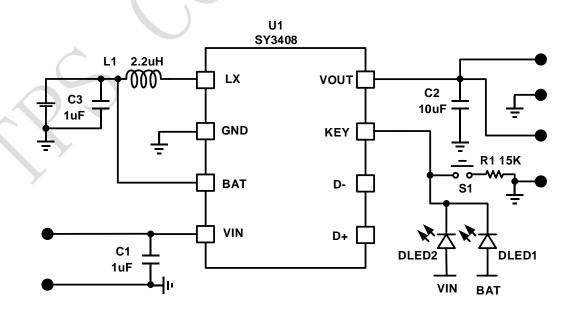


概述

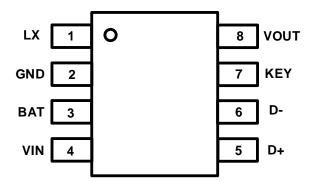
SY3408是一款专为蓝牙耳机充电仓设计的单芯片解决方案IC,高度集成了充电管理模块、LED电量显示模块、同步升压放电管理模块和D+、D-协议模块,极大的简化了外围电路与元器件数量。针对蓝牙耳机充电仓的应用,提供最简单易用的低成本解决方案。

SY3408采用的封装形式为SOP8。

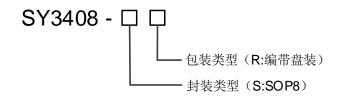

应用

TWS耳机充电仓 便携式锂电池应用 小容量锂电池充/放电应用 其他小功率电源管理应用

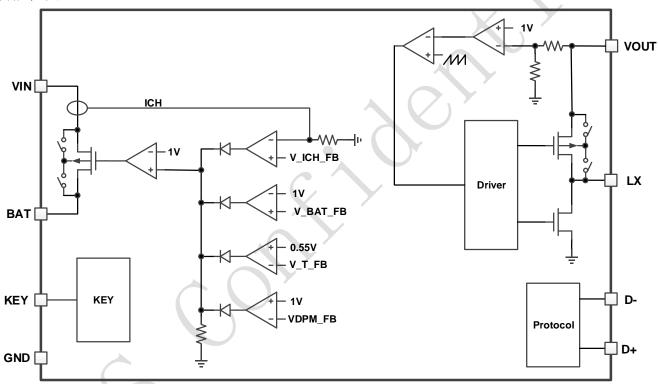
特点


- ◆ 线性充电,同步升压放电,内置充电、放电功 率MOS
- ◆ 芯片内部默认设定0.2A充电电流
- ◆ 涓流/恒流/恒压充电,并具有在无过热危险的情况下实现充电速率最大化的热调节功能
- ◆ C/10 充电终止,自动再充电
- ◆ 自适应适配器调节充电电流, VINDPM: 4.6V
- ◆ 预设4.2V充电电压,精度达±1%
- ◆ 支持边充边放功能/
- ◆ 支持负载自动识别,支持轻载自动关机
- ◆ 同步升压最大输出电流0.5A
- ◆ 待机功耗: 3.5uA
- ◆ 放电输出过流、短路、过压、过温保护
- ◆ 2灯LED充放电指示
- ◆ 单击KEY键启动升压输出,再次单击KEY键关闭升压输出,长按KEY键关闭升压输出
- ◆ 支持 D+、D-协议

典型应用电路


管脚功能

端口		I/O	4.1 1 20 4 7	
名称	管脚	1/0	功能描述	
LX	1	I	BOOST 开关输出	
GND	2	ı	芯片地	
BAT	3	ı	电池正极	
VIN	4	ļ	适配器正电压输入端	
D+	5	0	D+协议输出端口	
D-	6	0	D-协议输出端口	
KEY	7	I/O	按键输入、LED 输出复用端	
VOUT	8	0	升压输出	



订购信息

订购型号	封装类型	包装类型	包装数量 (颗)
SY3408-SR	SOP8	编带	4000

功能框图

电性参数

极限参数 (注1)

