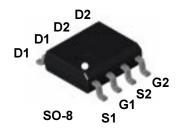
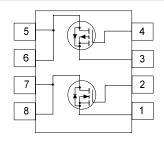


Si4532DY*


Dual N- and P-Channel Enhancement Mode Field Effect Transistor


General Description

These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild's propretary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- N-Channel 3.9A, $30V.R_{DS(ON)} = 0.065\Omega$ @ $V_{GS} = 10V$ $R_{DS(ON)} = 0.095\Omega$ @ $V_{GS} = 4.5V.$
- P-Channel -3.5A,-30V.R $_{\rm DS(ON)}$ = 0.085 Ω @V $_{\rm GS}$ = -10V ${\rm R}_{\rm DS(ON)}$ = 0.190 Ω @V $_{\rm GS}$ = -4.5V.
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.
- Dual (N & P-Channel) MOSFET in surface mount package.

Absolute Maximum Ratings TA = 25°C unless otherwise noted

Symbol	Parameter		N-Channel	P-Channel	Units
V _{DSS}	Drain-Source Voltage		30	-30	V
V _{GSS}	Gate-Source Voltage		20	-20	V
I _D	Drain Current - Continuous	(Note 1a)	3.9	-3.5	Α
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation		2	W	
	Power Dissipation for Single Operation	(Note 1a)	1.	6	
		(Note 1b)	1		
		(Note 1c)	0.	9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

R _{eJA}	Thermal Resistance, Junction-to-Ambient		62.5	∘C/W
Raic	Thermal Resistance, Junction-to-Case	(Note 1)	40	∘C/W

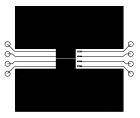
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
4532	Si4532DY	13"	12mm	2500 units

^{*} Die and manufacturing source subject to change without prior notification.

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Char				•			
BV _{DSS}	racteristics Drain-Source Breakdown	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	N-Ch	30			V
DVDSS	Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	P-Ch	-30			V
Inss	Zero Gate Voltage Drain Current		N-Ch			1	цА
500	3	V _{DS} = -24 V, V _{GS} = 0 V	P-Ch			-1	uА
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V	AΙΙ			100	nΑ
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V	All			-100	nA
On Chai	racteristics (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	N-Ch	1 1		3	V
		I					
▼ GS(III)	Cate Threehold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	P-Ch	-1		-3	v
R _{DS(on)}	Static Drain-Source On	V _{GS} = 10 V, I _D = 3.9 A	N-Ch		0.053	0.065	Ω
Resistance	Resistance	V _{GS} = 4.5 V, I _D = 3.1 A			0.081	0.095	
		$V_{GS} = -10 \text{ V}, I_D = -2.5 \text{ A}$	P-Ch		0.06	0.085	
		$V_{GS} = -4.5 \text{ V}, I_D = -1.8 \text{ A}$			0.095	0.19	
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	N-Ch	15			Α
		$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	P-Ch	-15			
g _{FS}	Forward Transconductance	$V_{DS} = 15 \text{ V}, I_{D} = 3.9 \text{ A}$	N-Ch		7		S
		$V_{DS} = -15 \text{ V}, I_{D} = -2.5 \text{ A}$	P-Ch		5		
Dumami	- Chavastaviatica						
Dynamic C _{iss}	c Characteristics Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V,	N-Ch		235		pF
Oiss	Піриї Сарасііансе	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	P-Ch		420		þΓ
Coss	Input Capacitance	· · · · · · · · · · · · · · · · · · ·	N-Ch		150		pF
Ooss	Imput Gapacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$	P-Ch		140		þι
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz	N-Ch		49		рF
rss	The second of th		P-Ch	1	60		۲۰

Electrical	Charact	teristics	(continued)


Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Switchin	g Characteristics (Note 2)						
$t_{d(on)}$	Turn-On Delay Time	$V_{DD} = 10 \text{ V}, I_D = 1 \text{ A},$	N-Ch		7	13	ns
		$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	P-Ch		9	18	
t _r	Turn-On Rise Time		N-Ch		18	29	ns
			P-Ch		8	16	
$t_{d(off)}$	Turn-Off Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -2.5 \text{ A},$	N-Ch		15	27	ns
		$V_{GS} = -10 \text{ V} \cdot R_{GEN} = 6 \Omega$	P-Ch		18	29	
t _f	Turn-Off Fall Time		N-Ch		0.8	8	ns
			P-Ch		6	12	
t _{rr}	Drain-Source Reverse Recovery Time	$I_F = 1.7 \text{ A, di/dt} = 100 \text{A/}_{\text{U}} \text{s}$	N-Ch			80	nS
		$I_F = -1.7 \text{ A, di/dt} = 100 \text{A/}_{\text{US}}$	P-Ch			80	
$\overline{Q_g}$	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_{D} = 3.9 \text{ A},$	N-Ch		3.7	15	nC
_		V _{GS} = 10 V	P-Ch		5	15	
Q_{gs}	Gate-Source Charge		N-Ch		0.9		nC
ŭ		$V_{DS} = -10 \text{ V}, I_{D} = -2.5 \text{ A},$	P-Ch		1.7		
$\overline{Q_{gd}}$	Gate-Drain Charge	V _{GS} = -10 V	N-Ch		1.9		nC
ŭ			P-Ch		1.8		

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current		N-Ch		1.7	Α
			P-Ch		-1.7	Α
V _{SD}	Drain-Source Diode Forward $V_{GS} = 0 \text{ V, I}_{S} = 1.7 \text{ A}$ Voltage (Note 2)		N-Ch	0.75	1.2	٧
		V _{GS} = 0 V, I _S = -1.7 A (Note 2)	P-Ch	-0.75	-1.2	V

Notes:

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78° C/W when mounted on a 0.05 in² pad of 2 oz. copper.

b) 125° C/W when mounted on a 0.02 in² pad of 2 oz. copper.

c) 135° C/W when mounted on a minimum mounting pad.

Scale 1: 1 on letter size paper

2. Pulse Test: Pulse Width $\leq\!300\,\mu\text{s},$ Duty Cycle $\leq\!2.0\%$

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative