

Sil 163B PanelLink Receiver

Data Sheet

Document # SiI-DS-0055-C

Silicon Image, Inc.

SiI-DS-0055-C July 2005

Application Information

To obtain the most updated Application Notes and other useful information for your design, please visit the Silicon Image web site at www.siimage.com, or contact your local Silicon Image sales office.

Copyright Notice

This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the expressed written permission of Silicon Image, Inc.

Trademark Acknowledgment

Silicon Image, the Silicon Image logo, PanelLink[®], TMDS[®] and the PanelLink[®] Digital logo are registered trademarks of Silicon Image, Inc. VESA[®] is a registered trademark of the Video Electronics Standards Association. All other trademarks are the property of their respective holders.

Disclaimer

This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

All information contained herein is subject to change without notice.

Revision History

Revision	Date	Comment
Sil-DS-0055-A	03/02	Full Release
Sil-DS-0055-B	08/04	Added ePad dimensions and Slave SCDT stabilization guideline.
Sil-DS-0055-C	07/05	ePad dimensions fix. Part ordering number update.

© 2001-2005 Silicon Image. Inc.

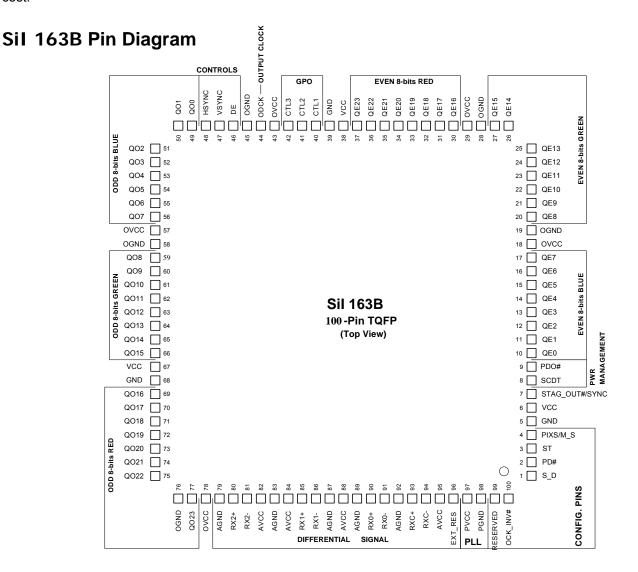
TABLE OF CONTENTS

Sil 163B Pin Diagram	
Functional Description	
Electrical Specifications	
Absolute Maximum Conditions	3
Normal Operating Conditions	3
Digital I/O Specifications	3
DC Specifications	4
AC Specifications	5
Setup and Hold Timings for Data Rates other than 165 MHz	6
Timing Diagrams	7
Pin Descriptions	10
Output Pins	10
Configuration Pins	11
Power Management Pins	11
Differential Signal Data Pins	
Reserved Pin	
Power and Ground Pins	
Feature Information	13
Dual Link	13
Dual Link Configuration Pins	13
Dual Link Power Management	
Dual Link Mode Selection	
Dual Link Timing Diagrams	
Clock Detect Function	
OCK INV# Function	
TFT Panel Data Mapping	
Design Recommendations	
Differences Between SiI 161A and SiI 163B	
Voltage Ripple Regulation	
Decoupling Capacitors	
Series Damping Resistors on Outputs	
Receiver Layout	30
Stabilized TMDS Inputs	
Staggered Outputs and Two Pixels per Clock	
Packaging	33
ePad Enhancement	
PCB Thermal Land Area	
100-pin TQFP Package Dimensions and Marking Specification	35
Marking Specification	
Ordering Information	

LIST OF TABLES

Table 1. Setup and Hold Times at Various Data Rates	6
Table 2. Sil 163B Dual Link Pin Definitions	13
Table 3. Sil 163B Dual Link Pin Configuration	15
Table 4. DVI-D Connector to SiI 163B for Dual Link Application Pin Connection	19
Table 5. One Pixel/Clock Mode Data Mapping	20
Table 6. Two Pixel/Clock Mode Data Mapping	20
Table 6. Two Pixel/Clock Mode Data Mapping	21
Table 8. Two Pixels/Clock Input/Output TFT Mode	22
Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode	
Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode	
Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode	
Table 12. Output Clock Configuration by Typical Application	
Table 13. SiI 161A vs. SiI 163B Pin Differences	
Table 14. Sil 161B vs. Sil 163B Pin Differences	
Table 15. Recommended Components	29
LIST OF FIGURES	
Figure 1. Functional Block Diagram	2
Figure 2. Digital Output Transition Times	
Figure 3. Receiver Clock Cycle/High/Low Times	
Figure 4. Channel-to-Channel Skew Timing	7
Figure 5. Output Setup/Hold Timings	
Figure 6. Output Signals Disabled Timing from Clock Inactive	8
Figure 7. Wake-Up on Clock Detect	
Figure 8. Output Signals Disabled Timing from PD# Active	
Figure 9. SCDT Timing from DE Inactive or Active	
Figure 10. Two Pixel per Clock Staggered Output Timing Diagram	
Figure 11. Sil 163B Dual Link Block Diagram	
Figure 12. Timing Diagram of Master's Output	
Figure 13. Timing Diagram of Slave's Output	
Figure 14. Single/Dual Link Timing Diagram	
Figure 15. Block Diagram for OCK_INV#	
Figure 16. Voltage Regulation using TL431	
Figure 17. Voltage Regulation using LM317	28
Figure 18. Decoupling and Bypass Capacitor Placement	29
Figure 19. Decoupling and Bypass Schematic	
Figure 21. DVI Dual Link Rx PCB Routing Example – Top View	21
Figure 23. DVI Dual Link Rx PCB Routing Example - Top Signals Top View	
Figure 24. Stabilizing SCDT	
Figure 25. ePad Diagram	
Figure 26. ePad Template Layout	
Figure 27. Package Dimensions and Marking Specification	35
	5 0

General Description


The SiI 163B receiver uses PanelLink Digital technology to support high-resolution (24 bit/pixel, 16M colors) displays up to UXGA and beyond, with dual-link DVI for a total bandwidth up to 330 megapixels per second.

All PanelLink products are designed on a scaleable CMOS architecture, ensuring support for future performance enhancements while maintaining the same logical interface. System designers can be assured that the interface will be stable through a number of technology and performance generations.

PanelLink Digital technology simplifies PC and display interface design by resolving many of the system level issues associated with high-speed mixed signal design, providing the system designer with a digital interface solution that is quicker to market and lower in cost.

Features

- Low Power Operation: 280mA max. current consumption at 3.3V core operation
- Sync Detect feature for Plug & Display "Hot Plugging"
- Cable Distance Support: over 5m with twistedpair, fiber-optics ready
- Compliant with DVI 1.0
- Low power standby mode
- Automatic entry into standby mode with clock detect circuitry
- Dual-Link DVI support with two devices configured as master and slave

Functional Description

The SiI 163B is a DVI 1.0 compliant PanelLink receiver in a compact package. It provides 48 bits for data output to allow for panel support up to UXGA and dual-link applications. Figure 1 shows the functional blocks of the chip.

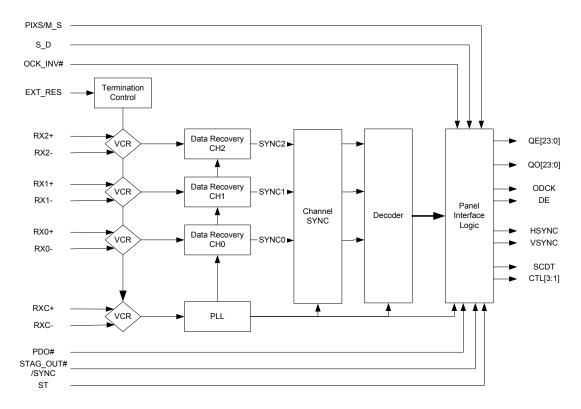


Figure 1. Functional Block Diagram

The PanelLink TMDS core accepts as inputs the three TMDS differential data lines and the differential clock. The core senses the signals on the link and properly decodes them providing accurate pixel data. The core outputs the necessary sync signals (HSYNC, VSYNC), clock (ODCK), and a DE signal that goes high when the active region of the video is present.

The SCDT signal is output when there is active video on the DVI link and the PLL in the TMDS has locked on to the video. SCDT can be used to trigger external circuitry, indicating that an active video signal is present or used to place the device in power down when no signal is present (by tying it to PD#). The EXT_RES component is used for impedance matching.

When Single/Dual Link Mode (S_D) is HIGH, the signals M_S and SYNC are used to select and coordinate operation of two receivers in a dual-link DVI configuration. In this mode, at frequencies up to 165 MHz, the master receiver outputs two pixels/clock (48 data bits). At frequencies above 165 MHz, the master outputs even pixels (24 bits) while the slave receiver outputs odd pixels (24 bits) synchronized with one DE output from the master.

2

Electrical Specifications

Absolute Maximum Conditions

Symbol	Parameter	Min	Тур	Max	Units
V_{CC}	Supply Voltage 3.3V (note 1)	-0.3		4.0	V
V _I	Input Voltage	-0.3		V _{CC} + 0.3	V
Vo	Output Voltage (note 2)	-0.3		V _{CC} + 0.3	V
T _J	Junction Temperature			125	°C
T _{STG}	Storage Temperature	-65		150	°C

Notes

- 1. Permanent device damage may occur if absolute maximum conditions are exceeded.
- 2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.

Normal Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
V_{CC}	Supply Voltage	3.0	3.3	3.6	V
V_{CCN}	Supply Voltage Noise			100	mV_{P-P}
T _A	Ambient Temperature (with power applied)	0	25	70	°C
θ_{JA}	Thermal Resistance Junction to Ambient – ePad soldered		21		°C/W
$ heta_{JAU}$	Thermal Resistance Junction to Ambient – ePad unsoldered		30		°C/W

Silicon Image recommends soldering of ePad to improve thermal performance, especially at highest speeds. Note

1. θ_{JA} value based on 100% soldered down on multi-layer board.

