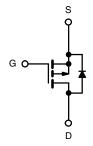
COMPLIANT

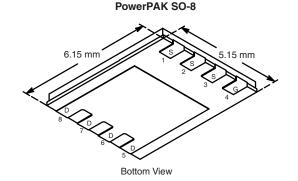
HALOGEN

FREE

P-Channel 200 V (D-S) MOSFET


PRODU	ODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)I$	_D (A)	Q _g (Typ.)		
- 200	0.174 at V _{GS} = - 10 V	- 3.8	88		
- 200	0.180 at V _{GS} = - 6 V	- 3.6	00		

- Halogen-free According to IEC 61249-2-21 **Definition**
- TrenchFET® Power MOSFETs
- Ultra-Low On-Resistance Critical for Application
- Low Thermal Resistance PowerPAK® Package with Low 1.07 mm Profile
- 100 % R_a and Avalanche Tested
- Compliant to RoHS Directive 2002/95/EC



FEATURES

· Active Clamp in Intermediate DC/DC Power Supplies

P-Channel MOSFET

Ordering Information: Si7431DP-T1-E3 (Lead (Pb)-free)

Si7431DP-T1-GE3 (Lead (Pb)-free and Halogen-free)

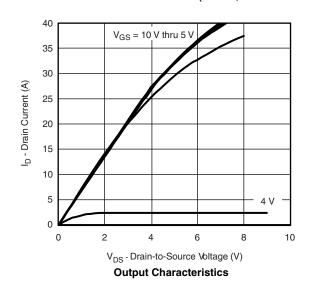
ABSOLUTE MAXIMUM RATINGS	$(T_A = 25 ^{\circ}C, unlet)$	ess otherwise	noted)		
Parameter		Symbol	10 s	Steady State	Unit
Drain-Source Voltage		V _{DS}	- 200		V
Gate-Source Voltage		V _{GS}	± 20		
Continuous Drain Current (T _{.I} = 150°C) ^a	T _A = 25 °C	I-	- 3.8	- 2.2	
Continuous Diam Curient (1) = 130 C)	T _A = 70 °C	l _D	- 3.0	- 1.8	
Pulsed Drain Current		I _{DM}	- 30		Α
Continuous Source Current (Diode Conduction) ^a		I _S	- 4.2	- 1.6	
Single Pulse Avalanche Current L = 0.1 mH		I _{AS}	- 30		
Single Pulse Avalanche Energy		E _{AS}	45		mJ
Maximum Power Dissipation ^a	T _A = 25 °C	P _D	5.4	1.9	W
Maximum i ower Dissipation	T _A = 70 °C	' D	3.4	1.2	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C
Soldering Recommendations (Peak Temperature)	Soldering Recommendations (Peak Temperature) ^{b, c}		260		C

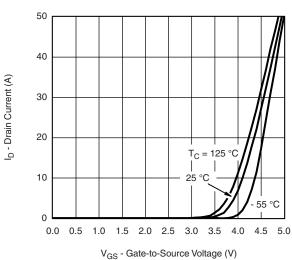
THERMAL RESISTANCE RATINGS					
Parameter Symb		ol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^a	t ≤ 10 s	R _{thJA}	18	23	°C/W
Maximum Junction-to-Ambient	Steady State		50	65	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	1.0	1.5	

Notes:

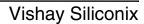
- a. Surface mounted on 1" x 1" FR4 board.
- b. See solder profile (www.vishay.com/ppq?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- c. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

Vishay Siliconix

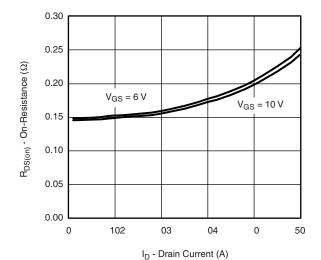

Parameter S	ymbol	Test Condition	Min.	Тур.	Max.	Unit	
Static	•						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	- 2.0		- 4.0	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zana Oata Vallana Busin Oamant		V _{DS} = - 200 V, V _{GS} = 0 V			- 1	†	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = - 200 V, V _{GS} = 0 V, T _J = 70 °C			- 10	μΑ	
On-State Drain Current ^a	I _{D(on)} V	_{DS} = - 10 V, V _{GS} = - 10 V	- 20			Α	
D : 0	_	$V_{GS} = -10 \text{ V}, I_D = -3.8 \text{ A}$		0.145	0.174	Ω	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -6 \text{ V}, I_D = -3.6 \text{ A}$		0.147	0.180		
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -3.8 \text{ A}$		17		S	
Diode Forward Voltage ^a	V_{SD}	$I_S = -4.2 \text{ A}, V_{GS} = 0 \text{ V}$		- 0.78	- 1.2	V	
Dynamic ^b	<u>'</u>						
Total Gate Charge	Qg			88	135		
Gate-Source Charge	Q_{gs}	$V_{DS} = -75 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.2 \text{ A}$		16.5		nC	
Gate-Drain Charge	Q _{gd} 25						
Gate Resistance	R_g		1.534		.5	Ω	
Turn-On Delay Time	t _{d(on)}			23	40		
Rise Time	t _r	$V_{DD} = -75 \text{ V}, R_{L} = 15.5 \Omega$		49	75		
Turn-Off Delay Time	t _{d(off)} 11	$I_D \cong -4.8 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 6 \Omega$			180	ns	
Fall Time	t _f			66	100		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = - 2.9 A, dl/dt = 100 A/μs		75	120		


Notes:

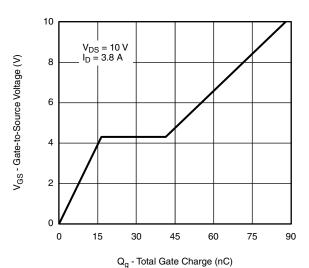
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Transfer Characteristics

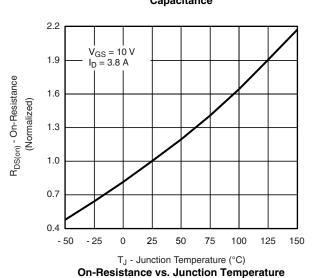


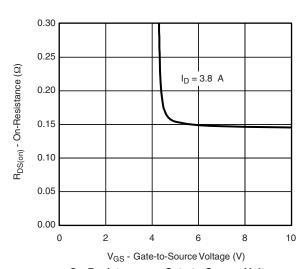
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. Drain Current

10 T_J = 150 °C T_J = 25 °C T_J = 25 °C 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2

 V_{DS} - Source-to-Drain Voltage (V)

