

概述

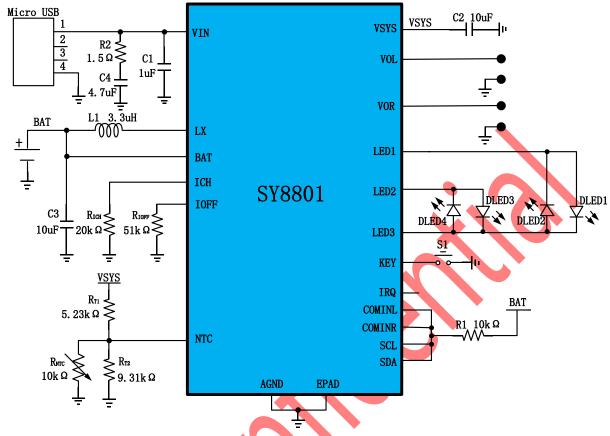
SY8801是一款专为蓝牙耳机仓设计的单芯片解决方案。芯片内部集成充电模块和放电模块,充电电流和放电截止电流外部可以调节。SY8801利用输出的电源和地可以实现耳机仓和耳机之间的通讯。芯片集成了标准的I²C接口和中断信号,方便实现芯片和MCU之间的通讯。同时芯片还提供了负载检测和负载插入识别。SY8801非常适合蓝牙耳机仓的设计,极大简化了外围电路和元器件,为蓝牙耳机仓的应用提供了简单易用的方案。

SY8801采用的封装形式为QFN24。

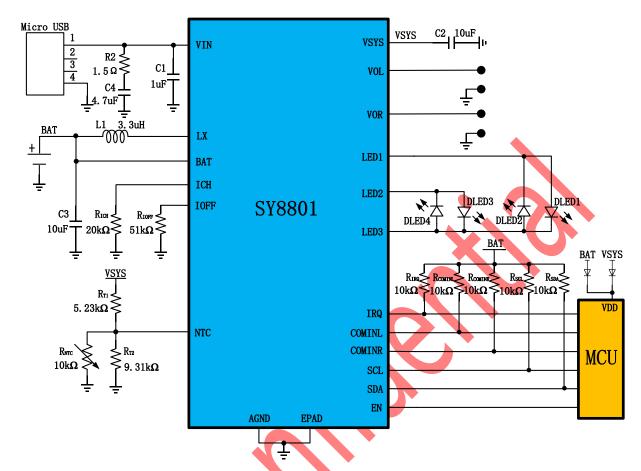
应用

蓝牙耳机智能充电仓

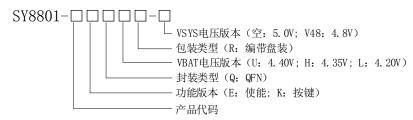
特点


- ◆ 待机电流: 5uA
- ◆ 充电电流外部电阻调节,恒定VIN电流
- ◆ 最大充电电流: 1.2A
- ◆ 输入耐压高达28V

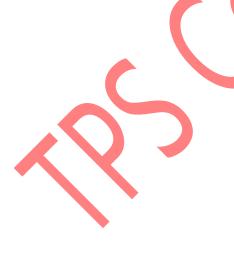
- ◆ 充电开关频率: 1MHz
- ◆ 边充边放路径管理,放电优先
- ◆ 充电电流温度调节功能,充电电流随温度升 高自动减小
- ◆ C/10 充电终止,自动再充电
- ◆ 预设4.20V/4.35V/4.40V充电浮充电压,精度 达±1%
- ◆ 集成充电过压保护和电池过温保护
- ◆ 同步升压输出5V,效率高达93%@0.1A
- ◆ 放电开关频率: 1MHz
- ◆ 支持负载插入识别
- ◆ 支持负载电流检测, **轻**载关机电流外部电阻 调节
- ◆ 独创升压输出热调节功能
- ◆ 放电模块过流、短路、过压、过温保护
- ◆ 1-4 LED显示,外部自动识别;支持耳机放入提示
- ◆ 集成按键功能,单击放电,长按关闭放电 (可选版本)
- ◆ 集成使<mark>能</mark>控制和I2C通讯接口,可以灵活定制产品(可选版本)
- ◆ VOL/VOR支持两种单线通讯模式
- ◆ 符合 IEC62368最新标准


典型应用电路 (一) (充电: 0.5A; 放电截止: 10mA; 电池温度范围: -10℃-55℃)

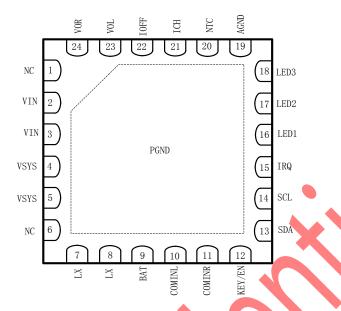
KEY 键版本不带 MCU 的应用


典型应用电路 (二) (充电: 0.5A; 放电截止: 10mA; 电池温度范围: -10℃-55℃)

EN 版本带 MCU 的应用

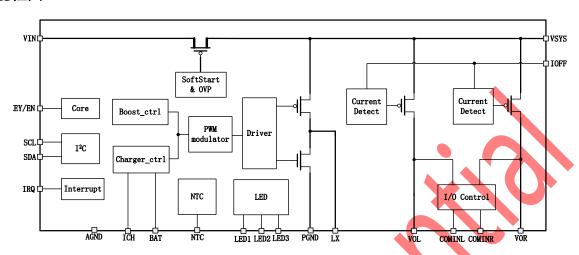

订购信息

订购型号	封装形式	TOP MARK	Package Qty	说明
SY8801-CKQLR	QFN24(4mm*4mm)	SY8801	3000	4.20V 浮充电压单芯片解决方案,支持按键,5.0V 输出
SY8801-CKQHR	QFN24(4mm*4mm)	SY8801	3000	4.35V 浮充电压单芯片解决方案,支持接键,5.0V 输出
SY8801-CEQLR	QFN24(4mm*4mm)	SY8801	3000	4.20V 浮充电压配合 MCU 方案, 支持 EN 使能, 5.0V 输出
SY8801-CEQHR	QFN24(4mm*4mm)	SY8801	3000	4.35V 浮充电压配合 MCU 方案,支持 EN 使能,5.0V 输出
SY8801-CEQUR	QFN24(4mm*4mm)	SY8801	3000	4.40V 浮充电压配合 MCU 方案,支持 EN 使能,5.0V 输出
SY8801-CKQLR-V48	QFN24(4mm*4mm)	SY8801	3000	4.20V 浮充电压单芯片解决方案,支持按键,4.8V 输出
SY8801-CKQHR-V48	QFN24(4mm*4mm)	SY8801	3000	4.35V 浮充电压单芯片解决方案,支持按键,4.8V 输出
SY8801-CEQLR-V48	QFN24(4mm*4mm)	SY8801	3000	4.20V 浮充电压配合 MCU 方案,支持 EN 使能,4.8V 输出
SY8801-CEQHR-V48	QFN24(4mm*4mm)	SY8801	3000	4.35V 浮充电压配合 MCU 方案,支持 EN 使能,4.8V 输出


注:

- 1. SY8801 的 KEY 版本是单芯片解决方案,芯片集成了自动识别负载开机,轻载自动关机、单击按键开启放电,长按按键关机功能。
- 2. SY8801 的 EN 版本需要配合 MCU 使用,芯片集成了自动识别负载功能和轻载检测功能,但是不会自动开机和关机,而是通过中断提示 MCU,通过 MCU 控制 EN 使能和内部寄存器实现对 Boost、VOL 和 VOR 的时序控制。
- 3. 我司产品都是 Halogen-Free。

管脚功能



名称	端口	I/O	功能描述
NC	1	ı	悬空
VIN	2, 3	I	适配器输入端
VSYS	4, 5	О	BOOST 输出端
NC	6		悬空
LX	7, 8	О	开关输出端
BAT	9	I	电池正极输入
COMINL	10	Ю	左耳耳机通讯端口 (1) 当配置为输入时,无上拉/下拉 (2) 当配置为输出时,open-drain 输出
COMINR	11	Ю	右耳耳机通讯端口 (1) 当配置为输入时,无上拉/下拉 (2) 当配置为输出时,open-drain 输出
KEY/EN	12	I	(1) 在按键版本中作为按键输入,内部上拉至 BAT (2) 在 EN 版本中作为使能输入,内部下拉 200k 电阻
SDA	13	I	I ² C 数据输入端口
SCL	14	I	I ² C 时钟输入端口
IRQ	15	О	中断输出端口,open-drain 输出
LED1	16	О	LED 指示输出1
LED2	17	О	LED 指示输出2
LED3	18	О	LED 指示输出3
AGND	19	-	系统地
NTC	20	I	NTC 温度检测输入端口
ICH	21	I	充电电流设置端口
IOFF	22	I	轻载关机电流设置端口
VOL	23	O	左耳耳机电源端口

VOR	24	О	右耳耳机电源端口
PGND	EPAD	-	功率地

功能框图

电性参数

极限参数(1)

Parameter	Min	Max	Unit
VIN引脚	-0.3	+28	V
其余引脚	-0.3	+6	V
储存环境温度	-65	150	$^{\circ}$
工作环境温度	-20	85	$^{\circ}$
工作结温范围	-40	150	$^{\circ}$
HBM (人体放电模型)	2K	-	V
MM (机器放电模型)	200	-	V
CDM (器件放电模型)	1500		V

推荐工作条件(2)

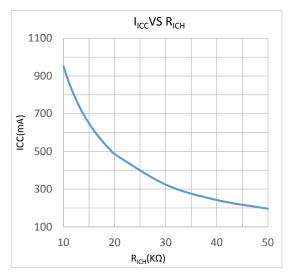
输入电压	2.9V to 5.5V
工作结温范围	-40°C to 125°C
环境温度范围	-20°C to 85°C

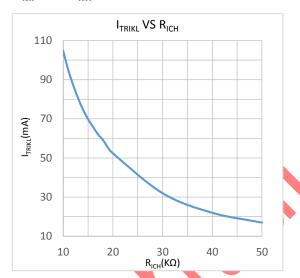
注:

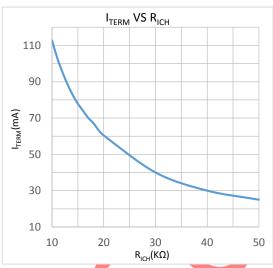
- (1) 最大极限值是指超出该工作范围芯片可能会损坏。
- (2) 推荐工作条件是指超过该条件外不能保证正常工作。

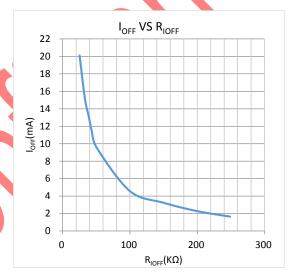
蓝牙耳机智能充电仓解决方案 SY8801

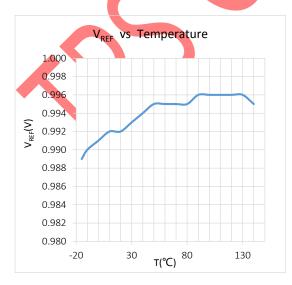
		皿刀 47	1			1
符号	参数	测试条件	最小值	典型值	最大值	单位
R _{PMOS}	高边PMOS导通电阻		-	120	-	mΩ
R _{NMOS}	低边NMOS导通电阻		-	100	-	mΩ
IP _{PMOS}	高边PMOS峰值限流		-	2.5	-	A
IP _{NMOS}	低边NMOS峰值限流			1.7		A
I _{LEAKAGE}	VSYS到VIN漏电电流		-	0	5	uA
I_{STDB}	BAT待机电流	充电/放电都关闭	-	5	-	μΑ
T_{OV}	芯片过温保护		-	150	-	$^{\circ}$ C
T_{HYS}	芯片过温保护滞回		-	20	-	$^{\circ}$ C
VTH	NTC高温电压门限		-	30		%
VTL	NTC低温电压门限		-	60		%
充电部分压特	殊说明,VIN=5V, VBAT=3.7V, Ta=25℃)					
VIN	输入电压范围		4.4	5	6	V
VIN _{OVP}	输入过压保护		5.8	6	6.2	V
V _{UV}	输入欠压保护		4.3	4.4	4.5	V
IIN _{LIMIT}	输入限流电流		- 1	0.5+I _{CC}	-	A
V_{DPPM}	VSYS自适应适配器电压点			4.6	-	V
V _{SHORT_CHG}	充电模式下VSYS短路保护电压		3.9	4	4.1	V
R_{IN}	VIN到VSYS电流开关阻抗	VIN=5V	1	200	-	mΩ
IBAT _{FLOAT}	电池充满后BAT静态功耗	VIN=5V,电池充 满)	60	-	uA
F _{CHAEGER}	充电模式下开关频率		0.9	1	1.1	MHz
	4.20V版本浮充电压		4.158	4.200	4.242	
V_{FLOAT}	4.35V版本浮充电压	0°C≤TA≤85°C	4.306	4.350	4.393	V
	4.40V版本浮充电压		4.355	4.400	4.445	
	4.20V版本再充电迟滞电压		150	200	250	
ΔV_{RECHRG}	4.35V版本再充电迟滞电压	V_{FLOAT} - V_{RECHRG}	155	207	258	mV
	4.40V版本再充电迟滞电压		157	210	262	
V_{CV}	恒流转恒压电压点			97%		
V CV	巨地不			V_{FLOAT}		
Icc	VIN端恒流充电电流	R _{ICH} =20K	0.45	0.50	0.55	A
I _{TRIKL}	涓流充电电流	$R_{ICH}=20K$, $VBAT \leq V_{TRIKL}$	40	50	60	mA
η	恒流充电效率	V _{BAT} =3.7V@0.5A	-	93%	-	
V _{TRIKL}	涓流充电阈值电压		2.9	3	3.1	V
V _{TRHYS}	涓流充电迟滞电压		-	200	-	mV
I _{TERM}	终止电流门限			I _{TRIKL} +10	•	mA
T_{\min}	最小导通时间			0		ns
D _{MAX}	最大占空比		-	97	-	%
L	1	L	1	l	1	l .

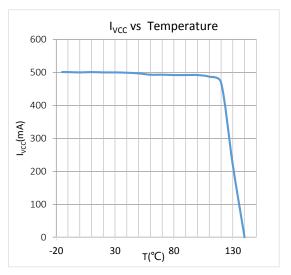

蓝牙耳机智能充电仓解决方案 SY8801

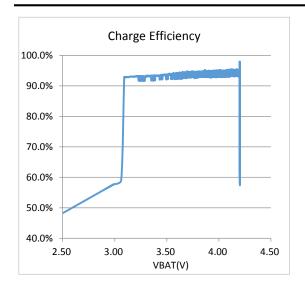

<u> </u>	4	皿刀 470	ロロカレノし	. · · · · · · · · · · · · · · · · · · ·	$\mathcal{N}\mathcal{M}^{\mathcal{R}}$	<u> </u>
	殊说明,VIN=5V, VBAT=3.7V, Ta=25℃)	<u> </u>	1	1		
VBAT	电池工作电压	VFLOAT=4.2V	3.2		4.35	V
	4.20V版本电池过压保护电压		4.4	4.5	4.6	V
$VBAT_{OVP} \\$	4.35V版本电池过压保护电压		4.56	4.66	4.76	V
	4.40V版本电池过压保护电压		4.61	4.71	4.82	V
VSYS	5.0V版本额定输出电压	VBAT=3.7V	4.9	5.0	5.1	V
V 51 5	4.8V版本额定输出电压	VBA1=3.7 V	4.7	4.8	4.9	V
V_{UV_BAT}	电池欠压闭锁阈值电压		2.7	2.8	2.9	V
V_{HYS_BAT}	电池欠压闭锁迟滞			0.1		V
F_{SW}	工作频率	Ta=60°C	0.9	1	1.1	MHz
I_{SYS}	输出电流	VBAT=3.2~4.45V	-	1		A
		VBAT=4.2V				
η	转换效率	VSYS=5V&	-	93		%
		$I_{SYS}=0.1A$				
D_{MAX}	最大占空比			85	_	%
T_{\min}	最小导通时间		N	100		ns
V_{RIPPLE}	输出纹波电压	VSYS=5V& ISYS=1A		100	-	mV
V _{SHORT_DIS}	放电模式下VSYS短路保护电压		1	4.3	-	V
VO _{OVP}	输出过压保护		-	5.5	-	V
T_{SS}	软启动时间		7.	1	-	ms
	〔 〔无特殊说明,VIN=5V, VBAT=3.7V, Ta=25℃)				<u> </u>	1
I_{Max}	VOL/VOR限流值	VBAT=3.2~4.45V	-	0.25	-	A
I _{OFF}	轻载电流检测	R _{IOFF} =50k	9.5	10	10.5	mA
V _{SHORT_VOx}	VOL/VOR放电短路保护阈值		-	4.3	-	V
R _{VOL}	HE AND THE AVERAGE AND THE AVE	VSYS=5V				
R_{VOR}	限流开关阻抗	IOL/IOR=100mA	-	400	-	mΩ
LED显示(无特	殊说明,VIN=5V, VBAT=3.7V, Ta=25℃)		<u>I</u>	<u>I</u>		ı
V_{LB}	低电量报警电压		3.2	3.3	3.3	V
$I_{ m lED}$	LED驱动电流			2		mA
T _{LED}	放电时LED显示时间			8		S
	(EN/KEY/HALL, SDA, SCL)	l			<u> </u>	1
V _{IH}	数字管脚输入高电平			2		V
$V_{\rm IL}$	数字管脚输入低电平			0.5		V
I _{KEY}	KEY引脚上拉电流			30	1	uA
	单击KEY键时间		65			ms
T _{KEY} s		+				
$T_{\text{KEY_S}}$	长按KEY键时间		3			S
$T_{\text{KEY_S}}$ $T_{\text{KEY_L}}$ I_{EN}	长按KEY键时间 EN引脚下拉电流		3	2		s uA