Digital I/O Specifications

Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{IH}	High-level Input Voltage		2			V
V _{IL}	Low-level Input Voltage				0.8	V
V_{OH}	High-level Output Voltage		2.4			V
V_{OL}	Low-level Output Voltage				0.4	V
V_{CINL}	Input Clamp Voltage ¹	I _{CL} = -18mA			GND -0.8	V
V_{CIPL}	Input Clamp Voltage ¹	I _{CL} = 18mA			IVCC + 0.8	V
V_{CONL}	Output Clamp Voltage ¹	I _{CL} = -18mA			GND -0.8	V
V_{COPL}	Output Clamp Voltage ¹	I _{CL} = 18mA			OVCC + 0.8	V
I _{OL}	Output Leakage Current	High Impedance	-10		10	μΑ

Note

1. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater than 3 ns or one third of the clock cycle.

DC Specifications

Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OHD}	Output High Drive Data and	V _{OUT} = 2.4 V; ST = 1	7.4	12.6	18.2	mA
	Controls	ST = 0	3.8	6.4	9.2	
I _{OLD}	Output Low Drive Data and	$V_{OUT} = 0.8 \text{ V}; ST = 1$	-11.1	-12.6	-13.6	mA
	Controls	ST = 0	-5.5	-6.4	-6.9	
		$V_{OUT} = 0.4 \text{ V}; ST = 1$	-6.3	-6.9	-7.6	mA
		ST = 0	-3.2	-3.5	-3.8	
I _{OHC}	ODCK, DE High Drive	$V_{OUT} = 2.4 \text{ V}; ST = 1$	14.7	23.8	34.3	mA
		ST = 0	7.5	11.5	17.6	
I _{OLC}	ODCK, DE Low Drive	$V_{OUT} = 0.8V;$ ST = 1	-21.2	-26.7	-27.5	mA
		ST = 0	-11.1	-12.5	-13.9	
		$V_{OUT} = 0.4 \text{ V}; ST = 1$	-12.3	-13.6	-15.9	mA
		ST = 0	-6.2	-6.8	-7.6	
V_{ID}	Differential Input Voltage Single Ended Amplitude		75		1000	mV
I_{PD}	Power-down Current	PD#=LOW, No RXC+ input			1	mΑ
I _{CLKI}	Power-down Current	PD#=HIGH, No RXC+ input			3	mA
I _{PDO}	Receiver Supply Current with	ODCK=87.5 MHz,			133	mA
	Outputs Powered Down	2-pixel/clock mode				
		$C_{LOAD} = 10pF$				
		$R_{EXT_SWING} = 510 \text{ ohm}$				
		PDO# = LOW				
I _{CCR}	Receiver Supply Current	ODCK=87.5 MHz,			240	mΑ
		2-pixel/clock mode				
		C _{LOAD} = 10pF				
		$R_{EXT_SWING} = 510 \text{ ohm}$				
		Typical Pattern ¹				
		ODCK=87.5 MHz, 0°C			280	mA
		2-pixel/clock mode				
		C _{LOAD} = 10pF				
		$R_{\text{EXT_SWING}} = 510 \text{ ohm}$				
		Worst Case Pattern ²				

Notes

- 1. The Typical Pattern contains a gray scale area, checkerboard area, and text.
- 2. The Worst Case Pattern consists of a black and white checkerboard pattern; each checker is two pixels wide.

AC Specifications
Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
T _{DPS}	Intra-Pair (+ to -) Differential Input Skew ¹	165MHz		7.	245	ps
T _{CCS}	Channel to Channel Differential Input Skew ¹	165MHz			4	ns
T _{IJIT}	Worst Case Differential Input Clock Jitter	65 MHz			465	ps
	tolerance ^{2,3}	112 MHz			270	ps
		165 MHz			182	ps
D _{LHT}	Low-to-High Transition Time: Data and Controls	$C_L = 10pF; ST = 1$			2.6	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	$C_L = 5pF; ST = 0$			2.7	ns
	Low-to-High Transition Time: Data and Controls	$C_L = 10pF; ST = 1$			2.4	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	$C_L = 5pF; ST = 0$			3.0	ns
	Low-to-High Transition Time: ODCK	$C_L = 10pF; ST = 1$			1.3	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	$C_L = 5pF; ST = 0$			1.7	ns
	Low-to-High Transition Time: ODCK	$C_L = 10pF; ST = 1$			1.4	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	$C_L = 5pF; ST = 0$			1.7	ns
D _{HLT}	High-to-Low Transition Time: Data and Controls	$C_L = 10pF; ST = 1$			2.8	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	$C_L = 5pF; ST = 0$			3.4	ns
	High-to-Low Transition Time: Data and Controls	$C_L = 10pF; ST = 1$			2.3	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	$C_L = 5pF; ST = 0$			3.3	ns
	High-to-Low Transition Time: ODCK	$C_L = 10pF; ST = 1$			1.1	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	$C_L = 5pF; ST = 0$			1.5	ns
	High-to-Low Transition Time: ODCK	$C_L = 10pF; ST = 1$			1.2	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	$C_L = 5pF; ST = 0$			1.5	ns
T _{SETUP}	Data, DE, VSYNC, HSYNC, and CTL[3:1] Setup	$C_L = 10pF; ST = 1$	0.9			ns
	Time to ODCK falling edge (OCK_INV# = 0) or to ODCK rising edge (OCK_INV# = 1) at 165 MHz	0 5 5 0 0	(1.4) ⁶			
	OBORTISING edge (OOR_INV# = 1) at 100 Minz	$C_L = 5pF; ST = 0$	0.7 (0.5) ⁶			ns
T _{HOLD}	Data, DE, VSYNC, HSYNC, and CTL[3:1] Hold Time	C _L = 10pF; ST = 1	2.7			ns
HOLD	from ODCK falling edge (OCK_INV# = 0) or from		$(2.3)^6$			110
	ODCK rising edge (OCK_INV# = 1) at 165 MHz	C _L = 5pF; ST = 0	3.0			ns
		- 1 /	$(2.6)^6$			
R _{CIP}	ODCK Cycle Time ¹ (1-pixel/clock)		6.06		40	ns
F _{CIP}	ODCK Frequency ¹ (1-pixel/clock)		25		165	MHz
R_{CIP}	ODCK Cycle Time ¹ (2-pixels/clock)		12.1		80	ns
F _{CIP}	ODCK Frequency ¹ (2-pixels/clock)		12.5		82.5	MHz
R_{CIH}	ODCK High Time⁴	$C_L = 10pF; ST = 1$	1.7			ns
	165 MHz, 1 pixel/clock,	$C_L = 5pF; ST = 0$	1.3			ns
R _{CIL}	ODCK Low Time ⁴ PIXS=0.	$C_L = 10pF; ST = 1$	2.0			ns
		$C_L = 5pF; ST = 0$	1.4			ns
T _{PDL}	Delay from PD# / PDO# Low to high impedance outputs ¹				10	ns
T _{HSC}	Link disabled (DE inactive) to SCDT low ¹			100		ms
	Link disabled (Tx power down) to SCDT low ⁵				250	ms
T _{FSC}	Link enabled (DE active) to SCDT high ¹	5.40		25	40	DEedges
T _{CLKPD}	Delay from RXC+ Inactive to high impedance outputs	RXC <u>+</u> = 25MHz			10	μS
T _{CLKPU}	Delay from RXC+ active to data active	RXC <u>+</u> = 25MHz			100	μS
T _{ST}	ODCK high to even data output ¹		_	0.25		R _{CIP}
T _{OSK}	Output Skew from Slave to Master Data buses ⁷	165 MHz	300		300	ps

5

Notes on previous table:

- 1. Guaranteed by design.
- 2. Jitter defined per DVI 1.0 Specification, Section 4.6 Jitter Specification.
- 3. Jitter measured with Clock Recovery Unit per DVI 1.0 Specification, Section 4.7 Electrical Measurement Procedures.
- 4. Output clock duty cycle is independent of the differential input clock duty cycle and the IDCK duty cycle.
- 5. Measured with transmitter powered down.
- 6. Value in parentheses is specified with OCK INV#=1.
- 7. Skew between output data buses when two SiI 163B are wired in master-slave configuration for dual-link. See the Receiver Layout section on page 30. The 'minimum' is the limit of Slave leading Master (slave data output earlier than master data). The 'maximum' is the limit of Slave lagging Master (slave data output later than master data). When the Slave lags the Master, then the setup time available from Slave data to ODCK (from the Master) is reduced.

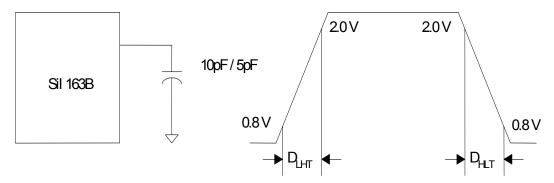
Setup and Hold Timings for Data Rates other than 165 MHz

The measurements shown above are minimum setup and hold timings based on the maximum data rate of 165 MHz. To estimate the setup and hold times for slower data rates (for either different resolutions or 2 pixel per clock mode), the following formula can be used:

Time (at new frequency) = Time (165 MHz) + (Clock Period at new frequency – Clock Period at 165 MHz)/2

For the case of high strength output (ST=1) with a 10pf load, and using the standard ODCK (OCK_INV# = 0), Table 1 shows the minimum set up and hold times for other speeds as follows:

Data Rate (MHz) Clock (ns) Setup (ns) Hold (ns) 112 8.9 2.3 4.1 SXGA 1 pixel/clock 56 17.9 6.8 8.6 SXGA 2 pixels/clock 135 7.4 1.6 3.4 SXGA+ 1 pixel/clock 7.1 SXGA+ 2 pixels/clock 67.5 14.8 5.3 UXGA 2 pixels/clock 82.5 12.1 3.9 5.7


Table 1. Setup and Hold Times at Various Data Rates

Designers may want to check whether OCK+INV#=0 or OCK_INV#=1 provides better setup and hold time margin for their dual-link design. If Slave data lags Master data, which is in part determined by the layout, then the setup time from Slave to clock may be reduced, and the opposite ODCK edge may be more useful.

