## SY7100 蓝牙耳机充电仓无线充电解决方案

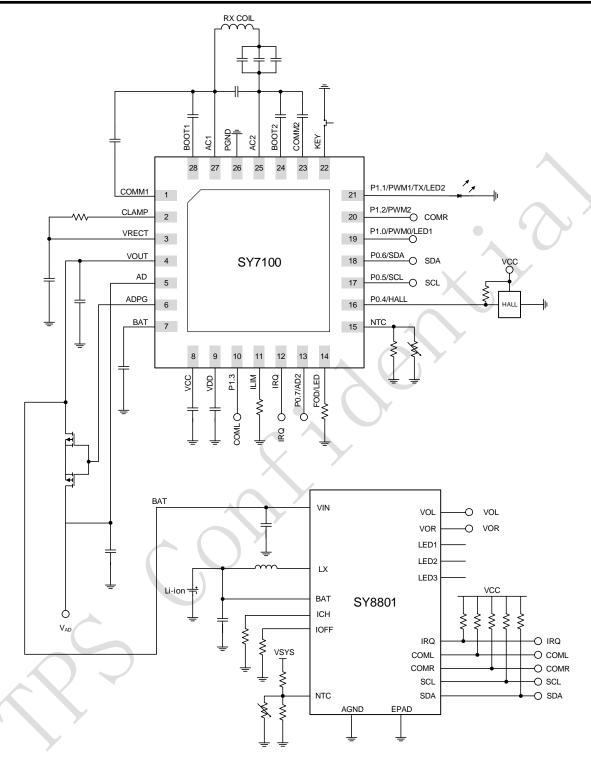
#### 概述

SY7100 是一颗高效率、全集成的符合 WPC Qi V1.24 协议的无线充电接收芯片。SY7100 最大支持5W 输出功率。集成低阻抗同步整流器,效率高达95%。集成 LDO,输出电压可调。SY7100 还包括一个数字控制器,用于计算移动设备接收的功率。控制器将该信息传输至发送器,实现异物检测(FOD),提升无线充电的安全。

SY7100内部包含一个8位CPU,256 Bytes RAM,8k Bytes的ROM,可重复擦写。内部集成多通道12bit SAR ADC,用于电压电流和NTC检测等。内部集成3个定时器、UART、I2C控制器和PWM。SY7100采用的封装形式为QFN28 4\*4。

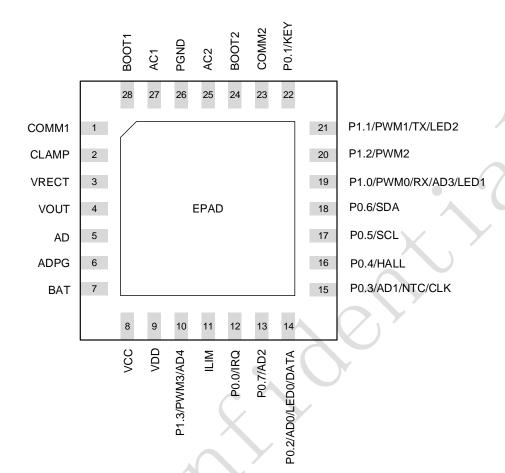
#### 应用

TWS耳机充电仓 无线充电接收器


#### 特点

- ◆ Fast 8位CPU
- 256 Bytes RAM
- ◆ 8k Bytes可重复擦写ROM
- ◆ 3个定时器

#### 典型应用电路


- ◆ 1个UART
- ◆ 1个I2C控制器
- ◆ 1个11通道12位ADC
- ◆ 多个支持复用的GPIO
- ◆ 1个多通道输出PWM控制器
- ◆ 3个LED恒流驱动
- ◆ 支持外部中断唤醒
- ◆ 支持按键检测和唤醒
- ◆ 支持霍尔开关检测和唤醒
- ◆ 支持驱动外部VBUS到VOUT功率管
- ◆ 全集成无线充电接收器解决方案
  - --94%的峰值的交流-直流转换效率
  - --完全同步整流器
  - --符合WPC V1.24标准协议
  - --输出电压可调节
- ◆ 符合WPC V1.24异物检测(FOD)
- ◆ 动态整流控制,改善负载动态响应
- ◆ 整流过压保护,单个电阻过压钳位
- ◆ LDO过压、过流、短路保护
- ◆ 支持芯片过温保护和热关断
- ◆ 支持NTC功能
- ◆ 电源PIN 28V耐压
- ◆ 休眠功耗10uA
- ◆ QFN28 4\*4封装