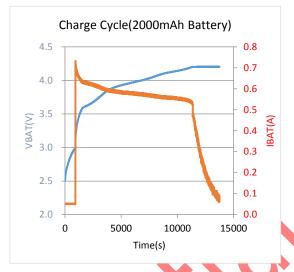


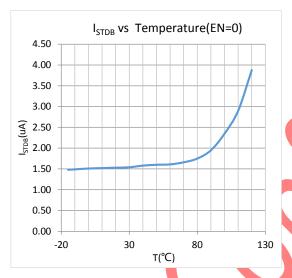

典型性能特征

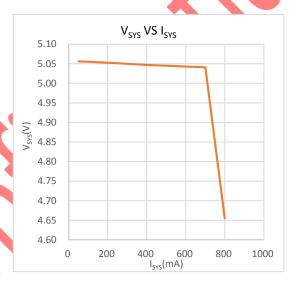

VIN=5V,VBAT=3.7V,L1=3.3uH,C1=1uF,C2=10uF,C3=10uF, R_{ICH} =20kΩ, R_{IOFF} =51kΩ,VFLOAT=4.20V。除非另有说明。

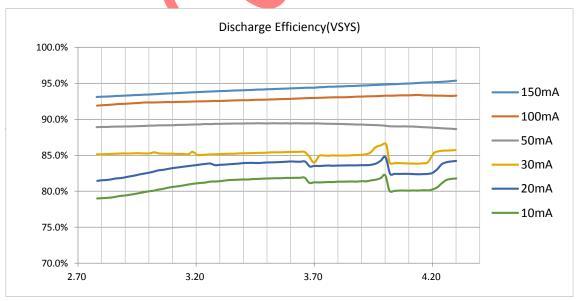


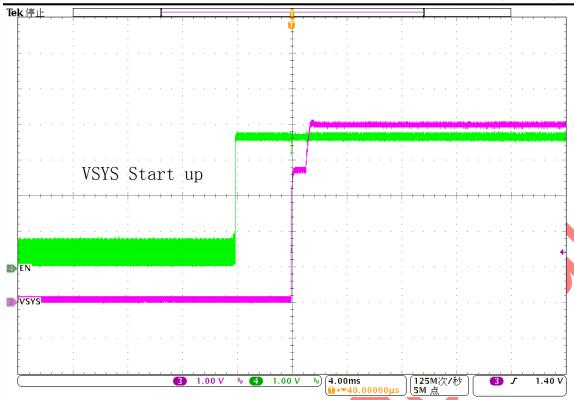












功能说明

系统提供全局过温保护保护(OTP)、电池电压过压保护(OVP)和电池温度保护(NTC)功能,一旦触发这些保护,无论工作在充电模式还是放电模式,系统都自动关闭。当这些异常解除后,系统恢复正常工作。

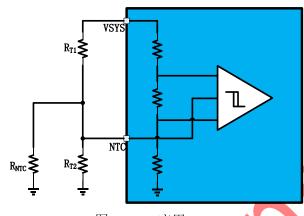


图1 NTC应用

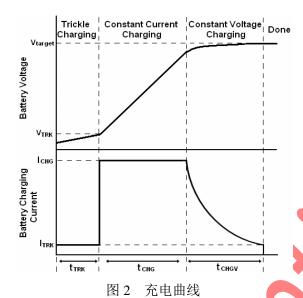
电池温度保护(NTC)应用如上图所示,系统内部设定高温保护阈值为VTH,低温保护阈值为VTL。

$$\begin{split} \frac{\text{VTH}}{\text{VSYS}} &= \frac{R_{\text{T2}} / / R_{\text{NTC_hot}}}{R_{\text{T1}} + R_{\text{T2}} / / R_{\text{NTC_hot}}} = 30\% \\ \frac{\text{VTL}}{\text{VSYS}} &= \frac{R_{\text{T2}} / / R_{\text{NTC_cold}}}{R_{\text{T1}} + R_{\text{T2}} / / R_{\text{NTC_cold}}} = 60\% \end{split}$$

根据 R_{NTC} 在设定温度范围内 R_{NTC_hot} 和 R_{NTC_cold} 的值,用户就可以算出RT1和RT2,从而得到合适的分压电阻串。如果不需要电池温度保护(NTC)功能,可以直接将NTC引脚接地。默认值 R_{NTC} =10K, R_{T1} =5.23K, R_{T2} =9.31K对应的是高温55C保护,低温-10C保护。

动态路径管理

VIN限流开关主要作用是承受VIN端口出现的高压,限制VIN最大输入电流,防止VIN和VSYS之间漏电。限流开关的主要功能有输入欠压保护,过压保护,边充边放路径管理,软启动,恒流环路控制,过流保护及短路保护。


当VIN电压大于4.4V且小于6V时,限流开关开始工作,为了防止VIN插入时产生比较大的尖峰电流,限流开关集成了软启动功能,有效的限制了限流开关的启动电流。当VIN电压小于4.2V或者大于6V时,限流开关自动关断,同时充电模块和LED也自动关断。

在边充边放模式下,系统放电优先,当适配器不能同时满足充电电流和放电电流的情况下,通过减小充电电流来维持边充边放功能。减小充电电流有两种模式:

- 1) 当适配器放电能力大于I_{CC}+0.5A时,在边充边放模式下,如果VSYS放电电流加上充电额定电流大于I_{CC}+0.5A时,限流开关的电流反馈到充电模块去减小充电电流。
- 2) 当适配器放电能力小于I_{CC}+0.5A时,VIN电压会被充电模块和VSYS负载拉下来,这时VIN电压 反馈回充电模块去减小充电电流。

限流开关集成了恒流环路控制,最大输出电流为Icc+0.5A,当负载电流大于Icc+0.5A时,VSYS电压开始下降,直至VSYS下降到4V触发短路保护,整个系统停止工作,芯片进入打嗝模式。限流开关还集成了过流保护功能,当限流开关中电流超过3A时,整个系统也停止工作,进入打嗝模式。在打嗝模式下,芯片每隔250mS重新启动一次,检测异常是否存在,如果异常还存在,系统停止工作,在下一个250mS后再次重启检测,如果异常解除芯片恢复正常工作。

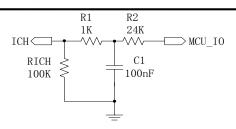
充电模式

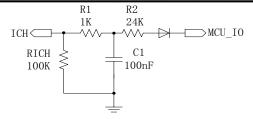
SY8801内部集成了完整的PWM充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流外部电阻可以调节,最大充电电流为1.2A。在涓流模式下,芯片采用线性充电,充电电流为0.1*Icc;在恒流模式下芯片采用PWM调制充电,充电电流为Icc;在恒压模式下,充电电流逐渐减小,当充电电流减小到充电截止电流以下时,充电周期结束,4颗LED全亮,提醒用户充电结束。当电池电压再次降到4V以下,系统自动开始新的充电周期。

