
# **Application Note: AN\_SY8745**

High Efficiency, 10-60V Input, 500kHz White LED Driver Preliminary datasheet

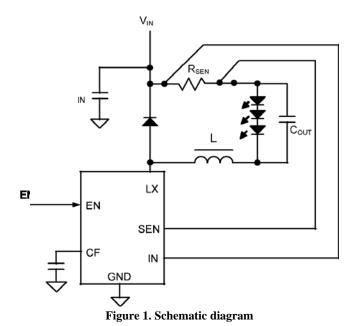
## **General Description**

SY8745 is a high efficiency, 10V-60V wide input voltage range DC/DC regulator targeting at LED applications. The device integrates the low  $R_{DS(ON)}$  MOSFET and internal compensation. Along with the small SO8E package, the device achieves an extremely small solution size for LED driver design. SY8745 also supports PWM/Analog dimming function.

## **Ordering Information**



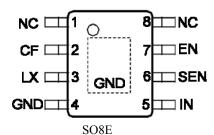
| Ordering Number | Package type | Note |
|-----------------|--------------|------|
| SY8745FCC       | SO8E         |      |


#### **Features**

- Wide input range: 10-60 V
- 500kHz switching frequency
- Integrated low  $R_{DS(ON)}$  FET: 0.16 $\Omega$
- PWM/Analog dimming available
- 1.5A LED current output
- Compact package: SO8E

## **Applications**

• LED lighting


# **Typical Applications**



AN SY8745 Rev.0.1



# Pinout (top view)



Top Mark: AZTxyz (device code: AZT, x=year code, y=week code, z= lot number code)

| Pin Name | SO8E                 | Pin Description                                                                                                                                                                                                      |
|----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN       | 5                    | Input pin. Decouple this pin to GND pin with 1uF ceramic cap. Also used as the positive current sense pin.                                                                                                           |
| SEN      | 6                    | Negative Current Sense Pin.                                                                                                                                                                                          |
| GND      | 4 And Exposed<br>Pad | Ground pin                                                                                                                                                                                                           |
| LX       | 3                    | Inductor node. Connect an induct r from power input to LX pin.                                                                                                                                                       |
| EN       | 7                    | Enable pin and PWM dimming input pin. If V <sub>EN</sub> >8V, IC work at 0~1V linear dimming, dimming signal add to CF. If V <sub>EN</sub> <8V, IC work at n log dimming mode, connect a capacitor like 10nF to CF.  |
| CF       | 2                    | When analog dimming, connect a 10nF capacitor to CF to filter the reference. Also, the PIN is used to judge dimming mode. When VCF>1.5V, IC work at PWM dimming mode, when VCF<1.5V, IC work at analog dimming mode. |
| NC       | 1,8                  | No connection                                                                                                                                                                                                        |

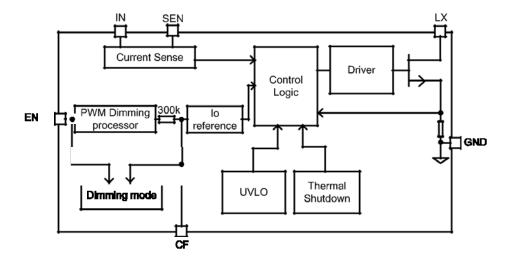
| Absol   | lute N | <b>Iax</b> | imum | Rati | ings |
|---------|--------|------------|------|------|------|
| IV IN E |        |            |      |      | U    |

| Absolute Maximum Ratings                |                   |
|-----------------------------------------|-------------------|
| LX, IN, EN                              | 63V               |
| SEN                                     | $V_{IN} \pm 0.6V$ |
| All other pins                          | 4V                |
| Power Dissipation, PD @ TA = 25°C SO8E, | 3.3W              |
| Package Thermal Resistance (Note 2)     |                   |
| ΘJA                                     | 30°C/W            |
| θ <sub>JC</sub>                         | 10°C/W            |
| Junction Temperature Range              | 40°C to125°C      |
| Lead Temperature (Soldering, 10 sec.)   | 260°C             |
| Storage Temperature Range               | 65°C to 150°C     |
| <b>Recommended Operating Conditions</b> |                   |
| IN, LX, EN                              | 5V to 60V         |
| SEN                                     | $V_{IN} \pm 0.4V$ |
| All other pins                          | 0-3.6V            |
| Junction Temperature Range              | 40°C to 125°C     |



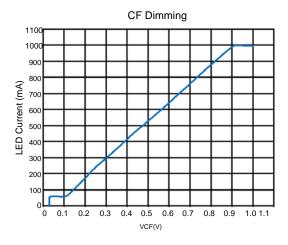
#### **Electrical Characteristics**

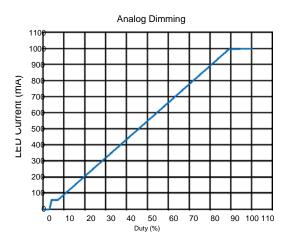
(V<sub>IN</sub> =24V, V<sub>OUT</sub>=12V, I<sub>OUT</sub>=100mA, TA = 25°C unless otherwise specified)

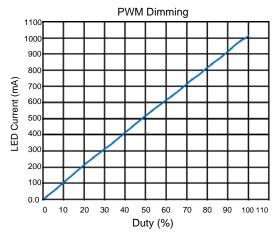

| (*IN 21*, *OUI 12*, 10UI | 10011111, 171 | 25 C diffess offici wise specified | ,   |      |     |      |
|--------------------------|---------------|------------------------------------|-----|------|-----|------|
| Parameter                | Symbol        | Test Conditions                    | Min | Тур  | Max | Unit |
| Input Voltage Range      | IN            |                                    | 10  |      | 60  | V    |
| Shutdown Current         | SHDN          | EN=0                               |     | 20   | 40  | μΑ   |
| Low Side Main FET RON    | DS(ON)        |                                    |     | 0.16 |     | Ω    |
| Switching Frequency      | F<br>SW       |                                    |     | 500  |     | kHz  |
| Current Sense Limit      | IN-SEN        |                                    | 98  | 100  | 202 | mV   |
| EN Rising Threshold      | ENH           |                                    |     | 1.0  |     | V    |
| EN Falling Threshold     | ENL           |                                    |     | 0.5  |     | V    |
|                          | V             |                                    |     |      |     |      |
| IN UVLO Rising Threshold | IN,UVLO       |                                    |     | 9    |     | V    |
| UVLO Hysteresis          | VLO,HYS       |                                    |     | 1.0  |     | V    |
| Dimming section:         |               |                                    |     |      |     |      |
| Analog dimming range on  | V             | I <sub>LED</sub> =10%              |     | 100  |     | mV   |
| CF                       | CF            | I <sub>LED</sub> =100%             |     | 1.1  |     | V    |
| Thermal Shutdown         | T             |                                    |     |      |     |      |
| Temperature              | SD            |                                    |     | 155  |     | °C   |
| Thermal Hysteresis       | Hyst          |                                    |     | 25   |     | °C   |

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $\theta$ Note 2: JA is measured in the natural convection at  $T_A = 25$ °C on a low effective single layer thermal con ductivity test board of JEDEC 51-3 thermal measurement standard.


Note 3. The device is not guaranteed to function outside ts operating conditions


## **Block Diagram**





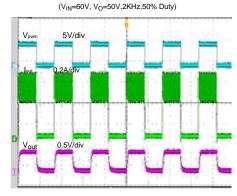

# **Typical Performance Characteristics**





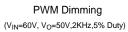


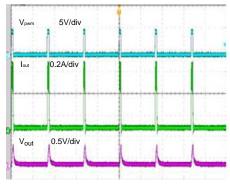
PWM Dimming (V<sub>IN</sub>=60V, V<sub>O</sub>=50V,2KHz,90% Duty)


V<sub>pwm</sub> 5V/div

Iou 0.2A/div

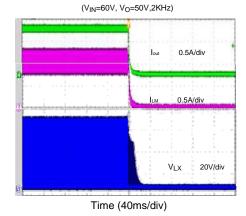
Vout 0.5V/div


Time (200us/div)

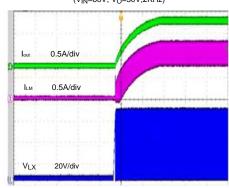

PWM Dimming



Time (200us/div)

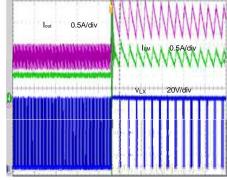





Time (200us/div)

## Shutdown




# $\begin{array}{c} \text{Startup} \\ \text{(V}_{\text{IN}}\text{=}60\text{V}, \text{V}_{\text{O}}\text{=}50\text{V}, 2\text{KHz)} \end{array}$



Time (40ms/div)

# $\begin{array}{c} \text{Short LED} \\ \text{(V}_{\text{IN}}\text{=}60\text{V, V} \text{=}50\text{V,2KHz)} \end{array}$



Time (40ms/div)



## **Operation**

SY8745 is a grounding switch buck regulator IC that integrates the PWM control, power MOSFET on the same die to minimize the switching transition loss and conduction loss. With ultra low R<sub>DS(ON)</sub> power switches and proprietary PWM control, this regulator IC can achieve the high efficiency and Along with the small SO8E package, the device achieves an extremely small solution size for LED driver design. SY8745 also supports PWM/Analog dimming function.

## **Applications Information**

Because of the high integration in the SY8745 IC, the application circuit based on this regulator IC is rather simple. Only input capacitor  $C_{IN}$ , output capacitor  $C_{OUT}$ , output inductor L and current sense resistor  $R_{SEN}$  need to be selected for the targeted applications specifications.

#### Current sense resistor Rsen:

Choose  $R_{SEN}$  to program the proper output Current:  $\frac{0.1(V)}{R_{ED}(A)} = \frac{0.1(V)}{R_{ED}(A)}$ 

#### Input capacitor Cin:

The ripple current through input capacitor is calculated as:

$$I_{\text{CIN\_RMS}} = I_{\text{OUT}} \cdot \sqrt{D(1\text{-}D)}$$

A typical X7R or better grade ceramic capacitor with suitable capacitance should be chosen to handle this ripple current well. To minimize the potent al noise problem, place this ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by  $C_{\rm IN}$ , and IN/GND pins.

#### **Output capacitor Cout:**

The output capacitor is selected to handle the output current ripple noise equirements. For the best performance, it is rec mmended to use X7R or better grade ceramic capacitor greater than 1uF capacitance.

#### **Output inductor L:**

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{\text{OUT}} (1 - V_{\text{OUT}} / V_{\text{IN,MAX}})}{F \times I \times 40\%}$$

where Fsw is the switching frequency and  $I_{\mbox{OUT},\mbox{MAX}}$  is the LED current.

The SY8745 regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

 The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

under full load conditions.

Isat, MIN > Iout, MAX + 
$$\frac{V_{OUT} (1-V_{OUT}/V_{IN}, MAX)}{2 \cdot F_{SW} \cdot L}$$

#### **Dimming Operation:**

#### **Analog dimming:**

1:0~1.0V linear dimming. Set  $V_{EN}$ >8V, and add 0~1V dimming signal to CF PIN.

2: Applied with PWM signal. Connect a capacitor to CF PIN to filler reference inte , and add PWM signal to EN PIN ( $V_{EN\ HIGH}$ <8V)

3:PWM dimming. Set VCF>1.5V, and add PWM signal to EN PIN.

| PWM   | CF   | Dimming mode                |
|-------|------|-----------------------------|
|       | >1.5 | PWM dimming                 |
| PWM>8 | <1.5 | 0~1.0V linear dimming on CF |
| PWM<8 | <1.5 | Analog dimming on PWM       |

At WM dimming mode, the minimum  $T_{PWM\_ON}$  time is suggest setting bigger than  $20\mu S$ .

