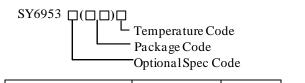


Application Note: SY6953

High Efficiency, 2-4 cell Buck Li-Ion Battery Charger


Advanced Design Specification

General Description

SY6953 is a wide input, high integrated and high efficiency Buck mode battery charger. It accepts 4-28V input and supports 2-4 cells Li-ion and Lipolymer battery. The charge current up to 2A can be programmed by using the external resistor for different portable applications. It also has a programmable charge timeout and adaptive input power limit for safety battery charge operation. It consists of 30V rating reverse blocking FET and power switching FETs with low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6953 along with small QFN3x3-18 footprint provides small PCB area application.

Ordering Information

Ordering Number	Package type	Note
SY6953QIC	QFN3×3-18	

Features

- Wide Input Voltage Range: 4V to 28V
- Constant Voltage Selectable: 4.1V/4.2V/4.35V per Cell
- Charge Current up to 2A for 2 Cells Battery
- Charge Current up to 1.6A for 3 Cells Battery
- Charge Current up to 1.5A for 4 Cells Battery
- Programmable VDPM
- Programmable Input Current Limit
- Programmable Charge Timer
- Trickle Current / Constant Current / Constant Voltage Charging Mode
- Thermal Regulation
- Input Voltage UVLO and OVP Protection
- BAT OVP and Short Protection
- Over Temperature Protection
- Charging Status Indication
- NTC JEITA Compliance
- Package QFN3x3-18

Applications

Floor Cleaning Robot Window & Door Automation Smart Speaker Electrical Tools

Application Circuit

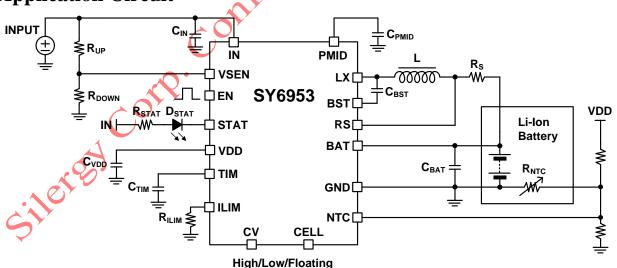
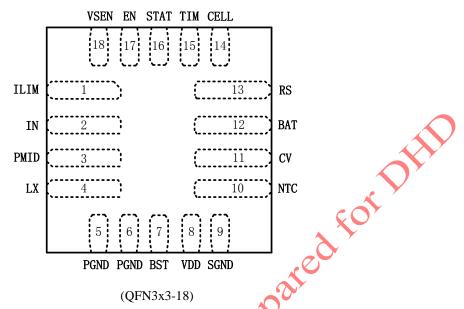
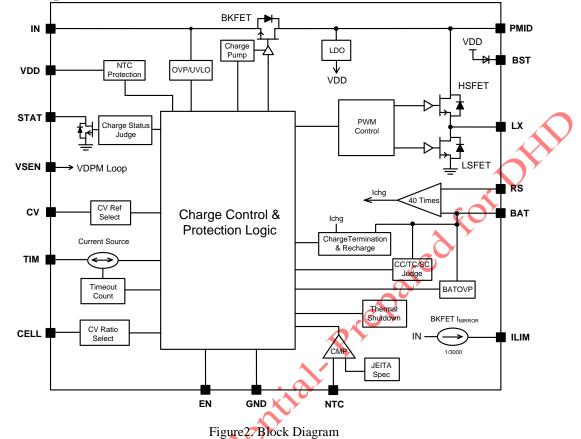



Figure1. Schematic Diagram

Pinout (top view)



Top Mark: CNWxyz, (Device code: CNW, x=year code, y=week code, z= lot number code)