Timing Diagrams

Figure 2. Digital Output Transition Times

Note:

1. 10pF loading used at ST=1 and 5pF loading using at ST=0

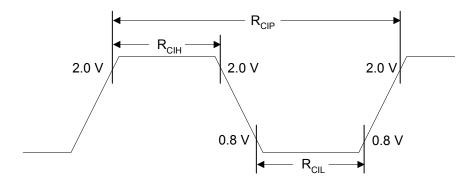


Figure 3. Receiver Clock Cycle/High/Low Times

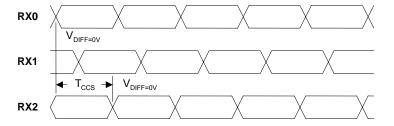


Figure 4. Channel-to-Channel Skew Timing

Output Timing

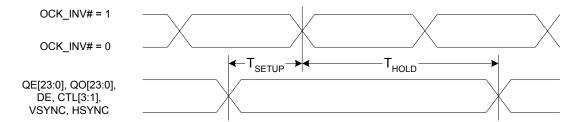


Figure 5. Output Setup/Hold Timings

Note

- 1. Output Data, DE and Control Signals Setup/Hold Times to ODCK Falling Edge when OCK_INV# = 0, or to ODCK Rising Edge when OCK_INV# = 1.
- 2. See also the description of layout guidelines which guarantee limited skew between master and slave outputs in the Receiver Layout section on page 30.

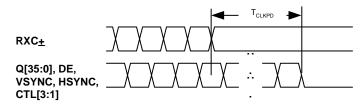


Figure 6. Output Signals Disabled Timing from Clock Inactive

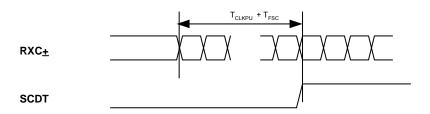


Figure 7. Wake-Up on Clock Detect

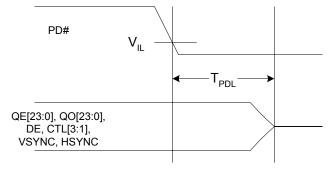


Figure 8. Output Signals Disabled Timing from PD# Active

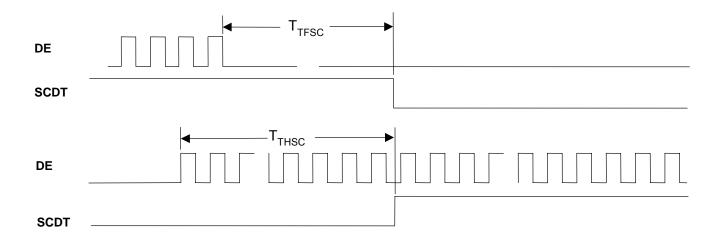


Figure 9. SCDT Timing from DE Inactive or Active

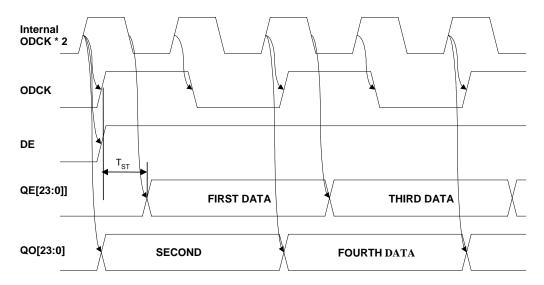


Figure 10. Two Pixel per Clock Staggered Output Timing Diagram

Pin Descriptions

Output Pins

Pin Name	Pin #	Туре	Description
	See Sil 163B	Out	Output Even Data[23:0]. Refer to the Dual Link section on page 13 for details. Output data is synchronized with output data clock (ODCK).
QE23- QE0	Pin Diagram		Refer to the TFT Panel Data Mapping section on page 20, which tabulates the relationship between the input data to the transmitter and output data from the receiver.
			A low level on PD# or PDO# will put the output drivers into a high impedance (tristate) mode. A weak internal pull-down device brings each output to ground.
	See Sil 163B	Out	Output Odd Data[23:0]. Refer to the Dual Link section on page 13 for details. Output data is synchronized with output data clock (ODCK).
0000	Pin		Output data is synchronized with output data clock (ODCK).
QO23- QO0	Diagram		Refer to the TFT Panel Data Mapping section on page 20, which tabulates the relationship between the input data to the transmitter and output data from the receiver.
			A low level on PD# or PDO# will put the output drivers into a high impedance (tristate) mode. A weak internal pull-down device brings each output to ground.
ODCK	44	Out	Output Data Clock. This output can be inverted using the OCK_INV# pin. A low level on PD# or PDO# will put the output driver into a high impedance (tri-state) mode. A weak internal pull-down device brings the output to ground.
DE	46	Out	Output Data Enable. This signal qualifies the active data area. A HIGH level signifies active display time and a LOW level signifies blanking time. This output signal is synchronized with the output data. A low level on PD# or PDO# will put the output driver into a high impedance (tri-state) mode. A weak internal pull-down device brings the output to ground.
HSYNC	48	Out	Horizontal Sync input control signal.
VSYNC	47	Out	Vertical Sync input control signal.
CTL1	40	Out	General output control signal 1. This output is not powered down by PDO#.
CTL2 CTL3	41 42	Out Out	General output control signal 2.
CILS	42	Out	General output control signal 3. A low level on PD# or PDO# will put the output drivers (except CTL1 by PDO#) into a high impedance (tri-state) mode. A weak internal pull-down device brings each output to ground.

Configuration Pins

Pin Name	Pin#	Туре	Description
OCK_INV#	100	In	ODCK Polarity. A LOW level selects normal ODCK output. A HIGH level selects inverted ODCK output. All other output signals are unaffected by this pin. They will
PIXS/M S	4	In	maintain the same timing no matter the setting of OCK_INV# pin When S D pin is LOW (Single Link), this pin selects 1-pixel/clock mode (LOW) or 2-
_			pixel/clock mode (HIGH). When S_D pin is HIGH (Dual Link), this pin is Master Slave Mode Select.
STAG_OUT# /SYNC	7	In	When S_D pin is LOW (Single Link), this pin selects Staggered Output. A HIGH level selects normal simultaneous outputs on all odd and even data lines. A LOW level selects staggered output drive. This function is only available in 2-pixels per clock mode. When S_D pin is HIGH (Dual Link), this pin is an input pin on the Slave receiver for the DE signal from the master receiver, used for synchronization.
ST	3	In	Output Drive. A HIGH level selects HIGH output drive strength. A LOW level selects LOW output drive strength.
S_D	1	In	Single/Dual Link Mode. A LOW level selects Single Link mode. A HIGH level selects Dual Link mode. This affects the operation of SYNC, M_S and the two 24-bit data output buses.

Power Management Pins

Pin Name	Pin#	Туре	Description
SCDT	8	Out	Sync Detect. A HIGH level is outputted when DE is actively toggling indicating that the link is alive. A LOW level is outputted when DE is inactive, indicating the link is down. Can be connected to PDO# to power down the outputs when DE is not detected. The SCDT output itself, however, remains in the active mode at all times.
PDO#	9	In	Output Driver Power Down (active LOW). A HIGH level indicates normal operation. A LOW level puts all the output drivers only (except SCDT and CTL1) into a high impedance (tri-state) mode. A weak internal pull-down device brings each output to ground. PDO# is a sub-set of the PD# description. The chip is not in power-down mode with this pin. SCDT and CTL1 are not tri-stated by this pin.
PD#	2	In	Power Down (active LOW). A HIGH level indicates normal operation. A LOW level indicates power down mode. During power down mode, all the output drivers are put into a high impedance (tri-state) mode. A weak internal pull-down device brings each output to ground. Additionally, all analog logic is powered down, and all inputs are disabled.

Differential Signal Data Pins

Pin Name	Pin #	Type	Description
RX0+	90	Analog	TMDS Low Voltage Differential Signal input data pairs.
RX0-	91	Analog	
RX1+	85	Analog	
RX1-	86	Analog	
RX2+	80	Analog	
RX2-	81	Analog	
RXC+	93	Analog	TMDS Low Voltage Differential Signal input clock pair.
RXC-	94	Analog	
EXT_RES	96	Analog	Impedance Matching Control. An external 390 ohm resistor must be connected
			between AVCC and this pin.

Reserved Pin

Pin Name	Pin#	Type	Description
RESERVED	99	In	Must be tied HIGH for normal operation.

Power and Ground Pins

Pin Name	Pin #	Туре	Description
VCC	6,38,67	Power	Digital Core VCC, must be set to 3.3V.
GND	5,39,68	Ground	Digital Core GND.
OVCC	18,29,43,57,78	Power	Output VCC, must be set to 3.3V.
OGND	19,28,45,58,76	Ground	Output GND.
AVCC	82,84,88,95	Power	Analog VCC must be set to 3.3V.
AGND	79,83,87,89,92	Ground	Analog GND.
PVCC	97	Power	PLL Analog VCC must be set to 3.3V.
PGND	98	Ground	PLL Analog GND.

Feature Information

The SiI 163B can be configured in two modes: Single Link and Dual Link. When in Single Link (S_D is LOW), the device operates in either 1-pixel/clock or 2-pixel/clock mode, according to the state of the PIXS pin. There is no communication with a second receiver. In this mode, the SiI 163B operates in the same way as the other PanelLink receivers: SiI 143B, SiI 151B, SiI 153B and SiI 161B.

In Dual Link mode, two SiI 163B's operate together to handle bandwidths up to 330 megapixels per second. The configuration and management of this mode is detailed in the following sections. Dual Link mode may operate across a pixel frequency of 25 MHz to 330 MHz. Below 165 MHz, the second TMDS channel is quiescent. All pixel data is sent across the first TMDS channel, and handled by the Master SiI 163B receiver. Above 165 MHz, both SiI 163B receivers are active, with the pixels alternating even-and-odd from Master to Slave, driven by the two TMDS DVI channels.

Dual Link

Two SiI 163B's are required for a DVI compatible Dual Link application as configured in the block diagram of Figure 11. At pixel frequencies up to 165 MHz, the system does not send any data over the second link connected to the Slave receiver. Therefore, the Slave receiver is not active and its outputs are tri-stated. All the data, both EVEN and ODD pixels, are sent over the TMDS link connected to the Master receiver. Therefore all the data, both EVEN and ODD pixels, is output by the Master receiver.

At pixel frequencies above 165 MHz, the system sends EVEN data over the link connected to the Master receiver and the ODD data over the link connected to the Slave receiver. Therefore, the EVEN data is output by the Master receiver and the ODD data is output by the Slave receiver. The Master receiver's ODD data bus is tristated to allow the Slave receiver's EVEN Data bus to output the ODD data.