#### **Soft Start:**

Add a ceramic capacitor  $C_{CF}$  on CF to achieve soft start, the soft start time can be adjusted by  $C_{CF}$ .

#### SCP

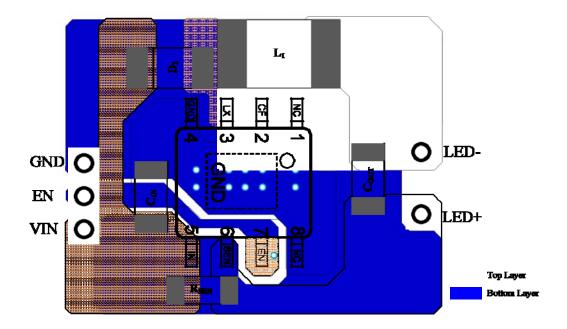
If  $V_{VIN}$ - $V_{SEN}$ >=0.2V, PWM is disabled, When VIN-VSEN=0.1V, IC will recover work.

#### **EN OFF:**

IC shut down after EN OFF with 10ms.

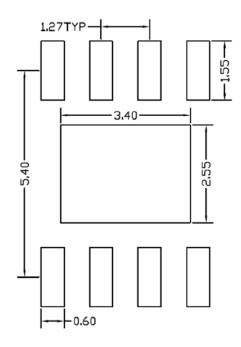
#### **Layout Design:**

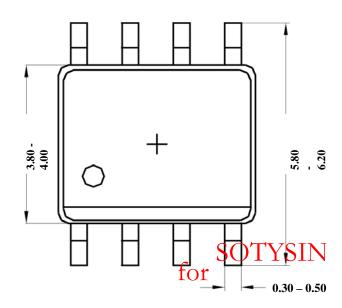
The layout design of SY8745 regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C<sub>IN</sub>, L, C<sub>OUT</sub>, CF and R<sub>SEN</sub>.


- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- 2)  $C_{IN}$  must be close to Pins IN and GND. The loop area formed by  $C_{IN}$  and GND must be minimized.



3) The PCB copper area associated with LX pin must


be minimized to avoid the potential noise problem.


# **PCB Layout Suggestion**





# SO8E Package outline & PCB layout design



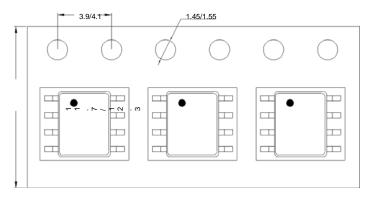


## **Recommended Pad Layout**

# Prepared 0.25 - 0.50 4.80 - 5.00

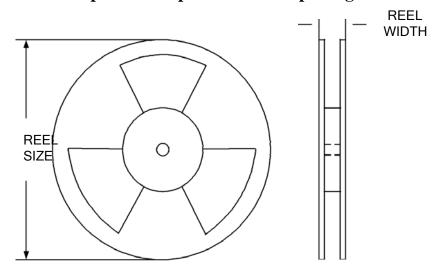
0.60 - 0.85 .Confidential

**Notes:** All dimension in MM


AllCorpdimension don't not include mold flash & metal burr

Silergy




# **Taping & Reel Specification**

### 1. SOP8-EP



Feeding direction ----

## 2. Carrier Tape & Reel specification for packages



| Package | Tape width (mm) | Pocket    | Reel size | Reel      | Trailer    | Leader length | Qty per |
|---------|-----------------|-----------|-----------|-----------|------------|---------------|---------|
| types   |                 | pitch(mm) | (Inch)    | width(mm) | length(mm) | (mm)          | reel    |
| SOP8-EP | 12              | 8         | 13''      | 12.4      | 400        | 400           | 2500    |

## 3. Others: NA