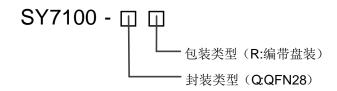


## 管脚功能



| 端口                      | 端口   |     | 功能描述                                |  |
|-------------------------|------|-----|-------------------------------------|--|
| 名称                      | 管脚   | 1/0 | <b>为配油</b> 处                        |  |
| COMM1/2                 | 1/23 | 0   | ASK 通信调制引脚                          |  |
| CLAMP                   | 2    | 0   | VRCT 过压钳位引脚                         |  |
| VRECT                   | 3    | 0   | 整流器输出电压引脚                           |  |
| VOUT                    | 4    | 0   | 5V LDO 输出电压引脚                       |  |
| AD                      | 5    | 0   | 适配器 5V 输入引脚                         |  |
| ADPG                    | 6    | 0   | 适配器电压到 VOUT 外部 PMOS 使能引脚            |  |
| BAT                     | 7    | ı   | 电池电压输入引脚                            |  |
| VCC                     | 8    | 0   | 内部 GPIO 电源输出引脚                      |  |
| VDD                     | 9    | 0   | 1.8V LDO 输出引脚                       |  |
| P1.3/PWM3/AD4           | 10   | I/O | GPIO/PWM3/ADC 通道 4                  |  |
| ILIM                    | 11   | I/O | VOUT 输出电流限流设置引脚                     |  |
| P0.0/IRQ                | 12   | I/O | GPIO/外部中断唤醒                         |  |
| P0.7/AD2                | 13   | I/O | GPIO/ADC 通道 2                       |  |
| P0.2/AD0(FOD)/LED0/DATA | 14   | I/O | GPIO/ADC 通道 0(无线通信异物检测)/LED0/代码升级数据 |  |
| FU.Z/ADU(FOD)/LEDU/DATA | 14   |     | 引脚                                  |  |




## SY7100

# 蓝牙耳机充电仓无线充电解决方案

| P0.3/AD1/NTC/CLK      | 15    | I/O | GPIO/ADC 通道 1/NTC/代码升级时钟引脚      |
|-----------------------|-------|-----|---------------------------------|
| P0.4/HALL             | 16    | I/O | GPIO/霍尔开关检测引脚                   |
| P0.5/SCL              | 17    | I/O | GPIO/I2C SCL                    |
| P0.6/SDA              | 18    | I/O | GPIO/I2C SDA                    |
| P1.0/PWM0/RX/AD3/LED1 | 19    | I/O | GPIO/PWM0/UART RX/ADC 通道 3/LED1 |
| P1.2/PWM2             | 20    | I/O | GPIO/PWM2                       |
| P1.1/PWM1/TX/LED2     | 21    | I/O | GPIO/PWM1/UART TX/LED2          |
| P0.1/KEY              | 22    | I/O | GPIO /按键检测引脚                    |
| BOOT2/1               | 24/28 | 0   | 全桥整流自举驱动电容引脚                    |
| AC2/1                 | 25/27 | I   | 交流输入引脚                          |
| PGND                  | 26    | -   | 功率地                             |
| EPAD                  |       | -   | GND                             |



#### 订购信息



| 订购型号      | 封装类型  | 包装类型 | 包装数量 (颗) |
|-----------|-------|------|----------|
| SY7100-QR | QFN28 | 编带   | 4000     |