参数	最小值	最大值	单位
引脚电压	-0.3	+6	V
储存环境温度	-65	150	$^{\circ}$
工作环境温度	-20	85	$^{\circ}$ C
工作结温范围	-40	150	$^{\circ}$ C
HBM (人体放电模型)	2K	-	V
MM(机器放电模型)	200	-	V

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

推荐工作条件

输入电压 ------ 2.9V to 5.5V

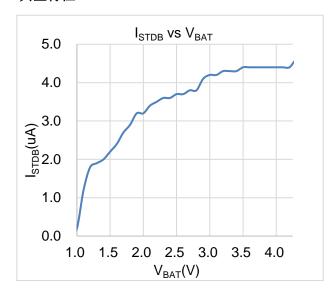
工作结温范围 ------ -40℃ to 125℃

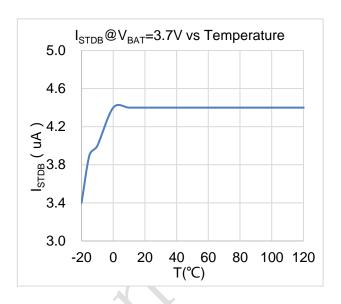
环境温度范围 ------ -20℃ to 85℃

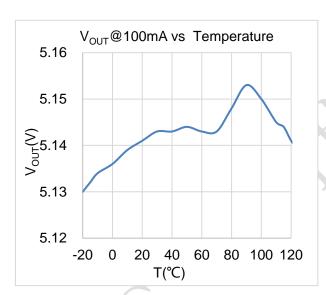
典型性能参数

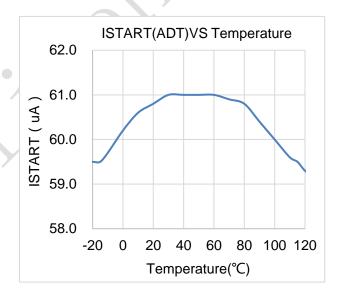
(如无特殊说明,V_{IN}=5V,V_{BAT}=3.7V,Ta=25℃,C2=10uF, C1=C3=1uF, L1=2.2uH)

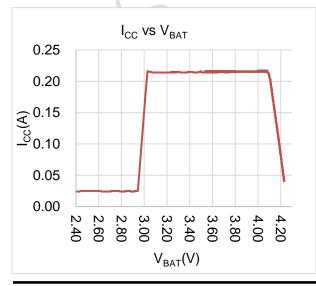
符号	参数	测试条件	最小值	典型值	最大值	单位
充电部分						
V _{IN}	充电输入电压		4.4	5	5.5	V
I _{VIN}	输入电源电流	充电截止	-	600	-	μA
V_{FLOAT}	稳定输出 (浮充) 电压	0℃≪TA≪85℃	4.158	4.2	4.242	V
Icc	恒流充电电流	VBAT=3.7V	180	200	220	mA
I _{TC}	涓流充电电流	V _{BAT} <v<sub>TRIKL</v<sub>	16	20	24	mA
V_{TC}	涓流充电阈值电压	VBAT上升	-	2.95	-	V
V _{TCHYS}	涓流充电迟滞电压		-	150	-	mV
V _{UV}	VIN欠压闭锁阈值电压	VIN从低至高	-	4	-	V
Vuvhys	VIN欠压闭锁迟滞		-	0.2	-	V
V	VIN-VBAT闭锁阈值电压	VIN从低到高	-	75	-	mV
V _{ASD}	VIIV-VDAI 初钡陶恒电压	VIN从高到低	-	30	-	IIIV
I _{TERM}	终止电流门限		-	20	-	mA
∆ V _{RECHRG}	再充电电池门限电压	VFLOAT-VRECHRG	-	200	-	mV
T _{LIM}	限定温度模式中的结温		-	110	-	$^{\circ}$ C