Dual Link Configuration Pins

Five pins on the SiI 163B need to be considered for Dual Link receiver applications.

Table 2. Sil 163B Dual Link Pin Definitions

Pin Name	Pin#	Type	Description
S_D	1	In	Single/Dual Link Mode. When HIGH, it is in Dual Link Mode. When LOW it is in Single Link Mode. The Slave receiver is always in Dual Link mode. The Master receiver switches between Single and Dual Link mode depending upon the SCDT output of the Slave receiver that is connected to the S_D input of the Master receiver.
PIXS / M_S	4	In	Master/Slave. When S_D pin is HIGH (Dual Link), this pin becomes M_S. When HIGH, it is in Master mode. When LOW, it is in Slave mode. The Master receiver is in one/two-pixels per clock mode depending upon Single/Dual Link operation. The Slave receiver is always in one-pixel per clock mode. When S_D is LOW (Single Link), this pin becomes PIXS.
STAG_OUT / SYNC	7	In	Synchronization. When S_D pin is HIGH (Dual Link), this pin is used to synchronize the Slave receiver to the Master receiver. The SYNC input pin of the Slave receiver is connected to the DE output pin of the Master receiver.
SCDT	8	Out	Sync Detect. When HIGH, there are valid sync signals coming from the transmitter. When LOW, there are no sync signals coming from the transmitter. The SCDT pin of the Slave receiver is connected to the S_D pin of the Master receiver.
DE	46	Out	Data Enable. This signal qualifies the active data area. A HIGH level signifies active display time and a LOW level signifies blanking time. This output signal is synchronized with the output data. The DE output pin of the Master is connected to the SYNC input pin of the Slave.

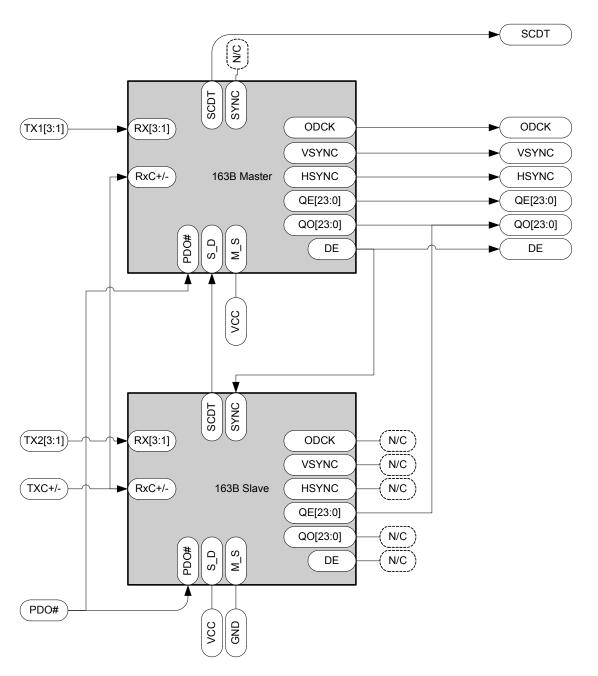


Figure 11. Sil 163B Dual Link Block Diagram

Master -

The Master receiver will automatically configure to either Single or Dual Link operation (two or one pixel per clock mode, respectively) depending on the transmitter system output. This is accomplished by connecting the SCDT output pin of the Slave to the S_D pin on the Master. When the transmitter sends data on the second link, the SCDT output of the slave (and the S_D pin on the Master) is driven HIGH, setting to Dual Link (one-pixel per clock) mode. If there is no data on the second link, the SCDT output of the Slave (and the S_D pin on the Master) is driven LOW, and the Master receiver is in Single Link (two-pixels per clock) mode.

The Master receiver is configured by pulling the M_S pin to HIGH. When it is in Dual Link mode, the Master receiver is in one-pixel per clock mode outputting the EVEN data. The Master receiver's ODD data bus is tri-stated to allow the Slave receiver's EVEN data bus to be used as the ODD data bus. When it is in Single Link mode, the Master receiver is in two-pixels per clock mode outputting both the EVEN and ODD data. The Slave receiver's EVEN data bus is tri-stated to allow the Master receiver's ODD data bus to be used as the ODD data.

The DE output pin of the Master receiver is connected to the SYNC input pin of the Slave receiver. This is used for output synchronization between the Master receiver and Slave receiver. DE, HSYNC, VSYNC, and ODCK are all connected from the Master receiver.

Slave -

The Slave receiver is always configured for Dual Link (one pixel/clock) operation, by tying the S_D pin to HIGH. The Slave receiver is never used in Single Link mode since the Master receiver is the primary receiver for Single Link Operation.

The Slave receiver is configured by tying the M_S pin to LOW. The Slave receiver will always contain the ODD data bus in Dual Link operation. Therefore, it will never be in two-pixels per clock mode.

The SCDT output pin of the Slave receiver is connected to the S_D input pin of the Master receiver to automatically configure the Master for either Single or Dual Link mode depending upon whether the Slave receiver is active or not.

The SYNC input pin of the Slave receiver is connected to the DE output pin of the Master receiver for synchronization.

Since DE, HSYNC, VSYNC, and ODCK are all taken from the Master receiver, these pins are not connected from the Slave receiver.

S D PIXS/M S Master / Slave Description Not Used 0 0 Single Link One Pixel/Clock Mode. Not supported. 0 1 Master Single Link Two Pixel/Clock Mode. This is the mode that the Master receiver will be in when in Single Link mode for pixel clock frequencies less than or equal to 165MHz. 1 0 Dual Link Slave (One Pixel/Clock) Mode. This is the mode that the Slave Slave receiver will always be in for pixel clock frequencies greater than 165MHz and less than 330MHz. Dual Link Master (One Pixel/Clock) Mode. This is the mode that the 1 1 Master Master receiver will be in when in Dual Link mode for pixel clock frequencies greater than 165MHz and less than 330MHz.

Table 3. SiI 163B Dual Link Pin Configuration

Dual Link Power Management

Power management with PD# and PDO# is slightly different in a Dual Link design than a Single Link. When the receivers are in dual-link mode (S_D=1), then the connection from SCDT to PDO# is internal. A receiver which detects no activity at the TMDS inputs will deassert SCDT, which will then put that chip into power-down-output mode. This is the process which enables the slave receiver to tri-state its outputs whenever it stops receiving data.

The outputs may also be directly tri-stated by asserting the PDO# pin.

Receivers will also enter a low-power state when the differential TMDS clock stops. The receiver awakens when the clock resumes, at which point the receiver begins checking for active data. Active data will assert SCDT and put the chip back into full-power mode.

Dual Link Mode Selection

Single Link Mode -

In Single Link mode, the Slave receiver is not active. Its outputs are all tri-stated. The Slave receiver will detect that there is no signal coming from the transmitter and de-assert SCDT to LOW. The SCDT pin from the Slave receiver is connected to the Master receiver's S_D pin. This will cause the S_D pin of the Master receiver to be LOW that will cause the Master receiver to be in Single Link mode. Since the Master receiver is in Single Link mode, it will output two-pixels per clock. All the Data, both EVEN and ODD pixels, will be output from the Master receiver. The Slave receiver's EVEN Data bus is tri-stated to allow the Master receiver's ODD Data bus to be used as the ODD Data.

Dual Link Mode -

In Dual Link mode, the Slave receiver is active. The Slave receiver will detect that there are valid signals coming from the transmitter and assert SCDT to HIGH. This will cause the S_D pin of the Master receiver to be HIGH that will cause the Master receiver to be in Dual Link mode. This will also cause the Master receiver to tri-state its Odd Data bus to allow the Slave receiver's EVEN Data bus to be used as the ODD Data. The Master receiver will output the EVEN Data. When there are no sync signals coming from the transmitter, both the Slave and Master receiver's outputs are tri-stated automatically.

The STAG_OUT pin of the Slave receiver is not used in one-pixel per clock mode, so this takes on a different meaning in Dual Link mode. It becomes SYNC input pin. This pin is used for synchronization between the Master and Slave receivers. The DE output pin from the Master receiver is connected to the SYNC input pin of the Slave receiver.

16

Dual Link Timing Diagrams

Below in Figure 12 is an example of the output timing diagram of the Master receiver. When the Slave receiver's SCDT signal is LOW, the Slave receiver is inactive and has tri-stated all its data outputs. This is because the system is sending data with a pixel clock of less than or equal to 165. The DVI link uses the Master receiver only. There are no signals being sent to the Slave receiver from the system. The Master receiver is in Single Link 2-pixel/clock mode and outputs the pixel data, both EVEN and ODD pixels.

When the Slave receiver's SCDT signal goes HIGH, the system is sending sata with a pixel clock greater than 165 MHz and less then 330 MHz. The system is sending the EVEN pixel to the Master receiver and the ODD pixel to the Slave receiver. The Slave receiver is receiving signals from the system and has asserted its SCDT signal to the Master receiver. This puts the Master receiver in Dual Link 1-pixel/clock mode. The Slave receiver outputs the ODD pixel data. The Master receiver outputs the EVEN pixel data. The Master receiver has tri-stated its ODD pixel bus to allow the Slave receiver to send ODD pixel data.

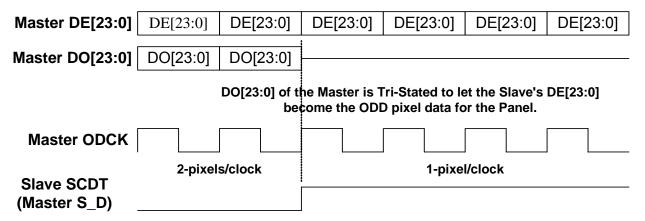


Figure 12. Timing Diagram of Master's Output

Figure 13 is an example of the output timing diagram of the Slave receiver. When the Slave receiver's SCDT signal is LOW, the Slave receiver is inactive and has tri-stated all its outputs. This is because the system is sending data with a pixel clock of less than or equal to 165 MHz on the link connected to the Master receiver only. There are no signals being sent to the Slave receiver from the system.

When the Slave receiver's SCDT signal goes HIGH, the system is sending data with a pixel clock greater than 165 MHz and less than 330 MHz. The system is sending the EVEN pixel to the Master receiver and the ODD pixel to the Slave receiver. The Slave receiver is receiving signals from the system and has asserted its SCDT signal to the Master receiver. This puts the Master receiver in Dual Link 1-pixel/clock mode. The Slave receiver is outputting the ODD pixel data on its EVEN pixel bus. The Master receiver outputs the EVEN pixels. The Master receiver has tri-stated its ODD pixel bus to allow the Slave receiver to send ODD pixel data.

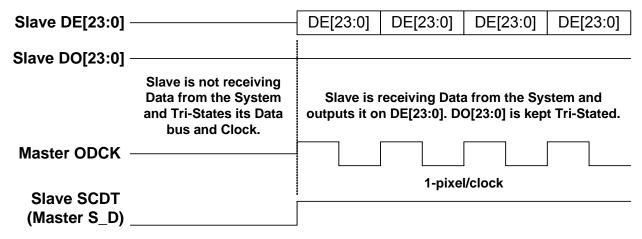


Figure 13. Timing Diagram of Slave's Output

Figure 14 is an example of the data that is driven out by the two receivers. All the control signals, including ODCK, are sent by the Master receiver.

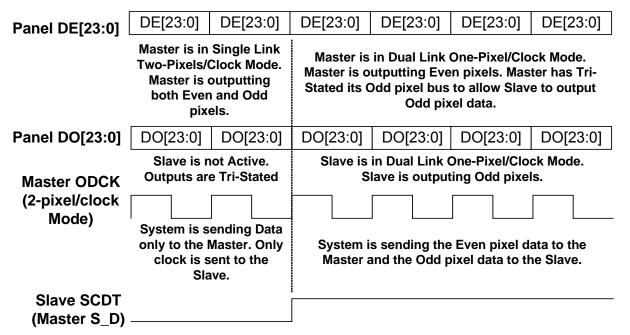


Figure 14. Single/Dual Link Timing Diagram

DVI-D Connector			Sil 163B - Master	Sil 163B - Slave		
Pin #	Signal	Pin#	Pin Name	Pin#	Pin Name	
1	TMDS Data2-	81	Rx2- for Master			
2	TMDS Data2+	80	Rx2+ for Master			
3	TMDS Data2/4 Shield					
4	TMDS Data4-			86	Rx1- for Slave	
5	TMDS Data4+			85	Rx1+ for Slave	
6	DDC Clock					
7	DDC Data					
8	NC					
9	TMDS Data1-	86	Rx1- for Master			
10	TMDS Data1+	85	Rx1+ for Master			
11	TMDS Data1/3 Shield					
12	TMDS Data3-			91	Rx0- for Slave	
13	TMDS Data3+			90	Rx0+ for Slave	
14	+5V Power					
15	Ground					
16	Hot Plug Detect					
17	TMDS Data0-	91	Rx0- for Master			
18	TMDS Data0+	90	Rx0+ for Master			
19	TMDS Data0/5 Shield					
20	TMDS Data5-			81	Rx2- for Slave	
21	TMDS Data5+			80	Rx2+ for Slave	
22	TMDS Clock Shield					
23	TMDS Clock+	93	RxC+ for Master	93	RxC+ for Slave	
24	TMDS Clock-	94	RxC- for Master	94	RxC- for Slave	

Clock Detect Function

The SiI 163B includes a new power saving feature: power down with clock detect circuit. The SiI 163B will go into a low power mode when there is no video clock coming from the transmitter. In this mode, the entire chip is powered down except the clock detect circuitry. During this mode, digital I/O are set to a high impedance (tristate) mode. A weak internal pull-down device brings each output to ground. The device power down and wake-up times are shown in Figure 6 and Figure 7.

OCK_INV# Function

OCK_INV# affects only the phase of the clock output as indicated in Figure 15. OCK_INV# does not change the timing for the internal data latching. This timing is shown in Figure 5.

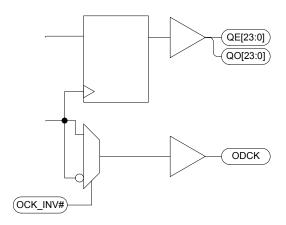


Figure 15. Block Diagram for OCK_INV#

TFT Panel Data Mapping

Table 5 summarizes the output data mapping in one pixel per clock mode for the SiI 163B. This output data mapping is dependent upon the PanelLink transmitters having the exact same type of input data mappings.

Table 6 summarizes the output data mapping in two pixel per clock mode. More detailed mapping information is found on the following pages. Refer to application note SiI-AN-0007 for DSTN applications.

Note that the choice of one pixel/clock versus two pixel/clock on the transmitter side has no effect on the choice of one pixel/clock versus two pixel/clock on the receiver side. The data is always sent across the link at the pixel clock rate. Therefore, designers using PanelLink receivers do not need to know how the transmitter has taken in pixel data on the transmitter input pins.

Table 5. One Pixel/Clock Mode Data Mapping

DATA	SiI 163B				
	1-Pixel/Clock Output				
	18bpp	24bpp			
BLUE[7:0]	QE[7:2]	QE[7:0]			
GREEN[7:0]	QE[15:10]	QE[15:8]			
RED[7:0]	QE[23:18]	QE[23:16]			

Table 6. Two Pixel/Clock Mode Data Mapping

DATA	SiI 163B				
	2-Pixel/Clock Output				
	18bpp	24bpp			
BLUE[7:0] - 0	QE[7:2]	QE[7:0]			
GREEN[7:0] - 0	QE[15:10]	QE[15:8]			
RED[7:0] - 0	QE[23:18]	QE[23:16]			
BLUE[7:0] - 1	QO[7:2]	QO[7:0]			
GREEN[7:0] - 1	QO[15:10]	QO[15:8]			
RED[7:0] – 1	QO[23:18]	QO[23:16]			

Note: SiI143B, SiI151B, SiI153B and SiI 161B all have the same pinout. The pin assignments shown in the following tables should also be used for these other receivers.

Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2[™] Compliant

TFT VG	A Output	Tx Inp	ut Data	Rx Outp	ut Data	TFT Panel Input	
24-bpp	18-bpp	160	164	163B	141B	24-bpp	18-bpp
В0		DIE0	D0	QE0	Q0	В0	
B1		DIE1	D1	QE1	Q1	B1	
B2	В0	DIE2	D2	QE2	Q2	B2	В0
В3	B1	DIE3	D3	QE3	Q3	В3	B1
B4	B2	DIE4	D4	QE4	Q4	B4	B2
B5	В3	DIE5	D5	QE5	Q5	B5	В3
B6	B4	DIE6	D6	QE6	Q6	B6	B4
B7	B5	DIE7	D7	QE7	Q7	B7	B5
G0		DIE8	D8	QE8	Q8	G0	
G1		DIE9	D9	QE9	Q9	G1	
G2	G0	DIE10	D10	QE10	Q10	G2	G0
G3	G1	DIE11	D11	QE11	Q11	G3	G1
G4	G2	DIE12	D12	QE12	Q12	G4	G2
G5	G3	DIE13	D13	QE13	Q13	G5	G3
G6	G4	DIE14	D14	QE14	Q14	G6	G4
G7	G5	DIE15	D15	QE15	Q15	G7	G5
R0		DIE16	D16	QE16	Q16	R0	
R1		DIE17	D17	QE17	Q17	R1	
R2	R0	DIE18	D18	QE18	Q18	R2	R0
R3	R1	DIE19	D19	QE19	Q19	R3	R1
R4	R2	DIE20	D20	QE20	Q20	R4	R2
R5	R3	DIE21	D21	QE21	Q21	R5	R3
R6	R4	DIE22	D22	QE22	Q22	R6	R4
R7	R5	DIE23	D23	QE23	Q23	R7	R5
Shift	Shift	IDCK	IDCK	ODCK	ODCK	Shift	Shift
CLK	CLK					CLK	CLK
VSYNC	VSYNC		VSYNC	VSYNC		VSYNC	VSYNC
HSYNC	HSYNC	HSYNC		HSYNC		HSYNC	HSYNC
DE	DE	DE	DE	DE	DE	DE	DE

For 18-bit mode, the Flat Panel Graphics Controller interfaces to the Transmitter exactly the same as in the 24-bit mode; however, 6 bits per channel (color) are used instead of 8. It is recommended that unused data bits be tied low. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB justified. The data is sent during active display time while the control signals are sent during blank time. Note that the three data channels (CH0, CH1, CH2) are mapped to Blue, Green and Red data respectively.