	1	
Pin Name	Pin No	Description
ILIM	1	Input current limit program pin. Connect a resistor from this pin to GND to program input current limit. The mirror current about 1/3000 of the blocking FET current will dump into the external resistor through IKIM pin and compared to the internal reverence 1V. So $I_{INLIM} = (1V/R_{ILIM}) \times 3000$
IN	2	Analog power input pin. Connect a MLCC from this pin to ground to decouple high harmonic noise. This pin has OVP and UVLO function to make the charger operate within safe input voltage area. Suggest 1uF at least on this pin to ground.
PMID	3	Connected to the drain of the reverse blocking NFET and HSFET. Suggest 10uF at least on this pin to ground.
LX	4	Switch node pin. Connect to external inductor.
PGND	5,6	Power ground pin.
BST	7	Boot strap for high HSFET driver.
VDD	8	Internal LDO output. Connect this pin with 1uF capacitor to ground.
SGND	9	Signal ground pin.
NTC	10	Thermal protection pin. It will meet JEITA spec and refer to description section.
CV	11	Battery CV voltage selection pin. Pull low for 4.2V/cell, pull high for 4.35V/cell and float this pin for 4.1V/cell.
BAT	12	Battery positive pin.
RS	13	Charge current sense resistor positive pin.
CELL	14	Battery cell selection pin. Different cell numbers can be selected by this pin. Float for 2 cells, pull low for 3 cells, pull high for 4 cells.
TIM	15	Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source charges the capacitor for TC mode and fast charge (CV&CC) mode's charge time limit. TC charge time limit is about 1/9 of fast charge time limit.
STAT	16	Charge status indication pin. It is open drain output and pulled high to IN thru a LED to indicate the charge in process. When the charge is done, LED is off. When some fault happens during charging, LED will flash with 2Hz frequency.
EN	17	IC enable pin. Pull high to enable the IC and low to shut down the IC. Floating this pin will also shut down the IC.
VSEN	18	Input voltage sense pin. If the voltage drops to internal 1.2V reference voltage, the input voltage will be clamped to the setting value.

Block Diagram

Absolute Maximum Ratings (Note 1)

IN, PMID, LX, BAT, VSEN, STAT, CV, CELL, EN	
TIM, VDD, NTC, ILIM	0.3V to 4V
RS-BAT	
BST-LX	0.3V to 4V
LX Pin Current Continuous	
Power Dissipation, PD @ TA 25°C , QFN3x3-18	1.6W
Package Thermal Resistance (Note 2)	
θ _{JA}	75 °C/W
θ _{IC}	20 °C/W
Junction Temperature Range	40 ℃ to +125 ℃
Lead Temperature (Soldering, 10 sec.)	260 °C
Storage Temperature Range	65 °C to 150 °C

Recommended Operating Conditions (Note 3)

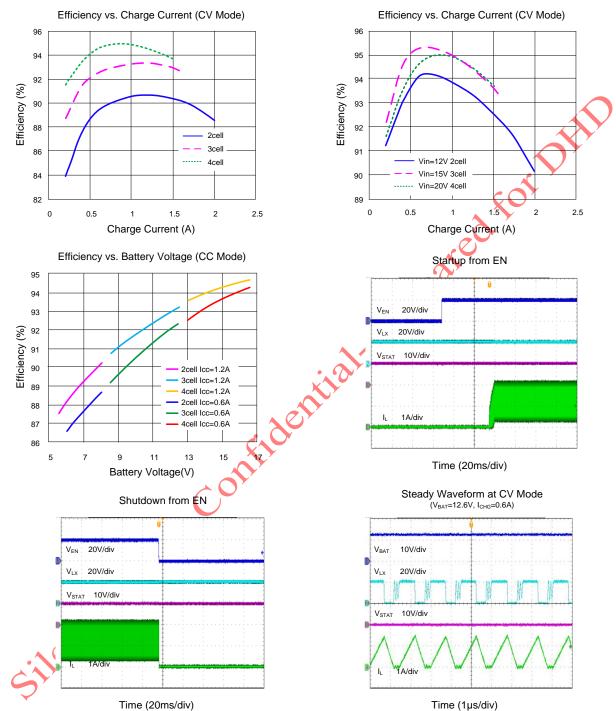
IN -2	4V to 28V
PMID, LX, BAT, VSEN, STAT, CV, CELL, EN	0V to 28V
TIM, ILIM, NTC	0V to 3.3V
RS-BAT	-0.25V to +0.25V
Junction Temperature Range	40 ℃ to 100 ℃
Ambient Temperature Range	40 ℃ to 85 ℃

Electrical Characteristics

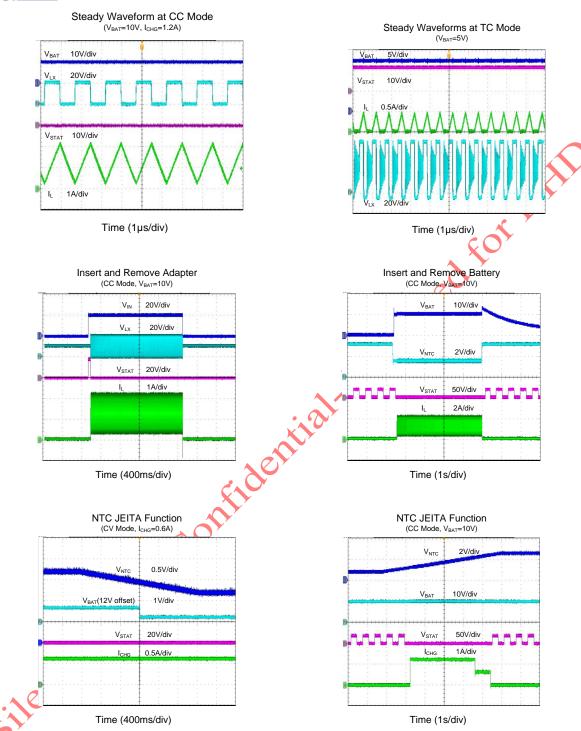
 $T_A=25 \text{ C}, V_{IN}=20V, \text{GND}=0V, C_{IN}=1uF, C_{PMID}=10uF, L=4.7uH, R_S=25m\Omega, C_{TIM}=330nF, \text{unless otherwise specified.}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Bias Supply (V _{IN})	•	·	•			
Supply Voltage Operation	V		4		28	V
Range	V _{IN}		4		28	v
Input Voltage Lockout	V _{UVLO}	V _{IN} rising and measured from	3.5		3.9 🖌	
Threshold	V UVLO	IN to PGND	5.5		5.5	V
Input Voltage Lockout	$\Delta V_{\rm UVLO}$	Measured from IN to PGND		0.2		v
Hysteresis	A V UVLO			0.2		v
Input Over Voltage	V _{IN_OVP}	$V_{\ensuremath{\text{IN}}}$ rising and measured from		29	s Y	V
Protection	V IN_OVP	IN to PGND		29		v
Input Over Voltage	ΔV_{IN_OVP}	Measured from IN to PGND		0.5		V
Protection Hysteresis	Δ V IN_OVP	Weasured from invito 1 GIVD		0.5		v
Quiescent Current	-					
Battery Discharge Current	I _{BAT}	Input absent, V _{BAT} =17.4V		15	25	uA
Input Quiescent Current	I _{IN}	V _{IN} =28V, EN=1, No switching		0.8	1.1	mA
Input Shutdown Current	I _{SD}	V _{IN} =28V, EN=0		60		uA
Oscillator and PWM			25			
Switching Frequency	f _{SW}			500		kHz
Main NFET Minimum On	511	× ′				
Time	t _{ON_MIN}			100		ns
Main N-FET Minimum Off		· · · ·				
Time	t _{OFF_MIN}			100		ns
Power MOSFET			L			
R _{DS(ON)} of Main N-FET	R _{HSFET}			120		mΩ
$R_{DS(ON)}$ of Rectified N-FET	R _{LSFET}			180		mΩ
R _{DS(ON)} of Blocking N-FET	R _{BKFET}	CAN CANA		150		mΩ
Voltage Regulation	BKFEI			150		11132
vonage Regulation		2-cell, CV is floating		8.2		
		2 -cell, $V_{CV} < 0.4V$		8.4		
		$\frac{2 \text{-cell}, \text{V}_{\text{CV}} < 0.4 \text{V}}{2 \text{-cell}, \text{V}_{\text{CV}} > 1.5 \text{V}}$		8.7		-
		3-cell, CV is floating		12.3		
Battery Charge Voltage	v ·	3 -cell, $V_{CV} < 0.4V$		12.5		V
Battery Charge Voltage	VBAT_REG	3 -cell, $V_{CV} < 0.4 V$ 3 -cell, $V_{CV} > 1.5 V$		13.05		v
\rightarrow		4-cell, CV is floating		16.4		-
		4-cell, $V_{CV} < 0.4V$		16.8		
				10.8		
		4-cell, V_{CV} >1.5V				
Recharge Threshold refer		2-cell battery		200		
to V _{BAT_REG}	ΔV_{RCH}	3-cell battery		300		mV
		4-cell battery		400		
Trickle Charge Rising		2-cell battery		5.6		_
Edge Threshold	V _{TRK}	3-cell battery		8.4		V
		4-cell battery		11.2		
Charge Current						
Charge Current Accuracy for Constant Current Mode	I _{CC}	I _{CC} =30mV/R _S	-4%		4%	
Charge Current Accuracy for Trickle Current Mode	I _{TC}	I _{TC} =3mV/R _S	-25%		25%	
Termination Current	I _{TERM}	I _{TERM} =3mV/R _S	-25%		25%	