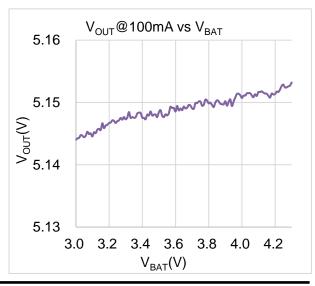


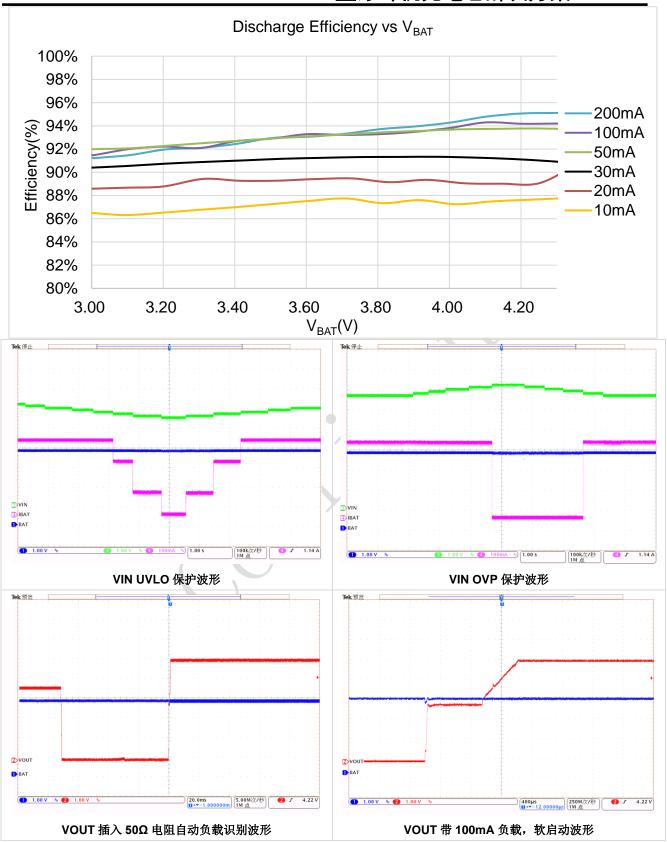


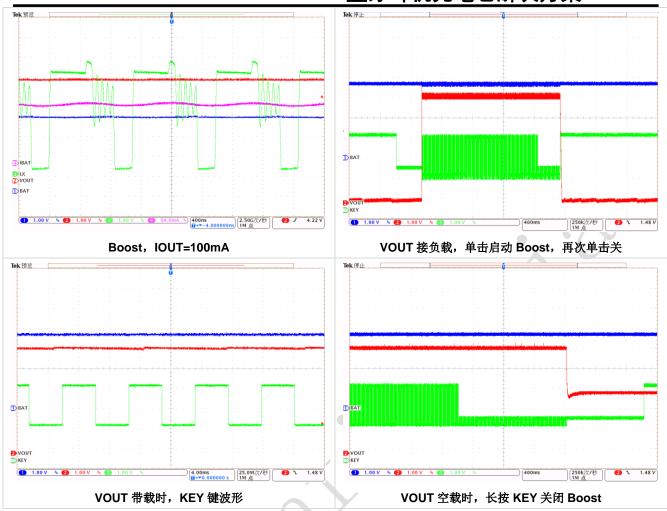

放电部分						
V _{BAT}	电池工作电压		2.8		4.35	V
Vouт	额定输出电压	V _{BAT} =3.7V	4.9	5.05	5.2	V
Istdb	待机电流	空载,自动识别负载状态	-	3.5	-	μA
V _{UV_BAT}	电池欠压闭锁阈值电压	VBAT下降	-	2.9	-	V
V _{HYS_BAT}	电池欠压闭锁迟滞	VBAT上升	-	0.4	-	V
Fsw	工作频率		0.9	1	1.1	MHz
Іоит	输出电流	V _{BAT} =2.9V~4.2V	-	0.5	-	Α
ILIM	周期电流限制	VOUT=5V	-	1.2		Α
η	转换效率	V _{BAT} =4.2V VOUT=5.0V&IOUT=0.5A	91	- •	(0)	%
D _{MAX}	最大占空比		-	85	\-	%
I _{END}	放电结束电流		-	9	-	mA
OTP	过温保护		-	150	-	$^{\circ}$
T _{HYS}	过温保护滞回		- 🗸	20	-	$^{\circ}$
1/	松山谷池市厅	VOUT=5.0V&IOUT=0.5A		100	-	mV
V_{RIPPLE}	输出纹波电压	空载	(-)	60	-	mV
Тѕнит	轻载关闭VOUT时间		-	16	-	S
Vshort	短路保护电压	• \) -	4.38	-	V
LED 及 K	EY 键部分	$C \wedge A$				
F _{LEDx_C}	LEDx充电/低电量闪烁频率	V Y	-	1	-	Hz
V_{LB}	低电量报警电压		-	3.2	-	V
T _{KEY}	单击KEY键时间		100	-	-	ms
T _{LKEY}	长按KEY键时间		2	-	-	S
I _{KEY}	KEY引脚上拉电流		ı	32	-	uA
D+和 D-1	办议部分					
V_{UP}	D+和D-上拉电平		-	3.5	-	V
I_{DO}	D+和D-输出电流		-	10	-	mA




典型特性

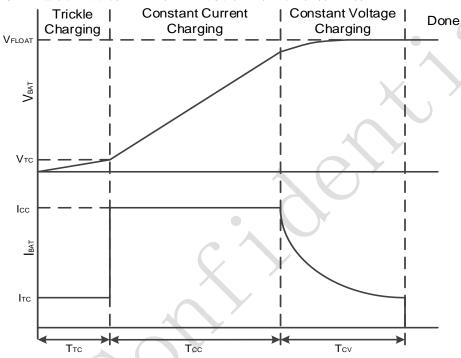






蓝牙耳机充电仓解决方案 SY3408

蓝牙耳机充电仓解决方案 SY3408



功能说明

充电模式

SY3408内部集成了完整的充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流由芯片内部设定,持续充电电流为0.2A,不需要另加阻流二极管和电流检测电阻。芯片内部的功率管理电路在芯片的结温超过110℃时自动降低充电电流,直到140℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当VIN的输入电压超过4V并且大于电池电压时,充电模块开始对电池充电。如果电池电压低于2.9V,充电模块采用涓流模式(小电流)对电池进行预充电。当电池电压超过3V时,充电模块采用恒流模式对电池充电。当电池电压接近4.2V时,充电电流逐渐减小,系统进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。完整的充电过程为涓流-恒流-恒压。

充电结束阈值是恒流充电电流的10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。

自动识别负载

在待机状态下,芯片自动处于自动识别负载状态,VOUT被芯片内部弱上拉到电池电压,当有负载接入时, VOUT电压会下掉,当电池电压大于3.2V时,芯片内部检测到VOUT电压下掉后,自动启动boost升压。

升压输出模式

SY3408提供一路同步升压输出,集成功率MOS,可提供5.05V/0.5A输出,效率高达91%。SY3408采用 1MHz的开关频率,可有效减小外部元件尺寸。在升压输出模式下,空载电流为120uA。

TPSTHINEPLUS

蓝牙耳机充电仓解决方案 SY3408

在额定负载的状况下,SY3408工作在固定频率1MHz,并且逐周期限流;当负载的电流逐渐减小并进入轻负载状况时,SY3408会进入间歇式输出模式,以保证输出电压调整能力。当负载电流继续减小并低于9mA(典型值)超过16S后,输出5V关闭,回到自动识别负载状态,LED灯灭,提醒用户外接设备充电已结束。

当电池电压低于2.9V以后,升压模块会被锁定在关闭状态,防止虚电反弹后升压模块重新开启,这时只有插入适配器或单击KEY键可以解除锁定,同时要求电池电压大于3.2V以上升压模块才会重新启动。

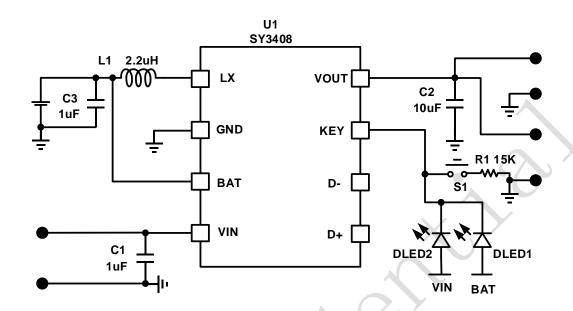
SY3408提供输出过流、输出过压、输出短路、芯片过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在发生输出过流、输出短路及芯片过温情况时,SY3408自动关闭升压输出,等待200mS后重新启动,若异常未解除则芯片不断关闭重启(称之为打嗝模式),直到异常解除后,芯片进入正常工作状态。SY3408通过控制续流PMOS可以有效阻止输出电流的倒灌。

功率路径管理

SY3408支持边充边放模式,在充电电源接入的情况下,且电池电压大于3.2V,则系统将工作在边充边放模式,充电的同时提供升压输出。充电电源移除后,系统保持升压输出模式。当电池电压小于3.2V时,芯片工作在充电模式,不提供升压输出,只有当电池电压升高超过3.2V时,升压输出自动启动。

KEY 键功能

SY3408 支持 KEY 键输入,在待机状态下,单击 KEY 键,启动 boost 输出,LED 显示电池电量,空载 16s 后自动关闭 LED 和 boost 输出。单击 KEY 键可以解除升压模块 UVLO 锁定,长按 KEY 键(或再次单击 KEY 键)强制关闭 boost 输出,在边充边放状态下,按 KEY 键不起作用。

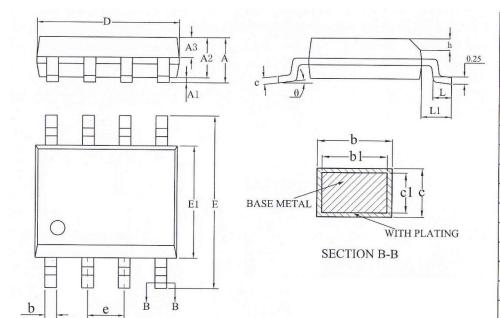

LED 指示

LED 灯显示分为充电电量显示和放电电量显示。SY3408 支持 2 颗 LED 灯显示充电状态和放电状态。LED 显示集成了单向锁定和延时,当显示充电电量时,LED 电量显示只能向上增加;当显示放电电量时,LED 电量显示只能向下减加;任何 LED 的跳变都需要满足一分钟的延时。

4	模式	状态	DLED1	DLED2
	六山	充满状态	灭	常亮
	充电	充电状态	灭	1Hz 闪烁
	放电	正常放电状态	亮	灭
		低电量状态	1Hz 闪烁	灭

应用原理图

典型电路元器件


器件位置	器件名称	器件规格	制造商	数量
U1	IC	SY3408 SOP8	思远半导体	1
S1	轻触按键	按键	-	1
L1	贴片电感	CD43 封装, 感值 2.2uH, 精度: ±	_	1
Li	MITTER	20%, 额定饱和电流要求: >1.5A	-	'
DLED1, DLED2	LED 显示灯	LED/0603/任意相同颜色的 LED 灯	-	2
C1、C3	贴片电容	CAP0603/1uF/X5R/10%/10V	三星或等同	2
C2	贴片电容	CAP0805/10uF/X5R/20%/10V	三星或等同	1
R1	贴片电阻	RES0603/15k/5%	国巨或等同	1

PCBLAYOUT 注意事项

- 1. C3尽量靠近BAT脚, C1尽量靠近VIN 脚,并且走线时都经过电容再到IC管脚。
- 2. 电感L1与LX脚之间存在高频振荡,必须相互靠近并且尽量减小布线面积;其它敏感的器件必须远离电感以减小耦合效应。
- 3. 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 4. 芯片GND直接连到系统地,连接的铜箔需要短、粗且尽量保持完整,不被其他走线所截断。
- 5. 应用中所使用的电容必须选用X5R以上的材质。

SOP8 封装示意图

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	_	_	1.75	
A1	0.10		0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	_	0.47	
b1	0.38	0.41	0.44	
С	0.20	_	0.24	
cl	0.19	0.20	0.21	
D	4.80	4.90	5.00	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e		1.27BSC		
h	0.25	_	0.50	
L	0.50	_	0.80	
Ll	1.05REF			
θ	0		8°	

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)