Table 8. Two Pixels/Clock Input/Output TFT Mode

			ck input/Output		
	A Output	Tx Input Data	Rx Output Data	TFT Par	
24-bpp	18-bpp	160	163B	24-bpp	18-bpp
B0 - 0		DIE0	QE0	B0 – 0	
B1 – 0		DIE1	QE1	B1 – 0	
B2 – 0	B0 – 0	DIE2	QE2	B2 – 0	B0 – 0
B3 – 0	B1 – 0	DIE3	QE3	B3 – 0	B1 – 0
B4 – 0	B2 – 0	DIE4	QE4	B4 – 0	B2 – 0
B5 – 0	B3 – 0	DIE5	QE5	B5 – 0	B3 – 0
B6 – 0	B4 – 0	DIE6	QE6	B6 – 0	B4 – 0
B7 – 0	B5 – 0	DIE7	QE7	B7 – 0	B5 – 0
G0 – 0		DIE8	QE8	G0 – 0	
G1 – 0		DIE9	QE9	G1 – 0	
G2 – 0	G0 – 0	DIE10	QE10	G2 – 0	G0 – 0
G3 – 0	G1 – 0	DIE11	QE11	G3 – 0	G1 – 0
G4 – 0	G2 – 0	DIE12	QE12	G4 – 0	G2 – 0
G5 – 0	G3 – 0	DIE13	QE13	G5 – 0	G3 – 0
G6 – 0	G4 – 0	DIE14	QE14	G6 – 0	G4 – 0
G7 – 0	G5 – 0	DIE15	QE15	G7 – 0	G5 – 0
R0 – 0	00 - U	DIE16	QE16	R0 – 0	<u> </u>
R0 = 0 R1 = 0		DIE16	QE17	R1 – 0	
R1 – 0	R0 – 0	DIE17	QE18	R1 – 0	R0 – 0
R2 – 0	R1 – 0	DIE19	QE19	R3 – 0	R1 – 0
R3 – 0 R4 – 0	R1 – 0	DIE 19	QE20	R3 – 0 R4 – 0	R1 – 0
R5 – 0	R3 – 0	DIE21	QE21	R5 – 0	R2 = 0
R6 – 0	R4 – 0	DIE21	QE21	R6 – 0	R4 – 0
R7 – 0	R5 – 0	DIE23	QE23	R7 – 0	R5 – 0
	K3 = 0		Q00		N3 – 0
B0 – 1		DIO0 DIO1	QO1	B0 – 1	
B1 – 1	DO 1			B1 – 1	DO 1
B2 – 1	B0 – 1	DIO2 DIO3	QO2 QO3	B2 – 1	B0 – 1 B1 – 1
B3 – 1 B4 – 1	B1 – 1 B2 – 1	DIO3	QO3	B3 – 1 B4 – 1	B2 – 1
B5 – 1	B3 – 1	DIO5	QO5	B5 – 1	B3 – 1
B6 – 1	B4 – 1	DIO6	QO6	B6 – 1	B4 – 1
B7 – 1	B5 – 1	DIO7	Q07	B7 – 1	B5 – 1
	D0 - 1				D0 - 1
G0 – 1		DIO8	Q08	G0 – 1 G1 – 1	
G1 – 1	00 1	DIO9	QO9		00 4
G2 – 1	G0 – 1	DIO10	QO10	G2 – 1	G0 – 1
G3 – 1	G1 – 1	DIO11	Q011	G3 – 1	G1 – 1
G4 – 1	G2 – 1	DIO12	QO12	G4 – 1	G2 – 1
G5 – 1	G3 – 1	DIO13	QO13	G5 – 1	G3 – 1
G6 – 1	G4 – 1	DIO14	QO14	G6 – 1	G4 – 1
G7 – 1	G5 – 1	DIO15	QO15	G7 – 1	G5 – 1
R0 – 1		DIO16	QO16	R0 – 1	
R1 – 1	D0 4	DIO17	QO17	R1 – 1	D0 4
R2 – 1	R0 – 1	DIO18	QO18	R2 – 1	R0 – 1
R3 – 1	R1 – 1	DIO19	QO19	R3 – 1	R1 – 1
R4 – 1	R2 – 1	DIO20	QO20	R4 – 1	R2 – 1
R5 – 1	R3 – 1	DIO21	QO21	R5 – 1	R3 – 1
R6 – 1	R4 – 1	DIO22	QO22	R6 – 1	R4 – 1
R7 – 1	R5 – 1	DIO23	QO23	R7 – 1	R5 – 1
ShiftClk/2	ShiftClk/2	IDCK	ODCK	Shift CLK	Shift CLK
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
DE	DE	DE	DE	DE	DE

Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode

. 24-bit One Pixe	el/Clock inp	ut with 24-b	it Iwo Pixeis/Ci	ock Output 1F
TFT VGA Output	Tx Inp	ut Data	Rx Output Data	TFT Panel Inpu
24-bpp	160	164	163B	24-bpp
В0	DIE0	D0	QE0	B0 – 0
B1	DIE1	D1	QE1	B1 – 0
B2	DIE2	D2	QE2	B2 – 0
B3	DIE3	D3	QE3	B3 – 0
B4	DIE4	D4	QE4	B4 – 0
B5	DIE5	D5	QE5	B5 – 0
B6	DIE6	D6	QE6	B6 – 0
B7	DIE7	D7	QE7	B7 – 0
G0	DIE8	D8	QE8	G0 – 0
G1	DIE9	D9	QE9	G1 – 0
G2	DIE10	D10	QE10	G2 – 0
G3	DIE11	D11	QE11	G3 – 0
G4	DIE12	D12	QE12	G4 – 0
G5	DIE13	D13	QE13	G5 – 0
G6	DIE14	D14	QE14	G6 – 0
G7	DIE15	D15	QE15	G7 – 0
R0	DIE16	D16	QE16	R0 – 0
R1	DIE17	D17	QE17	R1 – 0
R2	DIE18	D18	QE18	R2 – 0
R3	DIE19	D19	QE19	R3 – 0
R4	DIE20	D20	QE20	R4 – 0
R5	DIE21	D21	QE21	R5 – 0
R6	DIE22	D21	QE22	R6 – 0
R7	DIE23	D23	QE23	R7 – 0
IXI	DILZS	D23		
			QO0	B0 – 1
			Q01	B1 – 1
			QO2	B2 – 1
			QO3	B3 – 1
			Q04	B4 – 1
			QO5	B5 – 1
			QO6	B6 – 1
			Q07	B7 – 1
			QO8	G0 – 1
			QO9	G1 – 1
			QO10	G2 – 1
			QO11	G3 – 1
			QO12	G4 – 1
			QO13	G5 – 1
			QO14	G6 – 1
			QO15	G7 – 1
			QO16	R0 – 1
			QO17	R1 – 1
			QO18	R2 – 1
			QO19	R3 – 1
			QO20	R4 – 1
			QO21	R5 – 1
			QO22	R6 – 1
			0000	
			QO23	R7 – 1
Shift CLK	IDCK	IDCK	QO23 ODCK	Shift CLK/2
Shift CLK VSYNC	IDCK VSYNC	IDCK VSYNC	•	
			ODCK	Shift CLK/2

Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode

TFT VGA Output	Tx Inp	ut Data	Tx Out	put Data	TFT Panel Input
18-bpp	160	164	163B	141B	18-bpp
	DIE0	D0	QE0		10 344
	DIE1	D1	QE1		
B0	DIE2	D2	QE2	Q0	B0 – 0
B1	DIE3	D3	QE3	Q1	B1 – 0
B2	DIE4	D4	QE4	Q2	B1 – 0
B3	DIE5	D5	QE5	Q2 Q3	B3 – 0
B3	DIE6	D3	QE6	Q3 Q4	B4 – 0
	DIE7	D0	QE7		
B5				Q5	B5 – 0
	DIE8	D8	QE8		
	DIE9	D9	QE9		00 0
G0	DIE10	D10	QE10	Q6	G0 – 0
G1	DIE11	D11	QE11	Q7	G1 – 0
G2	DIE12	D12	QE12	Q8	G2 – 0
G3	DIE13	D13	QE13	Q9	G3 – 0
G4	DIE14	D14	QE14	Q10	G4 – 0
G5	DIE15	D15	QE15	Q11	G5 – 0
	DIE16	D16	QE16		
	DIE17	D17	QE17		
R0	DIE18	D18	QE18	Q12	R0 – 0
R1	DIE19	D19	QE19	Q13	R1 – 0
R2	DIE20	D20	QE20	Q14	R2 – 0
R3	DIE21	D21	QE21	Q15	R3 – 0
R4	DIE22	D22	QE22	Q16	R4 – 0
R5	DIE23	D23	QE23	Q17	R5 – 0
			QO0		
			QO1		
			QO2	Q18	B0 – 1
			QO3	Q19	B1 – 1
			Q04	Q20	B2 – 1
			QO5	Q21	B3 – 1
			QO6	Q22	B4 – 1
			Q07	Q23	B5 – 1
			QO8		
			QO9		
			QO10	Q24	G0 – 1
			Q011	Q25	G1 – 1
			QO12	Q26	G2 – 1
			QO13	Q27	G3 – 1
			Q014	Q28	G4 – 1
			QO15	Q29	G5 – 1
			QO16		-
			Q017		
			QO18	Q30	R0 – 1
			QO19	Q31	R1 – 1
			QO20	Q32	R2 – 1
			QO21	Q33	R3 – 1
			Q021 Q022	Q33 Q34	R3 – 1 R4 – 1
			Q022 Q023	Q34 Q35	R5 – 1
Shift CLV	IDCK	IDCK			Shift CLK/2
Shift CLK			ODCK	Shift CLK/2	
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
DE	DE	DE	DE	DE	DE

Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode

TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input						
24-bpp	18-bpp	160	163B	141B	24-bpp	18-bpp
B0 – 0	10 500	DIE0	QE0	Q0	В0	10 566
B1 – 0		DIE1	QE1	Q1	B1	
B2 – 0	B0 – 0	DIE2	QE2	Q2	B2	В0
B3 – 0	B1 – 0	DIE3	QE3	Q3	B3	B1
B4 – 0	B2 – 0	DIE4	QE4	Q4	B4	B2
B5 – 0	B3 – 0	DIE5	QE5	Q5	B5	B3
B6 – 0	B4 – 0	DIE6	QE6	Q6	B6	B3
B7 – 0	B5 – 0	DIE7	QE7	Q7	Во В7	B5
G0 – 0	D0 = 0	DIE8	QE8	Q8	G0	БЭ
G1 – 0		DIE9	QE9	Q9	G1	
G2 – 0 G3 – 0	G0 – 0	DIE10 DIE11	QE10 QE11	Q10 Q11	G2 G3	G0 G1
	G1 – 0					
G4 – 0	G2 – 0	DIE12	QE12	Q12	G4	G2
G5 – 0	G3 – 0	DIE13	QE13	Q13	G5	G3
G6 – 0	G4 – 0	DIE14	QE14	Q14	G6	G4
G7 – 0	G5 – 0	DIE15	QE15	Q15	G7	G5
R0 – 0		DIE16	QE16	Q16	R0	
R1 – 0		DIE17	QE17	Q17	R1	
R2 – 0	R0 – 0	DIE18	QE18	Q18	R2	R0
R3 – 0	R1 – 0	DIE19	QE19	Q19	R3	R1
R4 – 0	R2 – 0	DIE20	QE20	Q20	R4	R2
R5 – 0	R3 – 0	DIE21	QE21	Q21	R5	R3
R6 – 0	R4 – 0	DIE22	QE22	Q22	R6	R4
R7 – 0	R5 – 0	DIE23	QE23	Q23	R7	R5
B0 – 1		DIO0				
B1 – 1		DIO1				
B2 – 1	B0 – 1	DIO2				
B3 – 1	B1 – 1	DIO3				
B4 – 1	B2 – 1	DIO4				
B5 – 1	B3 – 1	DIO5				
B6 – 1	B4 – 1	DIO6				
B7 – 1	B5 – 1	DIO7				
G0 – 1		DIO8				
G1 – 1		DIO9				
G2 – 1	G0 – 1	DIO10				
G3 – 1	G1 – 1	DIO11				
G4 – 1	G2 – 1	DIO12				
G5 – 1	G3 – 1	DIO13				
G6 – 1	G4 – 1	DIO14				
G7 – 1	G5 – 1	DIO15				
R0 – 1		DIO16				
R1 – 1		DIO17				
R2 – 1	R0 – 1	DIO18				
R3 – 1	R1 – 1	DIO19				
R4 – 1	R2 – 1	DIO20				
R5 – 1	R3 – 1	DIO21				
R6 – 1	R4 – 1	DIO22				
R7 – 1	R5 – 1	DIO23				
ShiftClk/2	ShiftClk/2	IDCK	ODCK	ODCK	ShiftClk	ShiftClk
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
DE	DE	DE	DE	DE	DE	DE
		<i>DL</i>			ᅜᆫ	₽L