Input Current Limit							
Input Current Limit Accuracy	I _{INLIM}	I _{INLIM} =500mA	-5%		5%		
BAT Voltage OVP							
BAT OVP Threshold	V _{BAT_OVP}	V _{BAT} rising		104		$% V_{BAT_REG}$	
BAT OVP Threshold Hysteresis	ΔV_{BAT_OVP}			2		$% V_{BAT_REG}$	
VDPM Reference							
Reference for VDPM	V _{VSEN_DPM}			1.2		V	
VDD Regulation							
VDD LDO Voltage	V _{VDD}	$V_{IN}>4V, EN=1$		3.3		V	
VDD Current Capacity	I _{VDD}	V _{VDD} =3V	20			mA	
VDD Current Limit	I _{VDD_LIMIT}	VDD short to ground			50	mA	
Timer	•						
Trickle Current Charge Timeout	t _{TC}			0.5		hour	
Constant Current Charge	taa	C _{TIM} =330nF		4.5	K Ó	hour	
Timeout	t _{CC}			4.2		noui	
Charge Mode Change Delay	t _{MC}			30		ms	
Time				\sim			
Termination Delay Time	t _{TERM}			30		ms	
Recharge Time Delay	t _{RCHG}			30		ms	
Cycle-by-Cycle Peak Current							
Power FET Current Limit	I _{PEAK}	V _{BAT} >V _{SHORT}		3		A	
BAT Short Protection							
BAT Short Protection	V _{SHORT}	V_{BAT} falling		2.00		V	
Threshold	bitotti						
Auto Shut Down		M. falling many d from	1				
Auto Shutdown Voltage Threshold	V _{ASD}	V_{IN} falling, measured from IN to BAT		200			
Auto Shutdown Voltage		V _{IN} rising hysteresis,				mV	
Threshold Hysteresis	V _{ASD_HYS}	measured from IN to BAT		80			
Logic Control		incustred from it to Diff					
High Level Logic for EN	V _{EN_H}	CA CA	1.5			V	
Low Level Logic for EN	V _{EN_L}		1.5		0.4	V	
High Level Logic for CV,CELL	V _{LOGIC} H	· · · · · · · · · · · · · · · · · · ·	3		0.1	V	
Low Level Logic for CV,CELL	VLOGIC L		5		0.5	V	
NTC Thermal Protection JEI					0.5	•	
T1(0 °C) Threshold	V _{NTC_TI}	V _{NTC} rising		73.25			
T1(0 \mathbb{C}) Threshold Hysteresis	V _{NTC_TI_HYS}			1.25			
$T2(10 \ C)$ Threshold		V _{NTC} rising		68.25			
	V _{NTC_T2}	V NTC HSHIP				%V _{VDD}	
T2(10 °C) Threshold Hysteresis $T2(45 \circ C)$ Threshold Hysteresis	V _{NTC_T2_HYS}	V fallina		1.25			
T3(45 °C) Threshold	V _{NTC_T3}	V _{NTC} falling		44.75			
T3(45 °C) Threshold Hysteresis	V _{NTC_T3_HYS}			1.2			
T5(60 °C) Threshold	V _{NTC_T5}	V _{NTC} falling		34.375			
T5(60 C) Threshold Hysteresis	V _{NTC_T5_HYS}			1.2			
Thermal Regulation and Thermal Shutdown							
Junction Thermal Regulation	T _{J_REG}			120		С	
Accuracy Thermal Shutdown Threshold				150		C	
Thermal Shutdown Threshold	T _{SD}						
Hysteresis	T _{SD_HYS}	Falling Edge		20		С	


Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25 \ C$ on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Silered corp.



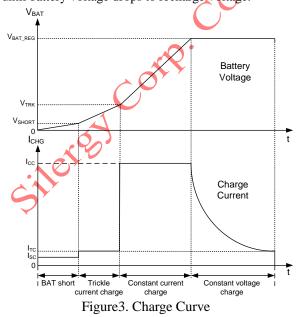
Typical Performance Characteristics

 $(T_A=25 \text{ C}, V_{IN}=20V, C_{IN}=1uF, C_{PMID}=10uF, L=4.7uH, R_S=25m\Omega$, unless otherwise specified)

General Function Description

SY6953 is a 4-28V input, 2-4 cells Li-Ion synchronous Buck charger. The charge current up to 2A can be programmed by using the external resistor for different portable applications. It also has a programmable charge timeout and adaptive input power limit for safety battery charge operation. It consists of 30V rating reverse blocking FET and power switching FETs with low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6953 along with small QFN3x3-18 footprint provides small PCB area application.


Switching Mode Control Strategy

SY6953 utilizes quasi-fixed frequency control to simplify the internal close-loop compensation design. The quasi-fixed frequency settled at 500 kHz is easy for the size minimization of peripheral circuit design.

Operation Principle

SY6953 works as a synchronous Buck mode battery charger when the adapter is present. It utilizes 500 kHz switching frequency to minimize the PCB design.

The charger will operate in battery short mode, trickle charge mode, constant current charge mode and constant voltage charge mode according to the battery voltage. The charge current in every mode is showed in following charge curve. In constant voltage mode, if charge current is lower than termination current, the charger will stop charging until battery voltage drops to recharge voltage.

Input Power Limit Principle

For prevent input source overloading, SY6953 has IDPM and VDPM loop to limit the input power.

It will automatically decrease charge current when input current exceeds setting value or VSEN voltage drops to internal 1.2V reference.

Charging Status Indication Description

STAT is an open drain pin and a pull up resistor is needed for charging status indication. Connect a LED from IN to STAT pin, LED ON means Charge-in-Process, LED OFF means Charge Done, LED Flashing with 2Hz means Fault Mode.

- 1. Charge-In-Process Pull and keep STAT pin to Low;
- 2. Charge Done Pull and keep STAT pin to High;
- 3. Fault Mode Output high and low voltage alternatively with 2Hz frequency. The faults include input OVP, BAT OVP, BAT short, NTC JEITA UTP/OTP (below T1 or above T5), Time-out and Thermal shutdown.

Full Charger Protections Description

In charge mode, SY6953 has full protections to protect the IC and the battery.

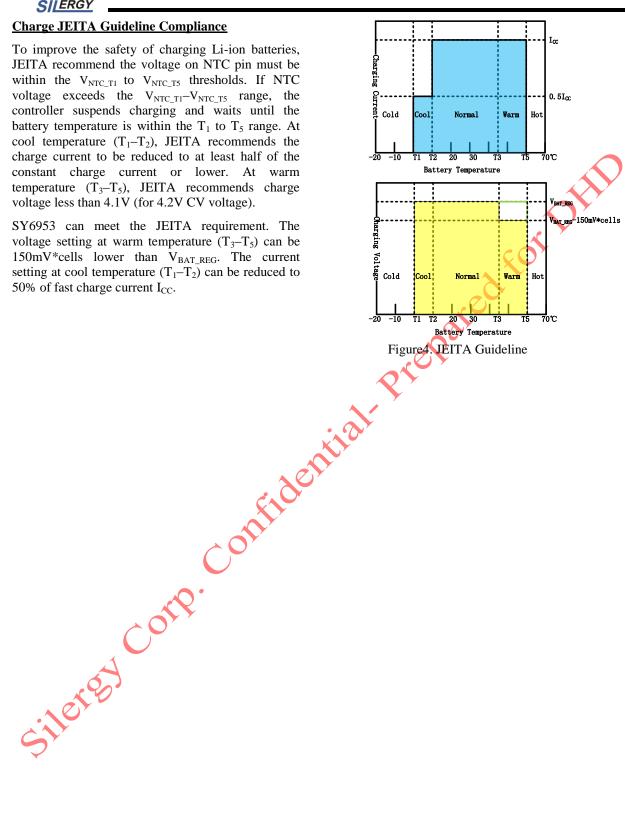
<u>Input Over Voltage Protection</u> – SY6953 has IN over voltage protection. It will stop charge when input OVP occurs. IC will auto recover normal operation when this fault removes.