SY8801充电电流的计算公式如下:

$$I_{CC}(mA) = \frac{10000}{RICH(K\Omega)}$$
, 其中, $8K\Omega \le RICH \le 50K\Omega$

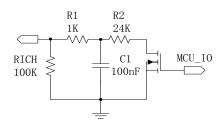
若ICH管脚短路到GND,则会导致充电电流为0,充电功能关闭,LED关闭,VSYS=0;若ICH管脚开路,则会导致充电电流为0,但VSYS=VIN,且LED正常显示。Icc的设置范围是200mA~1200mA,精度可达±10%,禁止超范围使用。


充电部分的保护和功能主要有: 自适应适配器功能, 电流软启动功能和过温限流功能。


芯片内部的功率管理电路在芯片的结温超过110℃时自动降低充电电流,直到150℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当适配器输出电流小于内部设定的充电电流时,芯片能根据适配器最大输出电流自动调节,减小充电电流来适应适配器,防止适配器过放而造成的损坏。

若要扩展ICC的调节范围,可用MCU对SY8801的ICH管脚的电流进行PWM调制。当MCU_IO设置为不同的IO类型时的外围配置,如图3所示。



当MCU_IO配置为open-drain输出时

当MCU_IO配置为推挽输出时,接肖特基二极管

当MCU_IO配置为推挽输出时,接NMOS

图3 用MCU的PWM功能扩展ICC电流的调整范围

当PWM的周期是20us,PWM的时钟为4MHz时,则PWM的步长精度为250ns。当设置80个步长时,ICC可在100mA到500mA的范围调整,每步调整4mA~6mA。

升压输出模式

SY8801提供一路同步升压输出,集成功率MOS,可提供5V/1.0A输出,效率高达90%以上。 SY8801采用1MHz的开关频率,可有效减小外部元件尺寸。在待机状态下,芯片静态电流为5uA,对于 SY8801的KEY版本,当插入负载或单击KEY键时,放电模块开始工作。

放电模块集成了恒压和恒流两种工作模式,当放电电流小于1.0A时,恒压输出5V,当输出电流需要大于1.0A时,芯片进入逐周期限流模式,限定输出的峰值电流,输出电压开始减小。当负载的电流逐渐减小时,系统会进入间歇式输出模式,以保证输出电压调整能力。

SY8801集成了两路从VSYS到VOL和VOR的限流输出开关,在VOL和VOR端提供了负载插入识别和负载电流检测。当负载插入时,在SY8801_KEY版本下,升压输出自动启动;在SY8801_EN版本下,SY8801会发出中断信号,通知MCU读取寄存器,由MCU控制EN,EN_VOL和EN_VOR来实现放电。当VOL和VOR的端口电流小于设定的轻载关机电流时,在SY8801_KEY版本下,VOL和VOR的限流输出开关自动关断;在SY8801_EN版本下,SY8801会发出中断信号,通知MCU读取寄存器,由MCU控制EN、EN_VOL和EN_VOR来关闭放电。

轻载关机电流的计算公式如下:

$$I_{OFF}(mA) = \frac{500}{RIOFF(K\Omega)}$$
, 其中,25KΩ \leq RIOFF \leq 250KΩ

若IOFF管脚短路到GND,则关机电流I_{OFF}=28mA;若IOFF管脚开路,则会导致VOL/VOR无法小电流 关机。IOFF电流设置范围为2mA~20mA,精度可达±0.5mA,禁止超范围使用。

SY8801提供输出过流、过压、短路、过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在应用中如果发生输出过流或短路的情况时,系统自动关闭,并进入打嗝模式,当异常解除后,芯片自动恢复工作。

在放电过程中,如果电池电压下降到UVLO电压后,系统自动关闭,并锁定在欠压闭锁状态,放电模块不工作。只有插入VCC,插入负载或单击KEY键才可以解锁。

中断输出

SY8801集成了一个中断输出信号,当寄存器0x10和0x11的状态或ST_LB的状态发生变化时,IRQ

将会输出一个7mS的低电平脉冲信号,用于唤醒MCU或通知MCU系统状态发生了变化。

KEY 键功能

在VCC没有插入的情况下,单击KEY键可以查看电量,同时去启动放电模块。当电池电压小于2.9V时,单击KEY键,放电模块不启动。单击KEY键还可以解锁VBAT的欠压闭锁,当VBAT电压下降到2.8V以下后,VBAT的欠压闭锁电路会锁死,放电模块不能工作,只有VCC重新插入或者单击KEY键才能解锁。

当SY8801的KEY版本处于放电模式时,长按KEY键3s可以强制关闭升压输出模块,并关闭 VOL/VOR。当SY8801的KEY版本处于充电模式时,长按KEY键3s可以强制关闭VOL/VOR,再次单击则重新开启VOL/VOR。

HALL 控制

在 SY8801 的 HALL 版本中,当 HALL 信号从低电平变成高电平时(开盒动作),有两种版本可以选择:

- (1) 开盒回连版本: 无论开盒前 VOL/VOR 处于什么状态, 开盒后, VOL 和 VOR 都会同时先输出 0.5s 的低电平, 然后输出 0.5s 的 5V, 最后再掉电到 0V, 然后一直保持 0V 电平, 如图 4 所示。在此种开盒版本下(HALL 信号为高电平), 插入 VIN=5V 时只能对耳机仓充电, 不能对耳机充电, VOL/VOR 保持 0V。
- (2) 开盒取出回连版本:无论开盒前 VOL/VOR 处于什么状态,开盒后,VOL 和 VOR 都会同时 先输出 0.5s 的高电平,然后强制恢复到自动识别状态,如图 4 所示。在此种开盒版本下,无论 VOL/VOR 是否有负载,若插入 VIN=5V 充电,则 VOL/VOR 都将输出 5V 电压。

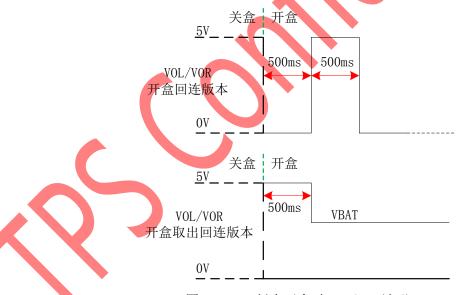


图 4 HALL 版本开盒时 VOL/VOR 波形

当 HALL 信号从高电平变成低电平时(关盒动作),VOL 和 VOR 自动输出 5V 开始对耳机充电,当耳机充电电流小于放电截止电流后,对应的 VOL 和 VOR 自动关断,输出电压从 5V 下降到 VBAT 电压(VBAT 弱上拉),如图 5 所示。在关盒的状态下(HALL 信号为低电平),插入 VIN 时 VOL 和 VOR始终输出 5V,保持对耳机充电。

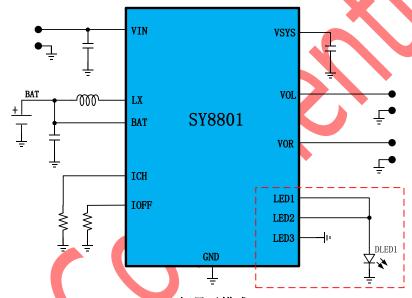
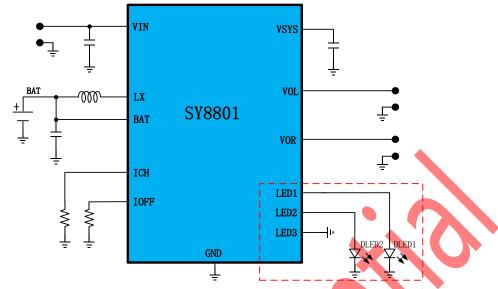


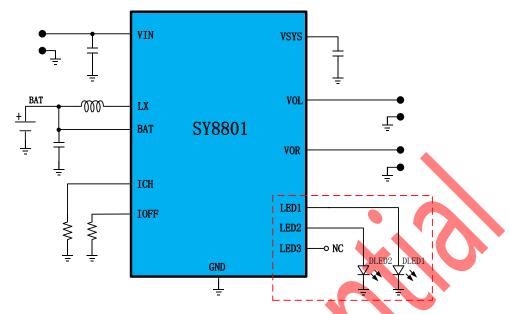
图 5 HALL 版本关盒时小电流关机波形图

LED 灯显示

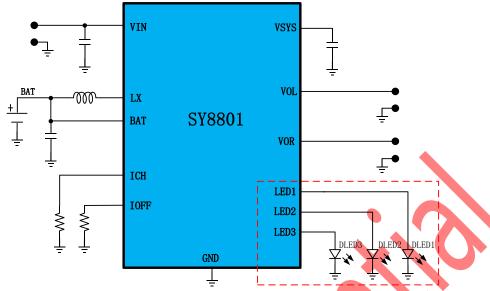

LED灯显示分为充电电量显示、放电电量显示和耳机放入提示。SY8801支持1~4颗LED灯显示,根据外围灯的接法自动识别显示模式。为了支持更多的LED显示模式,在4灯显示模式下,4个LED显示可以由I²C直接控制。

1 灯显示模式

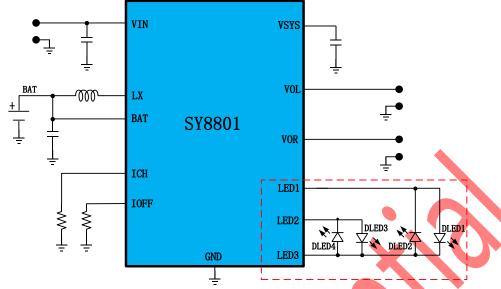
	模式	状态	DLED1
	充电	充满状态	常亮
	九电	充电状态	1Hz 闪烁
	放电	正常放电状态	亮 8S 后灭掉
V	双电	低电量状态	1Hz 闪烁 8S 后灭掉
	耳机放入	-	闪烁 1 S



2 灯显示模式1

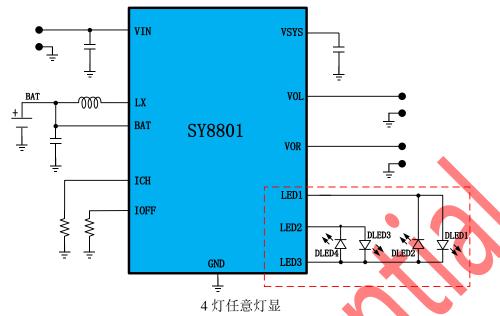

模式	状态	DLED1	DLED2
充电	充满状态	灭	常亮
九·巴 	充电状态	灭	1Hz 闪烁
放电	正常放电状态	亮 8S 后灭掉	灭
	低电量状态	1Hz 闪烁 8S 后灭掉	灭
耳机放入	-	闪烁 1S	

2 灯显示模式 2


模式	电量	DLED1(红灯)	DLED2(绿灯)			
	充满状态	灭	常亮			
充电	66%-100%	灭	1Hz 闪烁			
九电	33%-66%	与绿灯同步 1Hz 闪烁	与红灯同步 1Hz 闪烁			
	0%-33%	1Hz 闪烁	灭			
	66%-100%	灭	亮 8S 后灭掉			
放电	33%-66%	与绿灯同步亮 8S 后灭掉	与绿灯同步亮 8S 后灭掉			
	5%-33%	亮 8S 后灭掉	灭			
	0%-5%	1Hz 闪烁 8S 后灭掉	灭			
耳机放入	-	闪	闪烁 1S			

3 灯显示模式

模式	电量	DLED1	DLED2	DLED3
	充满状态	常亮	常亮	常亮
充电	66%-100%	常亮	常亮	1Hz 闪烁
九电	33%-66%	常亮	1Hz 闪烁	灭
	0%-33%	1Hz 闪烁	灭	灭
	66%-100%	亮 8S 后灭掉	亮 8S 后灭掉	亮 8S 后灭掉
放电	33%-66%	亮 8S 后灭掉	亮 8S 后灭掉	灭
灰电	5%-33%	亮 8S 后灭掉	灭	灭
	0%-5%	1Hz 闪烁 8S 后灭掉	Iz 闪烁 8S 后灭掉 灭	
耳机放入	-		闪烁 1S	_



4 灯显示模式

模式	电量	DLED1	DLED2	DLED3	DLED4	
	充满状态	常亮	常亮	常亮	常亮	
	75%-100%	常亮	常亮	常亮	1Hz 闪烁	
充电	50%-75%	常亮	常亮	1Hz 闪烁	灭	
	25%-50%	常亮	1Hz 闪烁	灭	灭	
	0%-25%	1Hz 闪烁	灭	灭	灭	
	75%-100%	亮 8S 后灭掉	亮 8S 后灭掉	亮 8S 后灭掉	亮 8S 后灭掉	
	50%-75%	亮 8S 后灭掉	亮 8S 后灭掉	亮 8S 后灭掉	灭	
放电	25%-50%	亮 8S 后灭掉	亮 8S 后灭掉	灭	灭	
	5%-25%	亮 8S 后灭掉	灭	灭	灭	
	0%-5%	1Hz 闪烁 8S 后灭掉	灭	灭	灭	
耳机放入	-	闪烁 1S				

4 灯任意灯显

对于个性化的灯显需求,可以使用 I2C 对 LED 进行控制。当对寄存器<0x50>写入不同的数据时,可分别点亮上图中的 DLED1~DLED4。此方式,可以实现跑马灯显、呼吸灯灯显(呼吸灯需要将<0x44>寄存器的 LED_PWM 写 1)等显示方案。

I2C 接口

SY8801 集成了一个标准的 I2C 接口,作为一个从设备,可以通过 MCU 控制。芯片的器件地址是0b0000110X, X 是读/写操作控制位,1 为读操作,0 为写操作。

寄存器列表总表

地址	类型	b7	b6	b5	b4	b3	b2	b1	b0	
状态寄存器										
0x10	R	ST_BT	ST_CH_END	ST_CH	ST_VIN_UVLO	ST_BAT_UVLO	ST_VOR_ABNORMAL	ST_VOL_ABNORMAL	ST_ABNORMAL	
0x11	R	ST_VOR_ILoad	ST_VOL_ILoad	ST_VOR_Ioff	ST_VOL_Ioff	ST_VOR_Loadon	ST_VOL_Loadon	ST_VOR_LoadIn	ST_VOL_LoadIn	
0x12	R	Reserved	CG_VL			ST_Batte	ry[4:0]		ST_LB	
0x13	R			Reserved[4:0]			LED_C1	neck[1:0]	INIT_OK	
控制寄存	字器									
0x20	R/PW	LED_	Ion[1:0]	Vdpj	om[1:0]	Ien	d_CH[1:0]	Reserved[1:0]		
0x21	R/PW		Reserv	ed[3:0]		LED_FLICK	Reserved	Reserved ICOM[1:0]		
0x30	R/W	Reser	ved[1:0]	ST_COMINR	ST_COMINL	DIR_COMIN	SEL_COMIN	MD2_COMIN	MD1_COMIN	
0x31	R/W		Reserv	ed[3:0]		EN_VOR	EN_VOL	EN_BT	DIS_CG	
带保护马	力能的控	制寄存器								
0x40	R/PW	ICH_HALF	DIS_AutoDetect	VBAT_4P05V	Reserv	Reserved[1:0]				
0x41	R/PW	Reserved	DIS_LED_LoadIn	LED_TON	LED_Ver	Reserved	LED_I	B[1:0]	Reserved	
0x42	R/PW					BAT_SEL[7:0]				
0x43	R/PW		Reserv	ed[3:0]			BAT_SI	EL[11:8]		
0x44	R/PW		Reserv	ed[3:0]		LED_PWM		Reserved[2:0]		
0x45	R/PW		Iocp_VO[2:0]	·	·	Istart[2:0] Idet[1:0				
0x50	R/PW		Reserved[2:0]			LED_I2C				

<0x10>STAT0: 异常状态指示

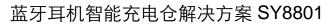
地址	类型	Bit	名称	描述
				芯片异常状态指示,包含 VSYS 短路保护,CLS 过流保护,
		D 0	am	NTC 保护; 默认值: 0。此 bit 状态变化,将触发 IRQ。
		B<0>	ST_ABNORMAL	0:正常状态
				1:保护状态
				VOL 异常状态指示,包含 VOL 短路保护, VOL 过流保护;
		B<1>	CT VOL ADMODMAL	默认值:0。此bit 状态变化,将触发IRQ。
		B<1>	ST_VOL_ABNORMAL	0:正常状态
				1:保护状态
				VOR 异常状态指示,包含 VOR 短路保护, VOR 过流保护;
		B<2>	ST VOR ABNORMAL	默认值:0。此bit 状态变化,将触发 IRQ。
		D<2>	SI_VOK_ADNORWAL	0:正常状态
				1:保护状态
		B<3>		BATUVLO 状态; 默认值: 0。此 bit 状态变化,将触发 IRQ。
0x10	R		ST_BAT_UVLO	0:电池电压处于 UVLO 状态
				1:当 BAT 正常或者 VIN 正常时,此 bit=1。
		B<4>		VINUVLO信号;默认值:0。此bit 状态变化,将触发IRQ。
			ST_VIN_UVLO_OVP	0: VIN 电压处于 UVLO 状态或者 OVP 状态
				1: VIN 电压正常
				充电过程指示; 默认值: 0
		B<5>	ST_CH	0:芯片处于非充电状态
				1.芯片处于充电状态
				充电状态指示; 默认值: 0。此 bit 状态变化,将触发 IRQ。
		B<6>	ST_CH_END	0:芯片处于充电状态,未充满
				1:芯片处于充满状态
				放电工作状态指示; 默认值: 0
		B<7>	ST_BT	0:放电处于不工作状态
				1:放电处于工作状态

<0x11>STAT1: 负载状态指示 (3)

地址	类型	Bit	名称	描述
				VOL 负载插入状态; 默认值: 0。
		B<0>	ST_VOL_LoadIn (1)	0:VOL 无负载插入动作
			S1_VOL_Loadin (*)	1:VOL 有负载插入动作。当 EN_VOL=1 时,系统自动清零此
				状态位,否则此状态位保持。
				VOR 负载插入状态; 默认值: 0。
		B<1>	ST_VOR_LoadIn (1)	0:VOR 无负载插入动作
		D<1>	S1_VOR_Loadin	1:VOR 有负载插入动作。当 EN_VOR=1 时,系统自动清零此
				状态位,否则此状态位保持。
				VOL 负载存在状态; 默认值: 0。
				0:VOL 无负载状态
		B<2>	ST_VOL_Loadon (1)	1:VOL 有负载状态
				此 bit 从 0 跳变到 1,或者从 1 跳变到 0,都会触发 IRQ。但
				只有 0->1 会触发 LED 闪烁提示 (耳机放入提示)。
	R	B<3>		VOR 负载存在状态; 默认值: 0。
				0:VOR 无负载状态
0x11			ST_VOR_Loadon (1)	1:VOR 有负载状态
OXII				此 bit 从 0 跳变到 1, 或者从 1 跳变到 0, 都会触发 IRQ。但
				只有 0->1 会触发 LED 闪烁提示(耳机放入提示)。
		B<4>		VOL 轻載状态, 轻载电流为 IOFF 电流。默认值: 0。
			ST_VOL_Ioff (2)	0: VOL 重載状态
				1: VOL 轻载状态
				此 bit 从 0 跳变到 1,或者从 1 跳变到 0,都会触发 IRQ
				VOR 轻载状态, 轻载电流为 IOFF 电流。默认值: 0。
		B<5>	ST_VOR_loff (2)	0:VOR 重载状态
		2 0,		1:VOR 轻载状态
				此 bit 从 0 跳变到 1,或者从 1 跳变到 0,都会触发 IRQ
				VOL 负载大小状态; 默认值: 1
		B<6>	ST_VOL_Iload (2)	0:VOL 负载小于 30mA
				1:VOL 负载大于 45mA
				VOR 负载大小状态; 默认值: 1
		B<7>	ST_VOR_Iload (2)	0:VOR 负载小于 30mA
				1:VOR 负载大于 45mA

备注:

- (1) 当 VOR 或者 VOL 关闭时,寄存器 STAT1 的 B<0>~B<3>才有意义。
- (2) 当 VOR 或者 VOL 正常输出 5V 时,寄存器 STAT1 的 B<4>~B<7>才有意义。
- (3) 此寄存器任意一个 bit 状态发生 0 到 1 的跳变,都将触发 IRQ。


<0x12>STAT2: 电池电压状态指示

地址	类型	Bit	名称	描述			
				低电量报警状态;默认值:0。此bit 状态变化,将触发IRQ。			
		B<0>	ST_LB	1:正常电量状态			
				0:低电量状态			
				电池电压采样; 默认值: 0000			
				4.20V 版本 4.35V 版本			
				00000: <2.80V 每个电压点等于 4.20V 版本的电压点乘以 1.036			
				00001: 2.80V-2.85V 例如: 00001: 2.90V~2.95V			
				00010: 2.85V-2.90V			
				00011: 2.90V-2.95V 4.40V 版本			
				00100: 2.95V-3.00V 每个电压点等于 4.20V 版本的电压点乘以 1.048			
				00101: 3.00V-3.05V 例如: 00001: 2.93V~2.99V			
				00110: 3.05V-3.10V			
				00111: 3.10V-3.15V			
				01000: 3.15V-3.20V			
				01001: 3.20V-3.25V			
				01010: 3.25V-3.30V			
				01011: 3.30V-3.35V			
				01100: 3.35V-3.40V			
		D 45.15	CT D-44 (4.0)	01101: 3.40V-3.45V			
0x12	R	B<5:1>	ST_Battery<4:0>	01110: 3.45V-3.50V			
				01111: 3.50V-3.55V			
				10000: 3.55V-3.60V			
				10001: 3.60V-3.65V			
				10010: 3.65V-3.70V			
				10011: 3.70V-3.75V			
				10100: 3.75V-3.80V			
				10101: 3.80V-3.85V			
				10110: 3.85V-3.90V			
				10111: 3.90V-3.95V			
				11000: 3.95V-4.00V			
				11001: 4.00V-4.05V			
				11010: 4.05V-4.10V			
				11011: 4.10V-4.15V			
				11100: 4.15V-4.20V			
				11101: ≥4.20V			
				充电进入电压环标志; 默认 0			
		B >6>	CC VI	0:没有进入电压环			
		B<6>	CG_VL	1:已经进入电压环。当(1)充电进入电压环,或者(2)电池充满且 VIN			
				仍正常时,此bit=1			

<0x13>STAT3: 系统初始化状态指示

地址	类型	Bit	名称	描述
				芯片初始化完成状态(读取 EPROM 完成标志); 默认 0
				0:没有完成读取 EPROM
		B<0>	INIT_OK	1:完成读取 EPROM。只有完成读取 EPROM,芯片才会开始
				工作。只有插入 VIN 且 VIN 电压正常,才会读取 EPROM。
0.12	R			当此 bit=1 后,只要 BAT 不掉至 2.6V,此 bit 都将保持为 1。
0x13		B<2:1>	LED_Check	LED 显示模式; 默认值: 00
				00:两灯模式
				01:3 灯模式
				10:双色灯模式
				11:4 灯模式

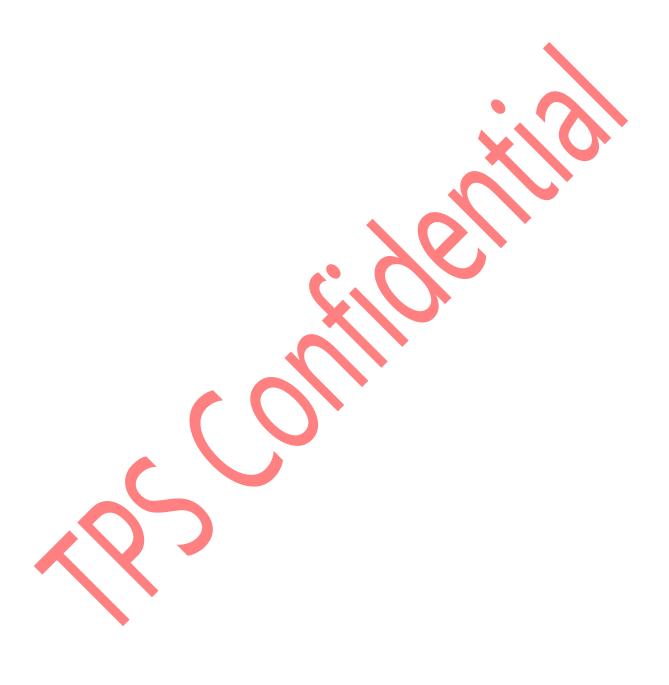
<0x20>IBF & VDPPM & ILED

地址	类型	BIT	名称	功能
		B<1:0>	Reserved<1:0>	
				充电截止电流; 默认值: 00
				00:1*ITC+10mA
		B<3:2>	Iend_CH<1:0>	01:1.2*ITC+10mA
				10:1.4*ITC+10mA
				11:0.8*ITC+10mA
		B<5:4>		自适应适配器电压; 默认值: 00
020	D/W		Vdppm<1:0>	00:4.606V
0x20	R/W			01:4.697V
				10:4.79V
				11:4.492V
				LED 亮度调节; 默认值: 00
				00:2mA
		B<7:6>	LED_Ion<1:0>	01:4mA
				10:1mA
				11:0.5mA

<0x21>ICOM & LED_FLICK

地址	类型	Bit	名称	描述
				MD1 模式下通讯驱动能力设定; 默认值: 00
				ICOM<1>,接收时上拉电阻
				0:100K
		B<1:0>	ICOM<1:0>	1:40K
	R/W			ICOM<0>,发射时推挽输出能力
				0:上拉 270Ω,下拉 270Ω
				1:上拉 3.5ΚΩ,下拉 270Ω
0x21		B<2>	Reserved	
		B<3>	LED_FLICK	控制 LED 亮的寄存器; 默认值: 0 0:放电时 LED 亮 8S 灭掉 1:放电时 LED 一直亮 可以利用这个寄存器在 EN 版本中在按键的情况下 LED 重新 亮 8S。即: 先将寄存器写 1, LED 亮, 然后再写 0, 8S 后灭掉。
		B<7:4>	Reserved<3:0>	

<0x30>CTRL0: 通信模式控制


地址	类型	Bit	名称	描述			
				通讯使能控制模式 1, MD1。单向通信, 从 SY880x 通过 VOL/VOR			
				发送至耳机。默认值:0			
				0:通讯不使能			
				1:通讯使能			
				此模式,输出时高电平为 VBAT, 低电平为 0V。			
				低电平的下拉能力为270Ω。			
		B<0>	MD1_COMIN	高电平的上拉能力为下表:			
				DIR_COMIN ICOM<1> ICOM<0> 上拉能力			
				0 x 0 270Ω			
				0 x 1 3.5KΩ			
				1 0 x 100 KΩ			
				1 1 x 40 KΩ			
				通讯使能控制模式 2, MD2。双向通信。			
				下行:从 SY880x 发送数据到耳机。改变 VOL/VOR 电压;			
		B<1>		上行:从耳机发送数据到 SY880x。VOL/VOR 输出 5V, 耳机通			
			MD2_COMIN	过改变 IVOL/IVOR 电流,向 SY880x 发送数据。			
	R/W			默认值: 0			
				0:通讯不使能			
				1:通讯使能			
0x30				此模式,下行时高电平为 VSYS,驱动能力大于 250mA;低电平			
				为 0V、驱动能力等于 10mA。			
			SEL_COMIN	通讯信号选择; 默认值: 0			
		B<2>		0:选择 COMINL 和 COMINR 外部 PIN 脚控制			
				1:选择内部寄存器控制			
				通讯信号方向选择;默认值:0			
				在 MD1 通讯模式中			
				0:选择寄存器或 COMINL 和 COMINR 向 VOL 和 VOR 发射信号			
				1:屏蔽寄存器或 COMINL 和 COMINR 的信号,将 VOL 和 VOR			
		B<3>	DIR_COMIN	上拉			
				在MD2 通讯模式中			
				0:选择寄存器或 COMINL 和 COMINR 向 VOL 和 VOR 发射信号			
				1:选择将 VOL 和 VOR 的电流大小信号发射到 COMINL 和			
				COMINE			
		D 44:	ST COMPU	对应 COMINL 的寄存器; 默认值: 0			
		B<4>	ST_COMINL	0:在 VOL 端输出 0			
				1:在 VOL 端输出 1			
		D .5.	CT COMPT	对应 COMINR 的寄存器; 默认值: 0			
		B<5>	ST_COMINR	0:在 VOR 端输出 0			
				1:在 VOR 端輸出 1			

备注:

(1) MD1_COMIN 与 MD2_COMIN 不能同时为 1。

- (2) 当选择 MD1 模式时,COMINL 与 COMINR 只能配置为输入管脚,配置为输出管脚将无效。
- (3) 当选择 MD2 模式时, COMINL 与 COMINR 即可配置为输入管脚,也可配置为输出管脚。
- (4) VOL/VOR 配置为通信模式时,<0x10><<0x13>的状态寄存器仍然会根据 VOL/VOR 的负载电流实时变化。因此,MCU 方案的程序在使用 VOL/VOR 的通信模式时,要注意"小电流关机"等状态检测。最好是(a) 在发送通信波形时,屏蔽关机状态的检测;(b) 在发送完通信波形后,再做关机状态的检测。

<0x31>CTRL1: 充电/放电使能寄存器

地址	类型	Bit	名称	描述
				充电使能; 默认值: 0
		B<0>	DIS_CG	0:不关闭充电功能
				1:关闭充电功能。当此 bit=1,则 VOL 和 VOR 也会自动关闭
				放电使能; 默认值: 0 (此 bit 和外部 EN 引脚任意一个为高都将
		B<1>	EN_BT	开启 Boost)
				0:关闭放电功能
0x31	R/W			1:打开放电功能
		B<2>	EN_VOL	VOL 开关控制; 默认值: 0
				0:关闭 VOL 开关
				1:打开 VOL 开关
				VOR 开关控制; 默认值: 0
		B<3>	EN_VOR	0:美闭 VOR 开关
				1:打开 VOR 开关

<0x40>JEITA 控制寄存器

地址	类型	Bit	名称	描述
				BAT UVLO 电压(下限值,上限通过迟滞加 0.1V); 默认值:
				000
				000: 2.801V
				001: 2.919V
		D 20	DATE INTO 20	010: 3.014V
		B<2:0>	BAT_UVLO<2:0>	011: 3.116V
				100: 3.187V
				101: 3.301V
				110: 3.402V
				111: 3.51V
0x40	R/W	B<4:3>	Reserved[1:0]	-
				控制 JEITA 标准的浮充电压;默认值: 0
		D 5	LIDATE ADOCTA	4.20V 版本: 4.35V 版本: 4.40 版本:
		B<5>	VBAT_4P05V	0:VFLOAT=4.20V 0: VFLOAT=4.35V 0: VFLOAT=4.40V
				1: VFLOAT=4.05V
				自动识别负载使能控制; 默认值: 0
		B<6>	DIS_AutoDetect	0:支持自动识别功能
				1:屏蔽自动识别功能
				控制充电电流减半; 默认值: 0
		B<7>	ICH_HALF	0:恒流充电电流外部电阻设定
				1:恒流充电电流在外部设定的基础上减半

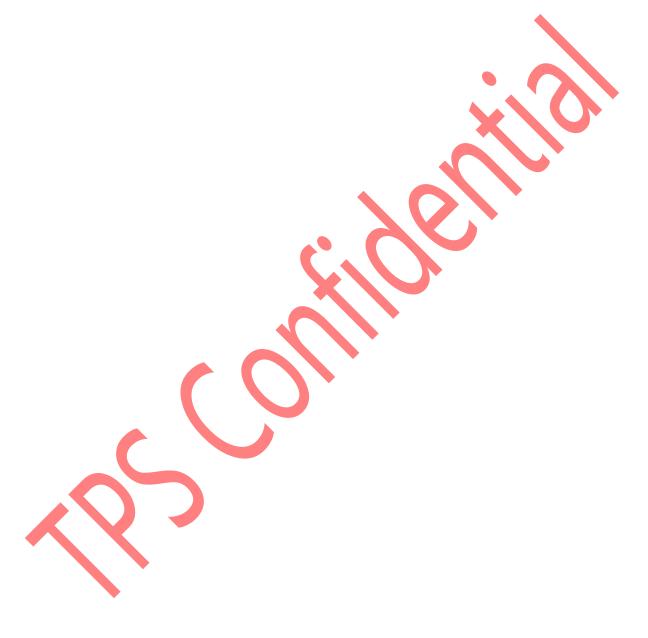
<0x41>LED Configure

地址	类型	BIT	名称	功能
				LED 显示版本; 默认值: 0
		B<0>	LED_MODE	0:默认版本, 靠 LED 自动检测确定灯显方式
				1:苹果模式
				低电量报警电压; 默认值: 00
				4.20V 版本: 4.35V 版本: 4.40V 版本:
		B<2:1>	LED_LB<1:0>	00:3.200V 00:3.314V 00:3.352V
				01:3.300V 01:3.418V 01:3.457V
				10:3.400V 10:3.521V 10:3.562V
				11:3.500V 11:3.625V 11:3.667V
0x41	R/W	B<3>	Reserved	
			LED_Ver	LED 显示方式; 默认值: 0
		B<4>		0:放电过程中亮 8S/16S 后灭掉
				1:放电过程中, 2S 闪烁 0.5S
				定时关灯时间; 默认值: 0
		B<5>	LED_TON	0:8S
				1:16S
				负载插入拔出 LED 提示; 默认值: 0
		B<6>	DIS_LED_LoadIn	0:有提示
				1:无提示