Table 12. Output Clock Configuration by Typical Application

DF0	PIX	OCK_INV#	PANEL	ODCK (frequency/data latch edge/mode)
0	0	0	TFT/16-bit DSTN	divide by 1 / negative / free running
0	0	1	TFT/16-bit DSTN divide by 1 / positive / free running	
0	1	0	TFT divide by 2 / negative / free running	
0	1	1	TFT	divide by 2 /positive / free running
1	0	0	24-bit DSTN	divide by 1 / negative / blanked low
1	0	1	NONE divide by 1 / negative / blanked high	
1	1	0	24-bit DSTN	divide by 2 / negative / blanked low
1	1	1	24-bit DSTN	divide by 4 / negative / blanked low

Note: DF0 is a signal available only on the SiI141B receiver. DSTN panels may be supported with the SiI 163B by running the extra blanked clock through an unused data pin. This works only at one pixel per clock mode, and only when the 24 data bits are not already used for pixel data. Such a solution also requires that the transmitter board design input the shift clock (the blanked clock for DSTN) into the same unused data pin. By using the SiI141B, DSTN panels may be driven without requiring any special connections on the transmitter side.

Design Recommendations

The following sections describe recommendations for robust board design with this PanelLink receiver. Designers should include provision for these circuits in their design, and adjust the specific passive component values according to the characterization results.

Differences Between Sil 161A and Sil 163B

While the SiI 163B is pin to pin compatible with the SiI 161A, there are minor differences in functions and suggested external component value. When designing the SiI 163B into an existing design, note that the recommended external resistor (EXT_RES) value has changed from 560 ohms to 390 ohms to match the impedance of a 50 ohm cable.

Table 13 lists the differences between SiI 161A and SiI 163B. Table 14 lists SiI 161B to SiI 163B differences.

Table 13. Sil 161A vs. Sil 163B Pin Differences

Pin/Function	Sil 161A	Sil 163B	
EXT_RES Resistor Value	560 ohm	390 ohm	
SCDT	When PDO# is asserted, a pull-up resistor is needed on SCDT to assure high-level.	SCDT continues to drive high or low when PDO# is asserted. No need for pull-up.	
HSYNC, VSYNC, CTL[13]	Dejitter circuit adds one pixel clock time to time from DE fall to first edge of these signals. This affects front-porch time for HSYNC and VSYNC.	Dejitter circuit is always disabled.	
Improved Output Drive Strength	Refer to SiI 161A Data Sheet for specifics.	Output drive strength improved for these signals. Refer to DC Specifications on page 4. This improves output waveforms when driving multiple loads. Some designs may be able to change from ST=1 to ST=0.	
Clock Detect for Lower Standby Power.	Receiver powers down when PDO# is asserted. SCDT asserts only when the chip detects the lack of DE pulses.	Receiver detects when the differential input clock has stopped and powers down the internals of the chip. Refer to I _{CLKI} in DC Specifications on page 4.	
PDO# Low-Power Mode Improved	PDO# assertion powers down most of the chip.	Improved design powers down more active circuitry, resulting in lower power when PDO# is asserted.	
Differential Input Capacitance Reduced		Improved DVI signal reception from SiI 161A.	
PD#, PDO#, STAG_OUT#, OCK_INV#	Pins were named: PD, PDO, STAG_OUT and OCK_INV.	No functional change was made. Names were changed to clarify their "active low" sense.	

Table 14. SiI 161B vs. SiI 163B Pin Differences

Pin/Function	Sil 161B	Sil 163B
PDO# Low-Power Mode Improved	PDO# assertion powers down most of the chip.	In dual-link mode, the SCDT to PDO# connection is also internal and automatic. See Dual Link Power Management on page 16.
HSYNC, VSYNC, CTL[1:3]	Dejitter circuit improved over SiI 161A. The DE-low to first-edge time for these signals is identical to the timing input to the transmitter. Dejitter circuit may be enabled or disabled using a pin.	Dejitter circuit is always disabled. There is no package pin to control this feature.

Voltage Ripple Regulation

The power supply to VCC pins is very important to the proper operation of the receiver chips. Two examples of regulators are shown in Figure 16 and Figure 17.

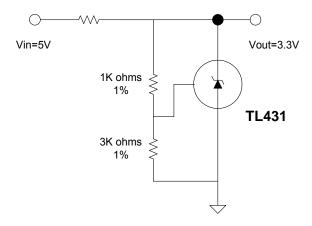


Figure 16. Voltage Regulation using TL431

Decoupling and bypass capacitors are also involved with power supply connections, as described in detail in Figure 19.

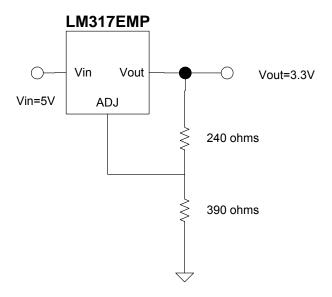


Figure 17. Voltage Regulation using LM317

Decoupling Capacitors

Designers should include decoupling and bypass capacitors at each power pin in the layout. These are shown schematically in Figure 19. Place these components as closely as possible to the PanelLink device pins, and avoid routing through vias if possible, as shown in Figure 18, which is representative of the various types of power pins on the receiver.

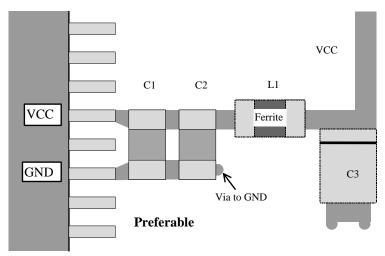


Figure 18. Decoupling and Bypass Capacitor Placement

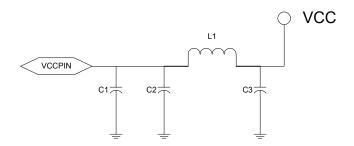


Figure 19. Decoupling and Bypass Schematic

Table 15. Recommended Components

C1	C2	C3	L1	
100 – 300 pF	2.2 – 10 uF	10 uF	200+ ohms	

The values shown in Table 15 are recommendations that should be adjusted according to the noise characteristics of the specific board-level design. Pins in one group (such as OVCC) may share L1 and C3, each pin having C1 placed as closely to the pin as possible.

Series Damping Resistors on Outputs

Series resistors are effective in lowering the data-related emissions and reducing reflections. Series resistors should be placed close to the output pins on the receiver chip, as shown in Figure 20.

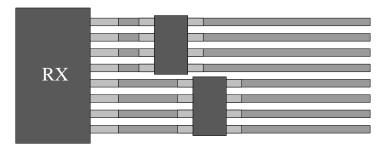


Figure 20. Receiver Output Series Damping Resistors

Receiver Layout

Figure 21 to Figure 23 show an example routing of Dual Link for a DVI connector to the two SiI 163B's. The differential clock lines must be routed to the Slave receiver first, then to the Master receiver because of the way the internal impedance matching circuit is configured.

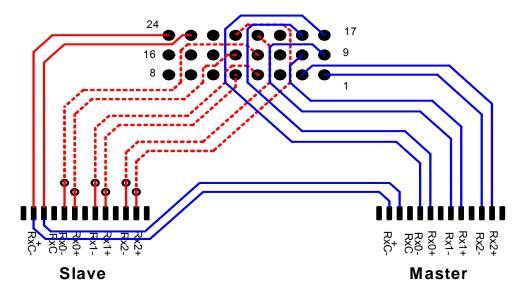


Figure 21. DVI Dual Link Rx PCB Routing Example - Top View

When operating as a Dual Link system, the two SiI 163B's must output their two data buses with synchronous timing. As described earlier, this is done by connecting DE from the Master to SYNC on the Slave. The length of the routed net from Master to Slave must be controlled to between 2.5 and 3.5 inches long. (This corresponds to a flight time of 400ps to 560ps, at a propagation velocity of 160ps per inch, typical of PCB layouts.)

Similarly, the connection to the differential clock, at Slave and Master, must use routed nets which are controlled in length. The 'stub' from the differential pair to the Slave RxC+ and RxC- pins must be less than 1.0 inch long (160ps). The differential pair from the start of a the Slave's 'stub' to the Master's RxC+ and RxC- pins must be no longer than 3 inches long (~500ps). Pull down resistors to stabilize Slave SCDT output(shown on Figure 24) can be placed further from the Slave TMDS traces.

Differential routing or DE-to-SYNC routing longer than these limits will create a skew between Master and Slave which may exceed what can be corrected in the receivers' logic.

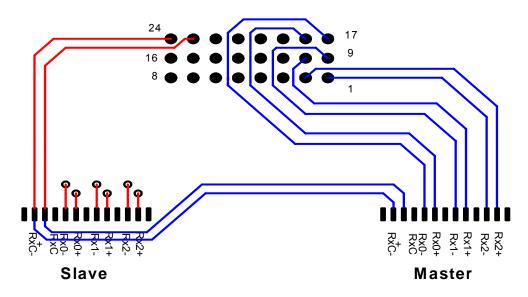


Figure 22. DVI Dual Link Rx PCB Routing Example - Top Signals Top View

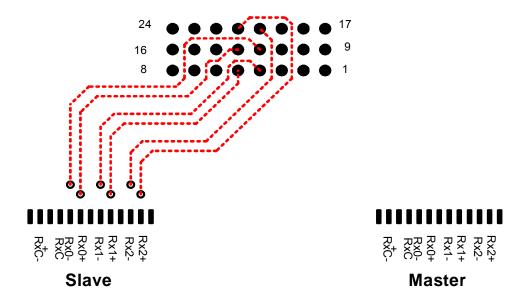


Figure 23. DVI Dual Link Rx PCB Routing Example - Bottom Signals Top View

The receiver chip should be placed as closely as possible to the input connector which carries the TMDS signals. For a system using the industry-standard DVI connector (see http://www.ddwg.org), the differential lines should be routed as directly as possible from connector to receiver. PanelLink devices are tolerant of skews between differential pairs, so spiral skew compensation for path length differences is not required. Each differential pair should be routed together, minimizing the number of vias through which the signal lines are routed.