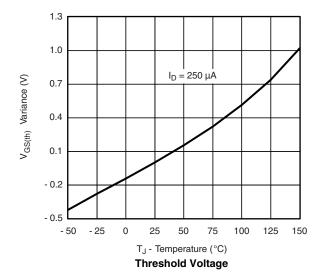

Source-Drain Diode Forward Voltage

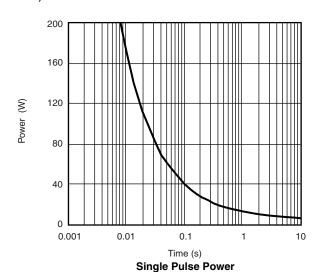

Gate Charge

 C_{iss}

6000

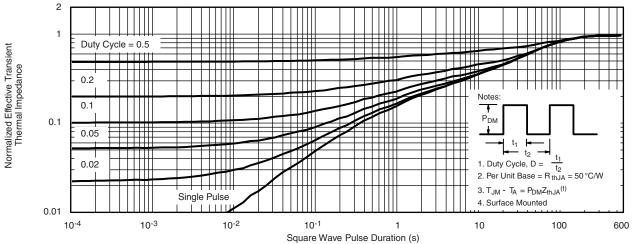
5000



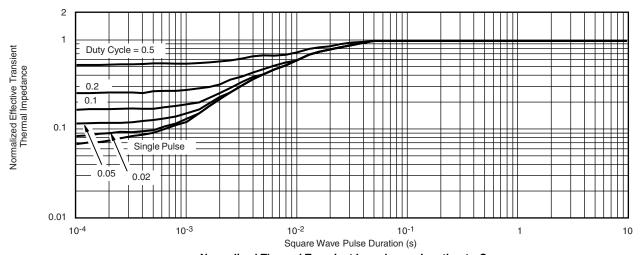

On-Resistance vs. Gate-to-Source Voltage

Vishay Siliconix

VISHAY

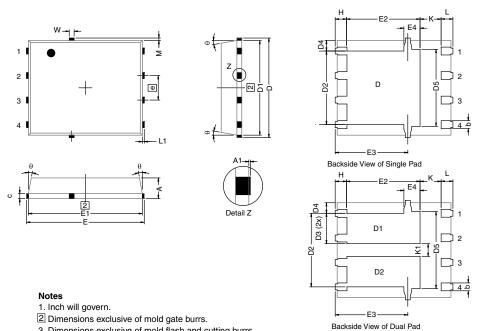

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

 $(V) \text{ triangle of the property of the prope$



Normalized Thermal Transient Impedance, Junction-to-Ambient

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

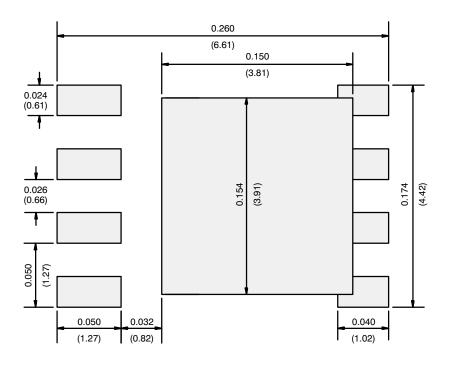


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintain's worldwide manu facturing capability. Products may be manu factured at one of severa I qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg273116.

PowerPAK® SO-8, (Single/Dual)

	3. Dimensions exclusive	of mold flash and cutting	g burrs.			
	MILLIMETERS					
DIM.	MIN.	NOM.	MAX.	MIN.		
А	0.97	1.04	1.12	0.038		
Δ1		_	0.05	0		


	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.97	1.04	1.12	0.038	0.041	0.044	
A1		-	0.05	0	-	0.002	
b	0.33	0.41	0.51	0.013	0.016	0.020	
С	0.23	0.28	0.33	0.009	0.011	0.013	
D	5.05	5.15	5.26	0.199	0.203	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.56	3.76	3.91	0.140	0.148	0.154	
D3	1.32	1.50	1.68	0.052	0.059	0.066	
D4		0.57 typ.			0.0225 typ.		
D5	3.98 typ.			0.157 typ.			
E	6.05	6.15	6.25	0.238	0.242	0.246	
E1	5.79	5.89	5.99	0.228	0.232	0.236	
E2 (for AL product)	3.30	3.48	3.66	0.130	0.137	0.144	
E2 (for other product)	3.48	3.66	3.84	0.137	0.144	0.151	
E3	3.68	3.78	3.91	0.145	0.149	0.154	
E4 (for AL product)		0.58 typ.		0.023 typ.			
E4 (for other product)		0.75 typ.		0.030 typ.			
е	1.27 BSC			0.050 BSC			
K (for AL product)		1.45 typ.		0.057 typ.			
K (for other product)		1.27 typ.		0.050 typ.			
K1	0.56	-	-	0.022	-	=	
Н	0.51	0.61	0.71	0.020	0.024	0.028	
L	0.51	0.61	0.71	0.020	0.024	0.028	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
θ	0°	-	12°	0°	-	12°	
W	0.15	0.25	0.36	0.006	0.010	0.014	
М	0.125 typ.			0.005 typ.			

DWG: 5881

Revison: 20-May-13 Document Number: 71655

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, in cluding without limitation special, consequential or inc idental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are b ased on Vishay's knowledge of typic al requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products f or a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or othe rwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not design ed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failu re of the Vishay product could result in personal injury or deat h. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertech nology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and rest rictions defined under Directive 2011/65/EU of The European Parliam ent and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61 249-2-21 definition. We confirm that all the products identified as being compliant to IEC 6 1249-2-21 conform to JEDEC JS709A standards.