<0x42~0x43>LED DATA

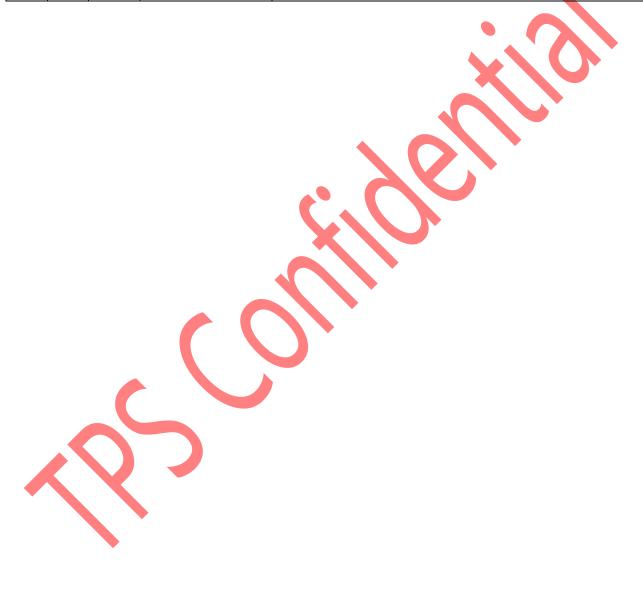
<0x	42~0x4	3>LED I	DATA			
地址	类型	BIT	名称	功能		
				电量显示控	制点; 默认值	: 0x00
				充电闪灯点	,不可调整:	
				(1) 4.20V	版本: 3.750V	V, 3.900V, 4.100V
				(2) 4.35V	版本: 3.884\	V, 4.039V, 4.246V
				(3) 4.40V	版本: 3.939\	V, 4.086V, 4.295V
				以下为放电	的闪灯点,可	以调整。
				DATA2->BA	AT_SEL<2:0>	> 单位: V
				4.20V 版本	4.35V 版本	4.40V 版本
0x42	R/W	B<7:0>	BAT_SEL<7:0>	000: 3.600	000: 3.729	000: 3.771
				001: 3.550	001: 3.677	001: 3.719
				010: 3.500	010: 3.625	010: 3.667
				011: 3.450	011: 3.573	011: 3.614
				100: 3.800	100: 3.936	100: 3.981
				101: 3.750	101: 3.884	101: 3.929
				110: 3.700	110: 3.832	110: 3.876
				111: 3.650	111: 3.780	111: 3.824
				DATA3->BA	AT_SEL<5:3>	> 单位: V
				4.20V 版本	4.35V 版本	4.40V 版本
				000: 3.700	000: 3.832	000: 3.876
				001: 3.650	001: 3.780	001: 3.824
				010: 3.600	010: 3.729	010: 3.771
				011: 3.550	011: 3.677	011: 3.719
				100: 3.900	100: 4.039	100: 4.086
				101: 3.850	101: 3.988	101: 4.033
				110: 3.800	110: 3.936	110: 3.981
				111: 3.750	111: 3.884	111: 3.929
				DATA4->BA	AT_SEL<8:6>	>单位: V
				4.20V 版本	4.35V 版本	4.40V 版本
				000: 3.900	000: 4.039	000: 4.086
0x43	R/W	B<3:0>	BAT_SEL<11:8>	001: 3.950	001: 4.091	001: 4.138
				010: 4.000	010: 4.143	010: 4.190
				011: 4.050	011: 4.195	011: 4.243
				100: 3.700	100: 3.832	100: 3.876
				101: 3.750	101: 3.884	101: 3.929
				110: 3.800	110: 3.936	110: 3.981
				111: 3.850	111: 3.988	111: 4.033
				Timer for ch	narger->BAT	_SEL<11:9>单位:min
				000: 16		
				001: 12		
				010: 8		
				011: 4		
				100: 32		
	1	ı		İ		

蓝牙耳机智能充电仓解决方案 SY8801

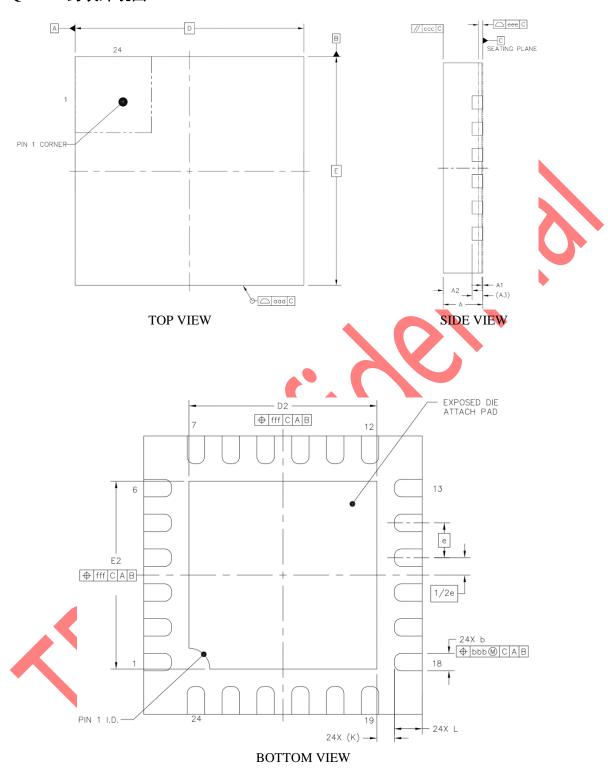

			101: 28
			110: 24
			111: 20
	B<7:4>	Reserved	

<0x44>LED 频率控制寄存器

地址	址 类型 BIT .		名称	功能
	R/W	B<2:0>	Reserved	
		B<3>	LED_PWM	控制 LED PWM 驱动波形的频率; 默认值: 0
0x44				0: 128Hz
				1: 8KHz
		B<7:4>	Reserved<4:0>	

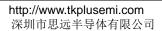

<0x45>Iautodet

地址	类型	BIT	名称	功能
		B<1:0>	Idet<1:0>	自动识别负载检测电流;默认值:00
				00:5uA
				01:2uA
				10:1uA
				11:10uA
		B<4:2>	Istart<2:0>	自动识别负载快速建立电流; 默认值: 000
				000:15uA
				001:35uA
				010:50uA
				011:70uA
	R/W			100:1uA
0x45				101:2uA
				110:5uA
				111:10uA
		B<7:5>	Iocp_VO<2:0>	限流开关最大输出电流; 默认值: 000
				000:250mA
				001:300mA
				010: 35 0mA
				011:400mA
				100:200mA
				101:150mA
				110:100mA
Í				111:50mA


<0x50>LED_I2C

地址	类型	BIT	名称	功能	
		B<0>	LED_I2C	I2C 控制模 LED 显示; 默认值: 0	
				0:内部控制 LED 显示	
				1:I2C 控制 LED 显示	
0x50	R/W	B<4:1>	LED_I2C_ST<3:0>	I2C 控制 LED 状态; 默认值: 0000	
UXSU	K/W			0001:LED1 亮,其余 LED 灭	
				0010:LED2 亮,其余 LED 灭	
				0100:LED3 亮,其余 LED 灭	
				1000:LED4 亮,其余 LED 灭	

QFN24 封装外观图



Unit: mm

SYMBOL	MIN	NOM	MAX		
A	0.7	0.75	0.8		
A1	0	0.02	0.05		
A2		0. 55			
a3	0. 203 REF				
b	0.2	0. 25	0.3		
D	4 BSC				
Е	4 BSC				
е	0. 5 BSC				
D2	2.6	2. 7	2.8		
E2	2.6	2. 7	2.8		
L	0.3	0.4	0.5		
K	0.2 min				
aaa	0. 1				
ccc	0. 1				
eee	0.08				
bbb	0. 1				
fff	0. 1				

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)