As defined in the DVI 1.0 Specification, the impedance of the traces between the connector and the receiver should be 100 ohms differentially, and close to 50 ohms single-ended. The 100 ohm requirement is to best match the differential impedance of the cable and connectors, to prevent reflections. The common mode currents are very small on the TMDS interface, so differential impedance is more important than single-ended.

31

Stabilized TMDS Inputs

The SCDT output of the slave SiI 163B receiver indicates the presence (or absence) of display data on the TMDS link. Both incoming TMDS clock and data will output a HIGH via SCDT indicating that the encoded DE signal and Clock from the TMDS transmitter is being detected and the link is active. In Dual Link mode the input Clock signal is shared between Master and Slave SiI 163B.

When functioning in Single Link (in a Dual Link application), input TMDS data for Slave SiI 163B is absent, SCDT output of the Slave SiI 163B will go low. However, system noise or coupled noise (above 20mV) can trigger the differential input circuits of the receiver falsely indicating that display data is being received. In this condition, the SiI 163B can assert SCDT High, even though the input data is invalid.

The SCDT output can be stabilized by introducing an offset voltage at the differential inputs. This can be achieved by adding pull down resistors to the appropriate inputs. A nominal value of 2K ohms provides sufficient offset between the + and – data differential inputs. In the application circuit, any value between 1.8K ohms and 2.5K ohms can be used with minimal effect on the single ended impedance.

Three pull down resistors should be placed on either the + or – differential data input pins. Figure 24 illustrates each + differential input data pin pulled down by a nominal 2K ohm resistor. The pull down resistors can be placed either close to the receiver or the DVI connector based on layout efficiency. Ensure that the trace leading to the resistor and ground is as short as possible to reduce capacitive loading. The TMDS Clock (RXC+ and RXC-) input pins do not require pull down resistors since they have internal pull down resistors.

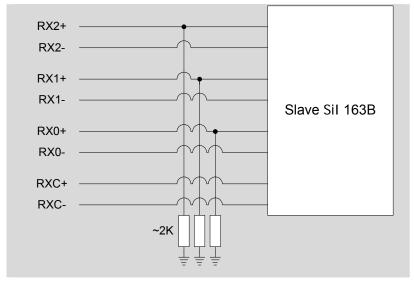


Figure 24. Stabilizing SCDT

Staggered Outputs and Two Pixels per Clock

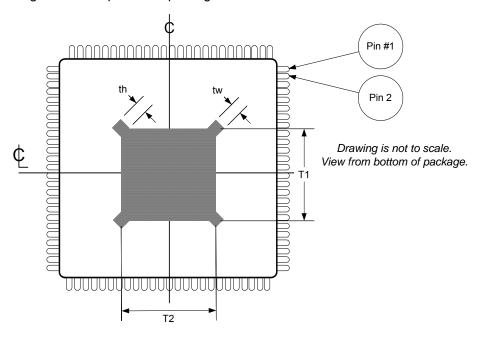
PanelLink receivers offer two features that can minimize the switching effects of the high-speed output data bus: two pixels per clock mode and staggered outputs.

The receiver can output one or two pixels in each output clock cycle. By widening the bus to two pixels per clock whenever possible, the clock speed is halved and the switching period of the data signals themselves is twice as long as in one pixel per clock mode. Typically, SXGA-resolution and above LCD panels expect to be connected with a 36-bit or 48-bit bus, two pixels per clock. Most XGA-resolution and below LCD panels use an 18- to 24-bit one pixel per clock interface.

When in two pixel per clock mode, the STAG_OUT# pin on receivers provides an additional means of reducing simultaneous switching activity. When enabled (STAG_OUT# = Low), only half of the output data pins switch together. The other half are switched one quarter clock cycle later. Note that both pixel buses use the same clock. Therefore, the staggered bus will have one quarter clock cycle less setup time to the clock, and one quarter clock cycle more hold time. Board designers driving into another clocked chip should take this into account in their timing analysis.

Silicon Image recommends the use of STAG OUT# and the two pixel per clock mode whenever possible.

Note that these features are limited when the SiI 163B is connected in Dual Link configuration.



Packaging

ePad Enhancement

The SiI163B is packaged in a 100-pin TQFP package with ePad. The ePad dimensions are shown in Figure 25.

		typ	max
T1	ePad Height		6.5
T2	ePad Width		6.5
tw	ePad extension Width	0.3	0.4
th	ePad extension Length	0.7	1.0
ΔΤ	Tolerance		<u>+</u> 0.1

All dimensions are in millimeters.

ePad is centered on the package center lines with the tolerance shown.

Figure 25. ePad Diagram

The ePad must not be electrically connected to any other voltage level except ground (GND). A clearance of at least 0.25mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid any electrical shorts. Dimensions T1 and T2 define the maximum limit of ePad size. Protrusions from the edges of the ePad may vary slightly from one package assembler to another, but all are confined to within these maximum dimensions.

PCB Thermal Land Area

The thermal land area on the PCB may use thermal vias to improve heat removal from the package. These thermal vias can double as ground connections, attaching internally in the PCB to the ground plane. An array of vias should be designed into the PCB beneath the package. For optimum thermal performance, it is recommended that the via diameter should be 12 to 13 mils (0.30 to 0.33mm) and the via barrel should be plated with 1 ounce copper to plug the via. This is desirable to avoid any solder wicking inside the via during the soldering process, which may result in voids in solder between the exposed pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be 'tented' with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1mm) larger than the via diameter.

Package stand-off is also a consideration. For a nominal stand-off of 0.1mm (see Figure 27, dimension 'A1'), the stencil thickness of 5 to 8 mils should provide a good solder joint between the ePad and the thermal land. The aperture opening should be subdivided into an array of smaller openings.

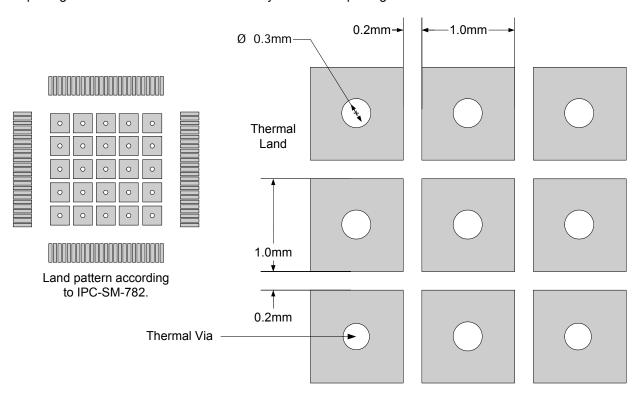


Figure 26. ePad Template Layout

For improved heat transfer, the exposed ePad should be soldered to the thermal land on the PCB. This requires solder paste application not only on the pin pad pattern, but also on the thermal land using a stencil. The stencil thickness is a function of the lead pitch, package coplanarity and stencil dimensions. For a nominal package standoff of 0.1mm, a stencil with 5 to 8 mil thickness should provide a good solder joint between the ePad and the thermal land.

The thermal land is covered with a passivation layer, with openings corresponding to each of the metal rectangles. For improved solder release, the land area should be subdivided into smaller shapes, coordinated with the pitch and size of the thermal vias. *The drawing in Figure 26 is representational*. Such a structure should result in a solder joint area of 80% to 90% of the ePad area. To achieve the specified thermal performance, at least 70% of the ePad should be soldered to the thermal land.

34

100-pin TQFP Package Dimensions and Marking Specification

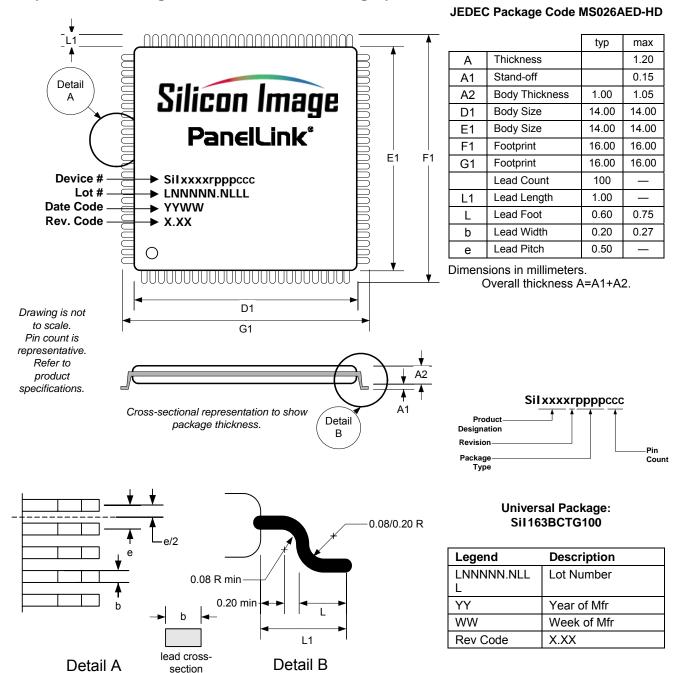


Figure 27. Package Dimensions and Marking Specification

Marking Specification

Marking drawing is not to scale. Pin counts are representative and may not match the pin count of this product.

Ordering Information

Production Part Number: Sil163BCTG100

Summary of Changes

The following table lists the major changes to this document up to the present revision.

Revision	Date	Pages	Changes
Α	03/2002	_	Original release.
В	08/2004	3, 32, 33-34	Added ePad description. Slave SCDT Stablilization guideline.
С	07/2005	33	Fixed ePad dimensions. Part ordering number updated

© 2001-2005 Silicon Image. Inc.

Silicon Image, Inc. 1060 E. Arques Avenue Sunnyvale, CA 94085 USA

Fax: (408) 830-9530
E-mail: salessupport@siimage.com
Web: www.siliconimage.com

(408) 616-4000

Tel: