7		-	GND				
0		-					
9		H/L	DISPLAY DATA				
10	D2	-					
11							
	V 3 5	-					
13		4					
14	D5	H/L	DISPLAY DATA				
15	D6	4					
16	D7						
17	DISP.OFF	H/L	H:ON/L:OFF				
18	VDD	-	POWER SUPPLY FOR LOGIC				
19	VCON	-	CONTRAST ADJUST				
20 VSS - GND							
21	Y(-)		ANALOG SIGNAL FROM DIGITIZER				
22	X(-)		ANALOG SIGNAL FROM DIGITIZER				
23	Y(+)		ANALOG SIGNAL FROM DIGITIZER				
24	X(+)		ANALOG SIGNAL FROM DIGITIZER				
	DSE : FH12-10(-	4)SA-1SH (\$	SUITABLE FPC : t0.3+/-0.5mm, 1mm PITCH				
1							
2	Y(_)		DIGITIZER				
2	<u>∧(⁻)</u> V(⊥)		DIGITIZER				
1	$\Gamma(\pm)$	-					
4		-					
<u>CFL JST :</u>	BHSR-02VS-1	(SUITABLE	CONNECTOR : JST_BHSMR-02VS)				
	SIGNAL	LEVEL	FUNCTION				
PIN No.			GND FOR CFL				
PIN No.	VSS	-					
PIN No. 1 2	VSS VCFL	-	POWER SUPPLY FOR CFL				
PIN No. 1 2	VSS VCFL	-	POWER SUPPLY FOR CFL				
PIN No. 1 2	VSS VCFL	-	POWER SUPPLY FOR CFL				

9.1 DIMENSIONAL OUTLINE

UNIT : mm

	Kaohsiung Hitachi Electronics Co.,Ltd.	Date	JAN.16.'98	Sh. No.	7B63PS	2709-SX16H003-5	Page	9-1/1
--	---	------	------------	------------	--------	-----------------	------	-------

10.3 APPEARENCE SPECIFICATION

(1)LCD APPEARANCE

*) IF THE PROBLEM RELATED TO THE SECION OCCURES ABOUT THIS ITEM, THE RESPONSIBLE PERSON OF BOTH PARTY (CUSTOMER AND HITACHI) WILL DISCUSS THE MATTER IN DETAIL.

No.	ITEM		CRIT		APPLIED ZONE				
	SCRATCHES	DISTINGUISHED C (TO BE JUDGED E	ONE IS BY HITA	NOT AC	CEPTABLE NDARD)	A			
	DENT	SAME AS ABOVE	А						
	WRINKLES IN POLARIZER	SAME AS ABOVE	SAME AS ABOVE						
	BUBBLES	AVERAGE DIAME D(mm)							
L		D<=0.2			IGNORED				
		0.2 <d<=0.3 12<="" td=""></d<=0.3>							
		0.3 <d<=0.5< td=""><td></td></d<=0.5<>							
		0.5 <d< td=""><td></td></d<>							
С	STAINS,	FILAME							
	FOREIGN	LENGTH	W	IDTH	MAXIMUM ACCEPT				
	MATERIALS	L(mm) W(mm)		(mm)	-ABLE NUMBER				
	DARK SPOT	L<=2.0	V	V<=0.03	IGNORE	A,B			
D		L<=3.0	0.03 <v< td=""><td>V<=0.05</td><td>6</td><td></td></v<>	V<=0.05	6				
		L<=2.5	0.05 <v< td=""><td>V<=0.1</td><td>1</td><td></td></v<>	V<=0.1	1				
		ROU	JND (D	OT SHAF	<u>PE)</u>				
		AVERAGE	MAXIMU	M ACCEPT	MINIMUM				
		DIAMETER D(mm)	-ABLE M	1UMBER	SPACE				
		D<0.2	IGN	NORE	-				
		0.2<=D<0.3		10	10 mm	A,B			
		0.3<=D<0.4		5	30 mm				
		0.4<=D	N	ONE	-				
		THE TOTAL NUMBER	⊦ ROUND = 10						
		THOSE WIPED OUT EASILY ARE ACCEPTABLE							
	COLOR TONE	TO BE JUDGED B	Υ ΗΙΤΑ	CHI STA	NDARD	А			
	COLOR UNIFORMITY	SAME AS ABOVE				А			

Electron Tube & Divices		Sh.		DACE	10.2/5
Division, Hitachi, Ltd.	NOV.4.98	No.	7B04F3 2710-SX10H003-5	FAGE	10-2/5

No.	ITEM		CRITERIA						
	CONTRAST IRREGULARITY (SPOT)	AVERAGE DIAMETER	CONTRAST	MAXIMUM ACCEPTABLE	MINIMUM SPACE				
		D<=0.25	TO BE	IGNORE	-	-			
L		0.25 <d<=0.35< td=""><td>JUDGED</td><td>10</td><td>20mm</td><td>A</td></d<=0.35<>	JUDGED	10	20mm	A			
		0.35 <d<=0.5< td=""><td>BY</td><td>4</td><td>20mm</td><td></td></d<=0.5<>	BY	4	20mm				
		0.5 <d<=0.7< td=""><td>HITACHI</td><td>3</td><td>50mm</td><td></td></d<=0.7<>	HITACHI	3	50mm				
С		0.7 <d< td=""><td>STANDARD</td><td>NONE</td><td>-</td><td></td></d<>	STANDARD	NONE	-				
	CONTRAST	WIDTH	LENGTH	MAXIMUM	MINIMUM				
	IRREGULARITY	W(mm)	L(mm)	ACCEPTABLE	SPACE				
	(LINE)			NUMBER					
D	(A PAIR OF	W<=0.25	L<=1.2	2	20mm				
	SCRATCH)	W<=0.2	L<=1.5	3	20mm	А			
		W<=0.15	L<=2.0	3	20mm				
	(NOTE 3)	W<=0.1	L<=3.0	4	20mm				
		NUMBER							
	RUBBING SCRATCH	TO BE JUDGED BY HITACHI LIMIT STANDARD							

Electron	Tube & Di	vices			Sh.	7864PS 2710-SX16H003-5	DAGE	10-3/5
Division,	Hitachi, Lto	d.	DATE	NOV.4.'98	No.	78041 3 27 10-37 10 1003-3	I AGE	10-3/3

(2) CFL BACKLIGHT APPEARANCE

No.	ITEM		CRITER	RIA	APPLIED ZONE
	DARK SPOTS	AVERAGE	DIAMERTER	MAXIMUM ACCEPTABLE	
С	WHILE SPOIS	D(n	nm)	NUMBER	
F	FOREIGN MATERIALS	C	0<=0.4	IGNORED	
L	(SPOT)	0.4 <d< td=""><td>)</td><td>NONE</td><td></td></d<>)	NONE	
	FOREIGN MATERIALS	WIDTH	LENGTH	MAXIMUM ACCEPTABLE	
В	(LINE)	W(mm)	L(mm)	NUMBER	
А		W/ 0 2	L<=2.5	1	A
С		VV<=0.2	2.5 <l< td=""><td>NONE</td><td></td></l<>	NONE	
κ		0.2 <w< td=""><td>-</td><td>NONE</td><td></td></w<>	-	NONE	
L	SCRATCHES	WIDTH	LENGTH	MAXIMUM ACCEPTABLE	
Ι		W(mm)	L(mm)	NUMBER	
G	W<=0		-	IGNORED	A
н		01-11-02	L<=11.0	1	
Т		0.1<**<=0.2	11.0 <l< td=""><td>NONE</td><td></td></l<>	NONE	
		0.2 <w< td=""><td>-</td><td>NONE</td><td></td></w<>	-	NONE	

NOTE

Е

(1) DEFINITION OF AVERAGE DIAMETER (D)

(2) DEFINITION OF LENGTH L AND WIDTH (W)

				L			I	
	[M	
Electron Division,	Tube & Hitachi,	Divices Ltd.	DATE	NOV.4.'98	Sh. No.	7B64PS 2710-SX16H003-5	PAGE	10-4/5

11. PRECAUTION IN DESIGN

- 11.1 LC DRIVING VOLTAGE (VEE) AND VIEWING ANGLE RANGE. SETTING V0 OUT OF THE RECOMMENDED CONDITION WILL BE A CAUSE FOR A CHANGE OF VIEWING ANGLE RANGE.
- 11.2 CAUTION AGAINST ELECTROSTATIC DISCHARGE AS THIS MODULE IS CONTAINS C-MOS LSIS, IT IS NOT STRONG AGAINST ELECTROSTATIC DISCHARGE.
 MAKE CERTAIN THAT THE OPERATOR'S BODY IS CONNECTED TO THE GROUND THROUGH A LIST BAND ETC.
 AND DON'T TOUCH I/F PINS DIRECTLY.
- 11.3 POWER ON SEQUENCE INPUT SIGNALS SHOULD NOT BE APPLIED TO LCD MODULE BEFORE POWER SUPPLY VOTAGE IS APPLIED AND REACHES TO SPECIFIED VOLTAGE (3+/-0.15V). IF THE ABOVE SEQUENCE IS NOT KEPT, C-MOS LSIS OF LCD MODULES MAY BE DAMAGED DUE TO LATCH UP PHENOMENON.
- 11.4 PACKAGING
 - (1) NO. LEAVING PRODUCTS IS PREFERABLE IN THE PLACE OF HIGH HUMIDITY FOR A LONG PERIOD OF TIME. FOR THEIR STORAGE IN THE PLACE WHERE TEMPERATURE IS 35°C OR HIGHER, SPECIAL CARE TO PREVENT THEM FROM HIGH HUMIDITY IS REQUIRED. A OMBINATION OF HIGH TEMPERATURE AND HIGH HUMIDITY MAY CAUSE THEM POLARIZATION DEGRADATION AS WELL AS BUBBLE GENERATION AND POLARIZER PEEL-OFF. PLEASE KEEP THE TEMPERATURE AND HUMIDITY WITHIN THE SPECIFIED RANGE FOR USE AND STORING.
 - (2) SINCE UPPER POLARIZERS AND LOWER ALUMINUM PLATES TEND TO BE EASILY DAMAGED, THEY SHOULD BE HANDLED WITH FULL CARE SO AS NOT TO GET THEM TOUCHED, PUSHED OR RUBBED BY A PIECE OF GLASS. TWEEZERS AND ANYTHING ELSE WHICH ARE HARDER THAN A PENCIL LEAD 3H.

(3) AS THE ADHESIVES USED FOR ADHERING UPPER/LOWER POLARIZERS AND ALUMINUM PLATES ARE MADE OF ORGANIC SUBSTANCES WHICH WILL BE DETERIORATED BY A CHEMICAL REACTION WITH SUCH CHEMICALS AS ACETONE, TULUENE ETHANOLE AND ISOPROPYLALCOHOL. THE FOLLOWING SOLVENTS ARE RECOMMENDED FOR USE:

NORMAL HEXANE

PLEASE CONTACT US WHEN IT IS NECESSARY FOR YOU USE CHEMICALS OTHER THAN THE ABOVE.

(4) LIGHTLY WIPE TO CLEAN THE DIRTY SURFACE WITH ABSORBENT COTTON WASTE OR OTHER SOFT MATERIAL LIKE CHAMOIS, SOAKED IN THE CHEMICALS RECOMMENDED WITHOUT SCRUBBING IT HARDLY. TO PREVENT THE DISPLAY SURFACE FROM DAMAGE AND KEEP THE APPEARANCE IN GOOD STATE, IT IS SUFFICIENT, IN GENERAL, TO WIPE IT WITH ABSORBENT COTTON.

Electron	Tube &	Divices			Sh.	7R64RS 2711 SV16H002 5	DAGE	11 1/2
Division,	Hitachi,	Ltd.	DATE	NOV.4. 96	No.	780463 2711-37100003-3	FAGE	11-1/3

- (5) IMMEDIATELY WIPE OFF SALIVA OR WATER DROP ATTACHED ON THE DISPLAY AREA BECAUSE ITS LONG PERIOD ADHERANCE MAY CAUSE DEFORMATION OR FADED COLOR ON THE SPOT.
- (6) FOGY DEW DEPOSITED ON THE SURFACE AND CONTACY TERMINALS DUE TO COLDENESS WILL BE CAUSE FOR POLARIZER DAMAGE, STAIN AND DIRT ON PRODUCT. WHEN NECESSARY TO TAKE OUT THE PRODUCTS FORM SOME PLACE AT LOW TEMERATURE FOR TEST, ETC. IT IS REQUIRED FOR THEM TO BE WARMED UP IN A CONTAINER ONCE AT THE TEMPERATURE HIGHER THAN THAT OF ROOM.
- (7) TOUCHING THE DISPLAY AREA AND CONTACT TERMINALS WITH BARE HANDS AND CONTAMINATING THEM ARE PROHIBITED, BECAUSE THE STAIN ON THE DISPLAY AREA AND POOR INSULATION BETWEEN TERMINALS ARE OFTEN CAUSED BY BEING TOUCHED BY BARE HANDS. (THERE ARE SOME COSMETICS DETRIMENTAL TO POLARIZERS.)
- (8) IN GENERAL THE QUALITY OF GLASS IS FRAGILE SO THAT IT TENDS TO BE CRACKED OR CHIPPED IN HANDLING, SPECIALLY ON ITS PERIPHERY. PLEASE BE CAREFUL NOT TO GIVE IT SHARP SHOCK CAUSED BY DROPPING DOWN, ETC.
- (9) MAXIMUM PRESSURE TO THE SURFACE MUST BE LESS 1.96*10⁴Pa(0.2kgf.cm²) AND IF THE PRESSURE AREA IS LESS THAN 1cm², MAXIMUM PRESSURE MUST BE LESS THAN 1.96N(0.2kgf).
- 11.5 OPERATION PRECAUTION
 - (1) IT IS AN INDISPENSABLE CONDITTION TO DRIVE LCD'S WITHIN THE SPECIFIED VOLTAGE LIMIT SINE THE HIGHER VOLTAGE THAN THE LIMIT CAUSES SHORTER LCD LIFE AN ELECTROCHMICAL REACTION DUE TO DIRECT CURRENT LCD'S UNDESIRABLE DETERIORATION, SO THAT THE USE OF DIRECT CURRENT DRIVER SHOULD BE AVOIDED.
 - (2) RESPONSE TIME WILL BE EXTREMELY DELAYED AT LOWER TEMPERATURE THAN THE OPERATING TEMPERATURE RANGE AND ON THE OTHER HAND AT HIGHER TEMPERATURE LCD'S SHOW DARK BLUE COLOR IN THEM HOWEVER THOSE PHENOMENA DO NOT MEAN MALFUNCTION OR OUT OF ORDER WITH LCD'S WHICH WILL COME BACK IN THE SPECIFIED OPERATING TEMPERATURE RANGE.
 - (3) IF THE DISPLAY AREA IS PUSHED HARD DURING OPERATION, SOME FONT WILL BE ABNORNALLY DISPLAYED BUT IT RESUMES NORMAL CONDITION AFTER TURNING OFF ONCE.

Electron Tube & Divices			Sh.	7D64D6 0711 6V16H002 5		11 0/0
Division, Hitachi, Ltd.	DATE	NOV.4.'98	No.	7864PS 2711-SX16H003-5	PAGE	11-2/3

11.6 STORAGE

IN CASE OF STORING FOR A LONG PERIOD OF TIME (FOR INSTANCE, FOR YEARS) FOR THE PURPOSE OF REPLACEMENT USE, THE FOLLOWING WAYS ARE RECOMMENDED.

- (1) STORAGE IN A PLOYETHYLENE BAG WITH THE OPENING SEALED SO AS NOT TO ENTER FRESH AIR OUTSIDE IN IT, AND WITH NO DESICCANT.
- (2) PLACING IN A DARK PLACE WHERE NEITHER EXPOSURE TO DIRECT SUNLIGHT NOR LIGHT IS, KEEPING TEMPERATURE IN THE RANGE FROM 0°C TO 35°C.
- (3) STORING WITH NO TOUCH ON POLARIZER SURFACE BY ANYTHING ELSE. (IT IS RECOMMENDED TO STORE THEM AS THEY HAVE BEEN CONTAINED IN THE INNER CONTAINER AT THE TIME OF DELIVERY FROM US.)
- 11.7 SAFETY
 - (1) IT IS RECOMMENDABLE TO CRASH DAMAGED OR UNNECESSARY LCD'S INTO PIECES AND WASH OFF LIQUID CRYSTAL BY EITHER OF SOLVENTS SUCH AS ACETONE AND ETHANOL, WHICH SHOUD BE BURNED UP LATER.
 - (2) WHEN ANY LIQUID LEAKED OUT OF A DAMAGED GLASS CELL COMES IN CONTACT WITH YOUR HANDS, PLEASE WASH IT OFF WELL WITH SOAP AND WATER.

Electron Tube & Divices			Sh.	7864PS 2711-SY16H003-5	DAGE	11_3/3
Division, Hitachi, Ltd.	DATE	NOV.4. 96	No.	7B04F3 2711-3A10H003-5	FAGE	11-3/3

12. DESIGNATION OF LOT MARK

LOT MARK

LOT MARK IS CONSISTED OF 4 DIGHT FOR PRODUCTION LOT AND 6 OR 7 DIGITS FOR PRODUCTION CONTROL.

YEAR	FIGURE IN
	LOT MARK
1997	7
1998	8
1999	9
2000	0
2001	1

	FIGURE		FIGURE		
MONTH	IN LOT	MONTH	IN LOT		
	MARK		MARK		
JAN.	01	JULY.	07		
FEB.	02	AUG.	08		
MAR.	03	SEPT.	09		
APR.	04	OCT.	10		
MAY.	05	NOV.	11		
JUNE.	06	DEC.	12		

WEEK	FIGURE IN
(DAY IN	LOT MARK
CALENDAR	
1~ 7	1
8~14	2
15~21	3
22~28	4
29~31	5

LOCATION OF LOT MARK : ON THE LABEL ATTACHED ON THE BACK SIDE OF LCM

8 1 1 1 T * * * * * *

Electron Tube	& Divices	DATE	NOV.4.'98	Sh.	7B64DS 2712-SX16H003-5	DAGE	12_1/1
Division, Hitad	chi, Ltd.			No.	7004732712-37101003-3	FAGE	12-1/1

13. PRECAUTIPON FOR USE

- (1) A LIMIT SAMPLE SHOULD BE PROVIDED BY THE BOTH PARTIES ON AN OCCASION WHEN THE BOTH PARTIES AGREED ITS NECESSITY. JUDGEMENT BY A LIMIT SAMPLE SHALL TAKE EFFECT AFTER THE LIMIT SAMPLE HAS BEEN ESTABLISHED AND CONFIRMED BY THE BOTH PARTIES.
- (2) ON THE FOLLOWING OCCASIONS, THE HANDLING OF THE PROBLEM SHOULD BE DECIDED THROUGH DISCUSSION AND AGREEMENT BETWEEN RESPONSIBLE PERSONS OF THE BOTH PARTIES.
 - (1) WHEN A QUESTION IS ARISEN IN THE SPECIFICATIONS.
 - (2) WHEN A NEW PROBLEM IS ARISEN WHICH IS NOT SPECIFIED IN THIS SPECIFICATIONS.
 - (3) WHEN AN INSPECTION SPECIFICATIONS CHANGE OR OPERATING CONDITION CHANGE IN CUSTOMER IS REPORTED TO HITACHI, AND SOME PROBLEM IS ARISEN IN THIS SPECIFICATION DUE TO THE CHANGE.
 - (4) WHEN A NEW PROBLEM IS ARISEN AT THE CUSTOMER'S OPERAT-ING SET FOR SAMPLE EVALUATION IN THE CUSTOMER SITE.
- (3) REGARDING THE TREATMENT FOR MAINTENANCE AND REPAIRING, BOTH PARTIES WILL DISCUSS IT IN SIX MONTHS LATER AFTER LATEST DELIVERY OF THIS PRODUCT.

THE PRECAUTION THAT SHOULD BE OBSERVED WHEN HANDLING LCM HAVE BEEN EXPLAINED ABOVE. IF ANY POINTS ARE UNCLEAR OR IF YOU HAVE ANY REQUESTS, PLEASE CONTACT HITACHI.

Electron	Tube & Divices	DATE	NOV.4.'98	Sh.	. 7B64PS 2713-SX16H003-5	PAGE	13-1/1
Division,	Hitachi, Ltd.			No.			