### 功能框图





#### 电性参数

## 极限参数 (注1)

|     | 参数                                | 最小值   | 最大值                | 单位           |
|-----|-----------------------------------|-------|--------------------|--------------|
|     | COMM1/2、AC1/2、VRECT、CLAMP、AD、ADPG | -0.3  | +28                | V            |
|     | BOOT1/2                           | -0.3  | V <sub>AC</sub> +7 | V            |
| 电压  | VOUT                              | -0.3  | +20                | V            |
|     | VDD                               | -0.3  | +3                 | V            |
|     | 其他引脚                              | -0.3  | +8                 | V            |
|     | IAC1、IAC2                         |       | 1.5                | A(RMS)       |
| 电流  | ICOMM1 \ ICOMM2 \ ICLAMP          |       | 0.5                | Α            |
|     | Іоит                              |       | 1.2                | Α            |
|     | 储存环境温度                            | -65   | 150                | $^{\circ}$   |
| 温度  | 工作环境温度                            | -20   | 85                 | $^{\circ}$ C |
|     | 工作结温范围                            | -40   | 150                | $^{\circ}$ C |
|     | HBM (人体放电模型)                      | ±2000 | -                  | V            |
| ESD | MM (机器放电模型)                       | ±200  | -                  | V            |
|     | CDM (器件放电模型)                      | ±1000 | -                  | V            |

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

#### 推荐工作条件

|      | 参数     | 最小值 | 最大值 | 单位                     |
|------|--------|-----|-----|------------------------|
|      | VRECT  | 4   | 10  | V                      |
| 电压   | AD     | 3.8 | 6   | V                      |
|      | BAT    | 2.7 | 4.5 | V                      |
| 电流   | Гоит   | -   | 1.0 | Α                      |
| 温度   | 工作结温范围 | -40 | 125 | $^{\circ}\!\mathbb{C}$ |
| 1Ⅲ/又 | 环境温度范围 | -20 | 85  | $^{\circ}\!\mathbb{C}$ |

#### 典型性能参数

(如无特殊说明,V<sub>AD</sub>=5V,V<sub>RECT</sub>=5.5V,V<sub>BAT</sub>=3.7V,C<sub>RECT</sub>=10uF,C<sub>OUT</sub>=10uF,C<sub>VCC</sub>=1uF,C<sub>VDD</sub>=1uF,Ta=25℃)

| 符号                                 | 参数          | 测试条件     | 最小值  | 典型值 | 最大值  | 单位 |
|------------------------------------|-------------|----------|------|-----|------|----|
| 整流部分                               |             |          |      |     |      |    |
| V <sub>RECT-UVLO</sub> VRECT欠压保护阈值 | VPECTAE供拍阅估 | 上升       | 2.9  | 3.1 | 3.3  | V  |
|                                    | VRECT大压床扩网值 | 下降       | 2.5  | 2.7 | 2.9  | V  |
| .,                                 | VRECT过压保护阈值 | 上升       | 14.5 | 15  | 15.5 | V  |
| VRECT-OVP                          | VRECI及压体扩网值 | 下降       | 11.5 | 12  | 12.5 | V  |
| V <sub>RECT-DPM</sub>              | VRECT DPM值  |          |      | 3.5 |      | V  |
| I <sub>RECT</sub>                  | 静态工作电流      | VOUT输出空载 |      | 8   |      | mA |