<u>BAT Over Voltage Protection</u> – SY6953 will stop charge when BAT OVP occurs. IC will auto recover normal operation when this fault removes.

 $\frac{Timeout\ Protection}{I} - The\ charger\ can\ detect\ a\ bad} battery.\ It\ will\ stop\ charge\ and\ latch\ off\ when\ the\ charger\ works\ over\ safety\ time\ which\ is\ set\ by\ C_{TIM}.$ Only recycling the input or EN signal can release this fault.

<u>JEITA NTC Thermal Protection</u> – When NTC voltage is lower than V_{NTC_T5} threshold or higher than V_{NTC_T1} threshold, the converter will stop charge. IC will auto recover when this fault removes.

<u>Thermal Shutdown Protection</u> – The IC will stop operation when the junction temperature is higher than 150 °C. It will auto recover normal when this fault removes.



AN SY6953

Charge JEITA Guideline Compliance

To improve the safety of charging Li-ion batteries, JEITA recommend the voltage on NTC pin must be within the V_{NTC_T1} to V_{NTC_T5} thresholds. If NTC voltage exceeds the $V_{\text{NTC}_\text{T1}}\text{-}V_{\text{NTC}_\text{T5}}$ range, the controller suspends charging and waits until the battery temperature is within the T_1 to T_5 range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to at least half of the constant charge current or lower. At warm temperature (T_3-T_5) , JEITA recommends charge voltage less than 4.1V (for 4.2V CV voltage).

SY6953 can meet the JEITA requirement. The voltage setting at warm temperature (T_3-T_5) can be 150mV*cells lower than V_{BAT_REG} . The current setting at cool temperature (T_1-T_2) can be reduced to 50% of fast charge current I_{CC} .

mΩ

Application Information

Because of the high integration of SY6953, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{PMID} , output capacitor C_{BAT} , inductor L, NTC resistors R_1 , R_2 , charge current sense resistor R_S and timer capacitor C_{TIM} need to be selected for the targeted application specification.

NTC Resistor

SY6953 monitors battery temperature by measuring the VDD voltage and NTC voltage. It will trigger JEITA protection when the ratio K (K= V_{NTC}/V_{VDD}) reaches the related threshold.

The temperature sensing network is showed as below.

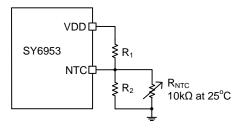
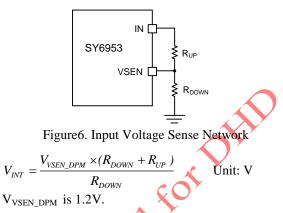



Figure 5. NTC Resistors

For JEITA standard, $T_1=0$ °C, $T_2=10^{\circ}$ C, $T_3=45^{\circ}$ C, $T_5=60^{\circ}$ C.


NTC resistors should be chosen at $R_1=5.24k\Omega$, $R_2=30.28k\Omega$.

Input Voltage Threshold for Input Power Limit

SY6953 will monitor input voltage by measuring the VSEN voltage, when VSEN drops below the internal 1.2V reference, SY6953 will decrease the duty cycle to reduce the charge current.

The input voltage sense network is shown below, choose $R_{\rm UP},\,R_{\rm DOWN}$ to set the input voltage threshold $V_{\rm INT}$:

Charge Current Sense Resistor Rs

The charging current sense resistor R_s is calculated as below:

$$R_{s} = \frac{30mV}{L_{s}}$$
 Unit:

where the I_{CC} is the battery constant charge current, unit is ampere.

Timer Capacitor C_{TIM}

The charger also provides a programmable charge timer. The charge time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:

$$C_{TIM}=2 \times 10^{-11} S \times t_{CC}$$
 Unit: F

 t_{CC} is the permitted fast charge time, unit is second.

Input Capacitor C_{PMID}

The main input capacitor is connected between PMID pin to PGND. It can absorb input ripple current from the Buck stage, which is given by below equation.

$$I_{RMS} = I_{CHG} \times \frac{\sqrt{V_{BAT} \times (V_{IN} - V_{BAT})}}{V_{IN}}$$

The maximum value of this RMS ripple current in the application must be smaller than the rated RMS current in the chosen capacitor datasheet. Care should be taken to minimize the loop area formed by C_{PMID} , and PMID and PGND pins.

To minimize the potential noise problem, IN should be decoupled to PGND with typical $1\mu F$ capacitance, X7R or a better grade ceramic capacitor.

Output Capacitor C_{BAT}

The output capacitor in parallel with the battery is used for absorbing the high frequency switching ripple current and smoothing the output voltage. The RMS value of the output ripple current I_{RMS} is calculated as follow.

$$I_{RMS} = \frac{V_{IN} \times D \times (1 - D)}{\sqrt{12} \times L \times f_{SW}}$$

Where the duty cycle D is the ratio of the output voltage (battery voltage) over the input voltage for CCM mode which is typical operation for the battery charger. During the battery charge period, battery voltage varies from its initial battery voltage to the rated voltage. The maximum value of this RMS ripple current in the application must be smaller than the rated RMS current in the chosen capacitor datasheet. A typical 20µF ceramic capacitor is recommended to absorb this current and also has small size.

Output Inductor L

There are several considerations in choosing the inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 20%-40% of the maximum charge current I_{CC} . The inductance is calculated as:

$$L = \frac{V_{BAT_REG} (1 - V_{BAT_REG} / V_{IN})}{f_{SW} \times I_{CC} \times (20\% - 40\%)}$$

where f_{SW} is the switching frequency and $V_{I\!N}$ is the input voltage in the application

SY6953 is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

2) The saturation current rating of the inductor must be selected to be greater than the maximum peak inductor current under all the range of battery voltage and full load conditions.

$$I_{\text{SAT}} \ge I_{\text{CC}} + \frac{V_{BAT_\text{REG}} (1 - V_{BAT_\text{REG}} / V_{IN})}{2 \times f_{SW} \times L}$$

The maximum peak inductor current happens when battery voltage is equivalent with half of input voltage.

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<20mohm to achieve a good overall efficiency.

A 47uH inductor is usually recommended to cover most of the conventional applications.

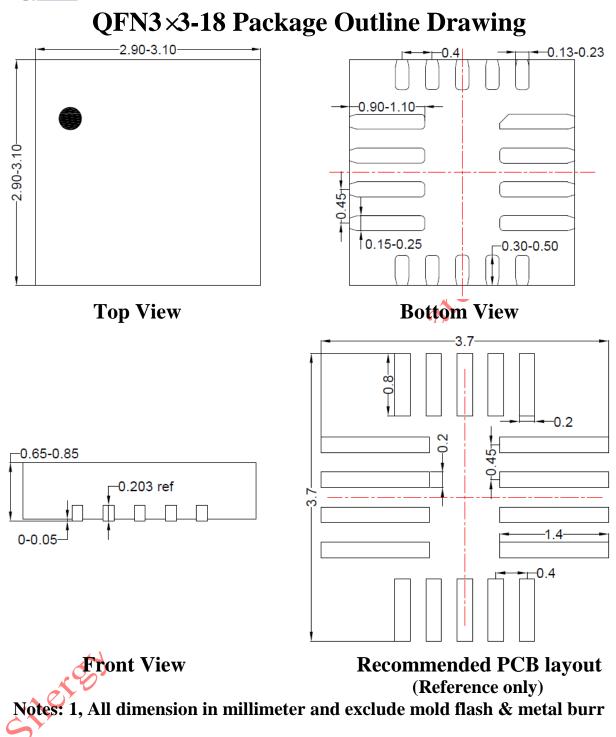
<u>Layout Design</u>

The layout design of SY6953 is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{IN} , C_{PMID} , L, C_{VDD} and C_{BST} .

- 1) It is desirable to maximize the PCB copper area connecting to PGND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- 2) C_{PMID} must be close to pins PMID and PGND. The loop area formed by C_{PMID} and PGND must be minimized.
- 3) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 4) The capacitor C_{TIM} and the trace connecting to the TIM pin must not be adjacent to the LX net on the PCB.

The SY6953 PCB layout is suggested as below.

AN_SY6953


SGND SGND CRS RR. Rold Ca SSND SY6953	 Top Layer Bottom Layer PCB Via Top Component Bottom Component
Power In IN CIN PGND ● ● ● ● LX L RS	CBATI CBAT2 PGND • • • • • •

 Firef. Proposed PCB Layou

 PCB PCB Layou

 <td