# SY7100 <u>蓝牙耳机充电仓无线充电解决方案</u>

| VOUT LDO               | )               |                               |          |          |      |     |
|------------------------|-----------------|-------------------------------|----------|----------|------|-----|
| V <sub>out</sub>       | VOUT输出电压        | 输出电流0-1A                      | 4.9      | 5.05     | 5.15 | V   |
| I <sub>OUT_LIM</sub>   | lout最大限流        |                               |          |          | 1.2  | Α   |
|                        | いのはた原物図は        | 下降                            |          | 2.6      |      | V   |
| Vout_short             | VOUT短路阈值        | 上升                            |          | 3.2      |      | V   |
| t <sub>SHORT</sub>     | VOUT短路启动时间      |                               |          | 2        |      | ms  |
| tHICCUP                | VOUT短路打嗝时间      |                               |          | 512      |      | ms  |
| AD                     |                 |                               |          |          |      |     |
| V <sub>AD-UVLO</sub>   | AD欠压阈值          | 上升                            | 3.5      | 3.7      | 3.9  | V   |
| V AD-UVLO              | AD人压阈值          | 下降                            | 3.1      | 3.3      | 3.5  | V   |
| ΔV                     | AD和VOUT > 向正关   | 空载                            |          | 60       | ()   | mV  |
| ΔV                     | AD和VOUT之间压差     | 1A负载,外扩管AO3401                |          | 120      |      | mV  |
|                        | AD计厂阅传          | 上升                            |          | 6.5      |      | V   |
| $V_{AD	ext{-}OV}$      | AD过压阈值          | 下降                            |          | 5.7      |      | V   |
| I <sub>AD</sub>        | AD工作电流          | VOUT空载                        |          | 4        | 6    | mA  |
| BAT                    |                 |                               |          |          |      | 1   |
|                        | DATIG 由 扣 数 闷 法 | 上升                            |          | 3.3      |      | V   |
| $V_{BAT	ext{-}LOW}$    | BAT低电报警阈值       | 下降                            |          | 3.15     |      | V   |
| .,                     | BAT低电关机阈值       | 上升                            |          | 2.85     |      | V   |
| V <sub>BAT-</sub> SHUT |                 | 下降                            | )        | 2.75     |      | V   |
| I <sub>BAT_LKG</sub>   | BAT漏电           | AD=5V或者VRECT=5V,<br>VCC=5V    |          | 12       |      | uA  |
| Іват                   | BAT工作电流         | AD=0V, VRECT=0V,<br>BAT=3.7V  |          | 3.5      | 5    | mA  |
| VCC                    |                 |                               |          |          |      |     |
| V00                    | VOO於山中耳         | VRECT=5V或者V <sub>AD</sub> =5V | 4.75     | 5        | 5.25 | V   |
| VCC                    | VCC输出电压         | 只有BAT输入                       |          | BAT-0.1  |      | V   |
| Ivcc                   | VCC负载能力         | 比空载电压下降5%                     |          | 20       |      | mA  |
| VDD                    |                 | •                             | •        |          |      | •   |
| VDD                    | VDD输出电压         |                               | 1.62     | 1.8      | 1.98 | V   |
| 时钟                     |                 |                               |          |          |      |     |
| 11000                  | 高频时钟            |                               |          | 12M      |      | Hz  |
| HOSC                   | 精度              |                               | -2       |          | 2    | %   |
|                        | 低频时钟            |                               |          | 32k      |      | Hz  |
| LOSC                   | 精度              |                               | -10      |          | 10   | %   |
| COMM                   |                 | 1                             | L        |          |      | 1   |
| R <sub>DS_ON</sub>     | COMM1/2导通电阻     |                               |          | 1.5      |      | Ω   |
| CLAMP                  |                 | 1                             |          |          |      |     |
| R <sub>DS_ON</sub>     | CLAMP导通电阻       |                               |          | 1        |      | Ω   |
| ADC                    |                 | I.                            | I        | 1        |      | 1   |
| N                      |                 |                               |          | 12       |      | bit |
|                        |                 | L                             | <u> </u> | <u>i</u> |      | 1   |



## SY7100

# 蓝牙耳机充电仓无线充电解决方案

|                        |                 |               | ナナルレノして  | こ じ ノしジ | ッノし「こが什り | <u>/\/</u>  |
|------------------------|-----------------|---------------|----------|---------|----------|-------------|
| CLK                    | ADC时钟频率         |               | 125k     |         | 500k     | Hz          |
| Channel                | ADC通道数          |               |          | 11      |          | -           |
| V <sub>IN_FS</sub>     | ADC输入全范围        |               |          | 4.4     |          | V           |
|                        | AD0-AD5输入测量范围   |               | 0        |         | 3.7      | V           |
| .,                     | BAT输入测量范围       |               | 0.4      |         | 4.8      | V           |
| VMEAS                  | VOUT输入测量范围      |               | 0        |         | 7.4      | V           |
|                        | VRECT输入测量范围     |               | 0.8      |         | 9.6      | V           |
| I <sub>REF</sub>       | AD0-AD5输出电流     |               | 24       | 25      | 26       | uA          |
| LED                    |                 |               |          |         |          |             |
| ,                      | LED恒流电流         | 1、2、3、4mA四挡可设 |          | 1/2/3/4 |          | mA          |
| I <sub>LED</sub>       | LED恒流精度         |               | -5       |         | 5        | %           |
| KEY                    |                 |               |          |         |          |             |
| tkey_deb               | 按键检测debounce时间  |               |          | 32      |          | ms          |
| tkey_short             | KEY短按识别时间       | 需要抬键          | 0.1      |         | 1        | S           |
| t <sub>key_long</sub>  | KEY长按识别时间       |               |          | 3       |          | S           |
| t <sub>key_super</sub> | KEY超长按识别时间      |               |          | 8       |          | S           |
| 霍尔开关格                  | <b>佥测</b>       | A             |          | 7       |          |             |
| <b>4</b>               | 霍尔开关检测debounce时 |               |          | 64      |          | mo          |
| thall_deb              | 间               |               |          | 04      |          | ms          |
| IRQ                    |                 |               |          |         |          |             |
| t <sub>IRQ_DEB</sub>   | IRQ检测debounce时间 |               |          | 1       |          | ms          |
| GPIO                   |                 |               |          |         |          |             |
| VıL                    | GPIO低电平输入电压     |               |          |         | 0.35*VCC | ٧           |
| $V_{IH}$               | GPIO高电平输入电压     |               | 0.65*VCC |         |          | ٧           |
| Vol                    | GPIO输出低电平电压     | GPIO灌入电流8mA   |          |         | 0.35     | V           |
| Vон                    | GPIO输出高电平电压     | GPIO输出电流8mA   | 0.9*VCC  |         |          | V           |
| R <sub>PD</sub>        | GPIO上拉电阻大小      |               |          | 27k     |          | Ω           |
| R <sub>PU</sub>        | GPIO下拉电阻大小      |               |          | 20k     |          | Ω           |
| 过温保护                   |                 |               |          |         |          |             |
| Тѕнит                  | 过温关断VOUT输出温度    |               |          | 130     |          | ° C         |
| T <sub>HYS</sub>       | 过温关断迟滞          |               |          | 30      |          | ° C         |
| STANDBY                | 1) \            |               |          |         |          | <del></del> |
|                        |                 |               |          |         |          |             |



#### 典型特性

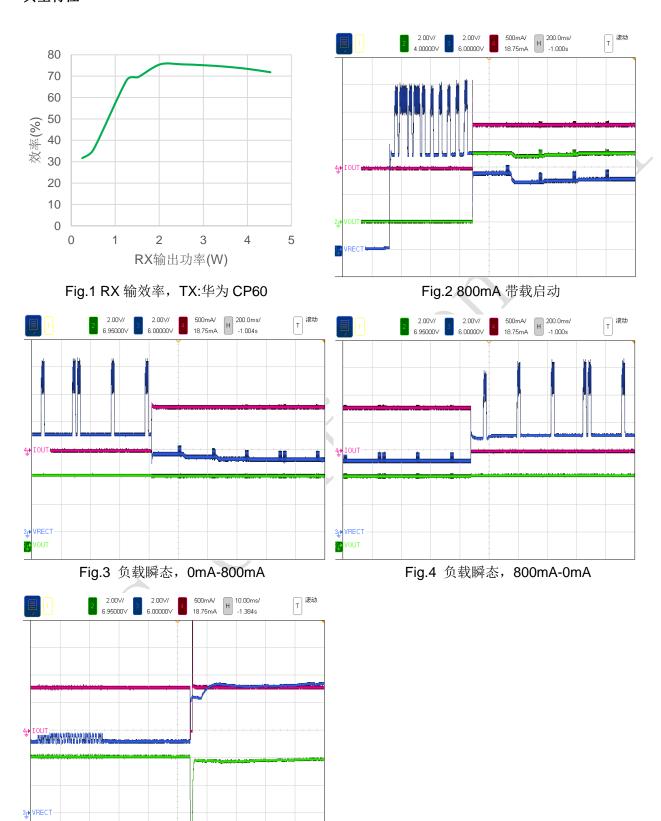



Fig.5 适配器插入,800mA 负载



#### 功能说明

#### 无线充电

SY7100是一颗全集成的符合WPC协议的无线充电SoC。线圈接收的交流输入经过内部同步整流,转换成直流电压从VRECT输出。VRECT通过LDO,产生VOUT给后级充电芯片。WPC协议部分通过固件实现。芯片还支持有线输入,当外部适配器插入时,通过芯片ADPG引脚驱动外部功率开关导通,由适配器供电,无线充电关闭。芯片还有丰富的GPIO、ADC、PWM和I2C等外设,可以在实现无线充电的同时,还可以控制外部的充放电管理芯片,组成一个完整的解决方案。

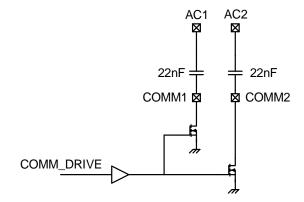
#### 输出限流设置

芯片最大的输出电流通过ILIM引脚接一个电阻进行设置。最大输出电流由以下公式计算。其中I<sub>LIM</sub>是芯片硬件的限流值,I<sub>MAX</sub>是芯片最大提供给后级充电芯片的电流值。

 $I_{LIM}=R(k)*25/2(mA),$   $I_{MAX}=ILIM/1.2.$ 

#### **FOD**

SY7100通过FOD引脚调节异物检测。FOD比例设置公式如下。增大FOD比例,会发回更大的接收功率数据给TX。注意要满足WPC协议规定的RX发回的接收功率要大于TX的发送功率,且最大只能大350mW。FOD\_Ratio=R(k)/200.


#### NTC

SY7100 的NTC引脚会25uA的电流输出,通过测量NTC引脚的电压,如果电压小于0.518V,会关闭无线充电。

#### 无线充电通信

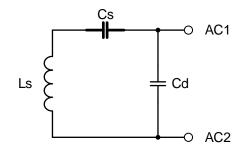
SY7100通过COMM1和COMM2引脚进行负载调制,与TX进行通信。通信电容一般为10nF-47nF,电容越大通信越灵敏,但系统效率会降低。





#### VRECT 过压保护

当VRECT电压大于15V,SY7100会通过CLAMP引脚对VRECT钳位,直到VRECT电压低于12V。 VRECT和CLAMP之间需接一个限流电阻。


#### 接收线圈和谐振电容

如下图所示为无线充电接收的双谐振电路。Ls为接收线圈,Cs为串联谐振电容,Cd为并联谐振电容。他们的计算公式如下。式(1)中fs=100kHz(+5%/-10%),Ls′为接收线圈在WPC标准下测得的自感值。式(2)中fd=1000kH(±10%),Ls为接收线圈的自感值。接收线圈的品质因素Q要大于77。Q的计算公式如(3)所示。其中R为线圈的直流内阻。

$$Cs = \frac{1}{(2\pi * fs)^{2} * Ls'}$$
 (1)  

$$Cd = \frac{1}{(2\pi * fd)^{2} * Ls - 1/Cs}$$
 (2)  

$$Q = \frac{2\pi * fd * Ls}{R}$$
 (3)



#### EPT 包

WPC 协议规定 RX 在一定情况下可以发送 EPT 包给 TX, 让 TX 终止功率传输。SY7100 会在下表所列情况发送 EPT 包给 TX。



## SY7100 蓝牙耳机充电仓无线充电解决方案

| EPT 包消息         | 消息值  | 发送条件         |
|-----------------|------|--------------|
| Unknown         | 0x00 | 适配器插入        |
| Internal Fault  | 0x01 | 芯片温度超过过温保护阈值 |
| Overtemperature | 0x03 | NTC 电压值低于阈值  |
| Overvoltage     | 0x04 | VRECT 过压     |

#### 适配器供电功能

SY7100 支持适配器给后级充电芯片供电。适配器输入和输出 VOUT 之间接一对 PMOS 功率管,当有适配器插入时,通过 ADPG 控制外部 PMOS 功率管的栅级,实现适配器供电。当有适配器插入时,无线充电功能关闭。

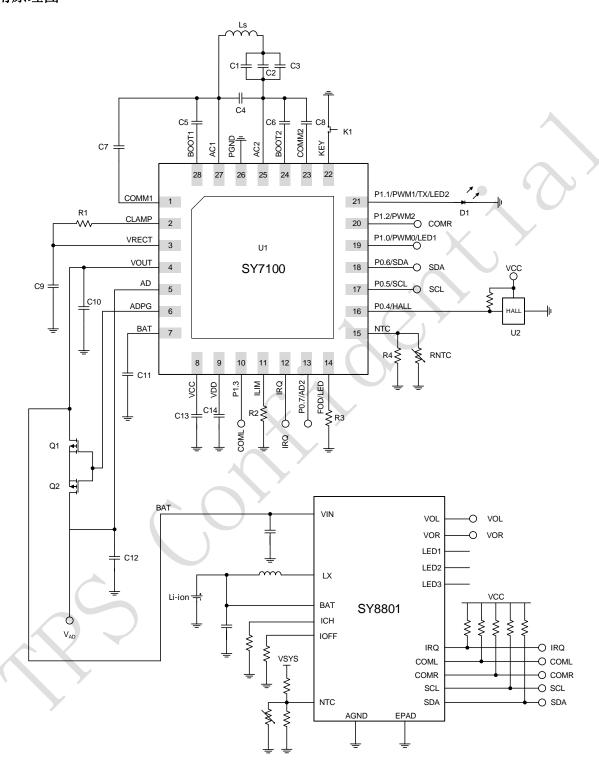
#### KEY 键功能

SY7100 支持按键检测。按键 60ms-1s 识别为短按, 3s 识别为长按, 8s 识别为超长按。按键的功能由软件实现。SY7100 按键还支持唤醒功能。如果 SY7100 处于睡眠状态, KEY 引脚的低电平会把 SY7100 从睡眠状态唤醒。KEY 引脚的 debounce 时间为 32ms。

#### 霍尔开关检测

SY7100 支持霍尔开关检测。霍尔开关输出的上升和下降动作会锁存到内部寄存器中。霍尔开关的上升或者下降沿还能把 SY7100 从睡眠状态唤醒。霍尔开关检测 debounce 时间为 64ms。

#### IRQ 功能


SY7100 外部中断输入检测。IRQ 引脚拉低,会触发中断。同时,IRQ 引脚低电平还能把 SY7100 从睡眠状态唤醒。IRQ 引脚的 debounce 时间为 1ms。

#### 睡眠和唤醒

SY7100 支持低功耗睡眠模式。当只有 BAT 供电时,可以让芯片进入睡眠模式,节省功耗。VRECR 插入、AD 插入、KEY 低电平、霍尔开关动作和 IRQ 低电平都会把芯片从睡眠状态唤醒。



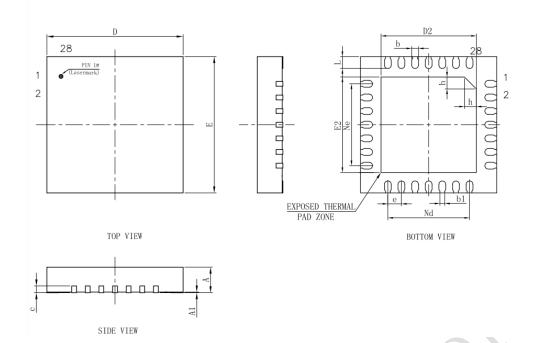
## 应用原理图





#### 典型电路元器件(不包含 SY8801 部分)

| 器件位置            | 器件名称    | 器件规格                      | 制造商   | 数量 |
|-----------------|---------|---------------------------|-------|----|
| U1              | IC      | SY7100 QFN24              | 思远半导体 | 1  |
| U2              | IC      | 霍尔开关                      | -     | 1  |
| K1              | 轻触按键    | 按键                        | -     | 1  |
| Ls              | 无线充电接   | WR483265-15F5-G           | TDK   | 1  |
| LS              | 收线圈     | WR463205-15F5-G           | IDK   | 1  |
| C1              | 贴片电容    | CAP0603/33nF/X5R/5%/50V   | 三星或等同 | 1  |
| C2              | 贴片电容    | CAP0603/47nF/X5R/5%/50V   | 三星或等同 | 1  |
| C3              | 贴片电容    | CAP0603/100nF/X5R/5%/50V  | 三星或等同 | 1  |
| C4              | 贴片电容    | CAP0603/2nF/X5R/10%/25V   | 三星或等同 | 1  |
| C5/C6           | 贴片电容    | CAP0603/100nF/X5R/10%/25V | 三星或等同 | 2  |
| C7/C8           | 贴片电容    | CAP0603/22nF/X5R/10%/25V  | 三星或等同 | 2  |
| C9/C10          | 贴片电容    | CAP0805/10uF/X5R/10%/25V  | 三星或等同 | 2  |
| C11/C12/C13/C14 | 贴片电容    | CAP0603/1uF/X5R/10%/15V   | 三星或等同 | 4  |
| D1              | LED 显示灯 | LED/0603                  | -     | 1  |
| R1              | 贴片电阻    | RES/0805/200R/5%/0.75W    | 国巨或等同 | 1  |
| R2              | 贴片电阻    | RES/0805/56k/5%           | 国巨或等同 | 1  |
| R3              | 贴片电阻    | RES/0805/51k/5%           | 国巨或等同 | 1  |
| R3              | 贴片电阻    | RES/0805/100k/5%          | 国巨或等同 | 1  |
| RNTC            | 温敏电阻    | 100k/B=3950/5%            | -     | 1  |
| Q1/Q2           | PMOS    | AO3401                    | AOS   | 2  |


#### PCBLAYOUT 注意事项

- 1. AC1、AC2、VRECT、VOUT走线尽量粗。
- 2. 接收线圈,谐振电容和AC1、AC2走线尽量短。
- 3. 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 4. 芯片GND直接连到系统地,连接的铜箔需要短、粗且尽量保持完整,不被其他走线所截断。
- 5. 应用中所使用的电容必须选用X5R以上的材质。

#### QFN28 封装示意图



# 蓝牙耳机充电仓无线充电解决方案 SY7100



| SYMBOL     | M     | MILLIMETER |       |  |  |
|------------|-------|------------|-------|--|--|
| STMBOL     | MIN   | NOM        | MAX   |  |  |
| A          | 0.70  | 0.75       | 0.80  |  |  |
| A1         | 0     | 0.02       | 0.05  |  |  |
| b          | 0.15  | 0.20       | 0. 25 |  |  |
| b1         |       | 0. 14REF   |       |  |  |
| с          | 0.18  | 0.20       | 0. 25 |  |  |
| D          | 3. 90 | 4.00       | 4. 10 |  |  |
| <b>D</b> 2 | 2.70  | 2.80       | 2.90  |  |  |
| e          | 0     | . 40BSC    |       |  |  |
| Ne         | 1     | 2. 40BSC   |       |  |  |
| Nd         | 4     | 2. 40BSC   |       |  |  |
| Е          | 3. 90 | 4.00       | 4. 10 |  |  |
| E2         | 2.70  | 2.80       | 2.90  |  |  |
| L          | 0.30  | 0.35       | 0.40  |  |  |
| h          | 0.30  | 0.35       | 0.40  |  |  |
| L/F载体尺寸    |       | 118X118    |       |  |  |

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)