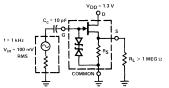
# n-channel transducer/microphone preamplifiers designed for . . . Performan NYFA NYF

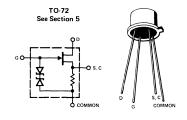
- Hearing Aid Input Stages
- High Impedance Transducer Buffer Amplifiers

Electret-Condenser
Ceramic
Piezo-Electric
Capacitive
Air Condenser

 Self-Biased General Purpose High Impedance Source Followers

### ABSOLUTE MAXIMUM RATINGS (25°C)


| Drain-Source and Drain-Gate Voltage 30 V             |
|------------------------------------------------------|
| Gate Voltage (With Respect to Common) ±2.0 V         |
| Forward Gate Current 1 mA                            |
| Total Device Dissipation (25°C Free-Air) 180 mW      |
| Linear Derating Factor (to 85°C) 3.0 mW/°C           |
| Storage Temperature Range55 to +150°C                |
| Operating Temperature Range –25 to +85°C             |
| Lead Temperature (1/16" from Case for 10 Sec.) 260°C |


# Performance Curves NYFA NYFC See Section 4

### BENEFITS

- Complete Preamplifier, Requires No External Components
- Compact for Placement at Transducer
- Operates on Single Battery
- Ultra-High Input Impedance  $5 \times 10^9 \Omega$  Typical
- Available in Chip Form for Hybrid Systems

### TEST CONFIGURATION





## ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

NYFC

| Characteristic |   |                  | T100                                                |      |      | Т300 |      |      | Unit | TEST CONDITIONS All characteristics (unless otherwise specified)                                                                                                |                                                                  |
|----------------|---|------------------|-----------------------------------------------------|------|------|------|------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                |   |                  | Min                                                 | Тур  | Max  | Min  | Тур  | Max  | Unit | are measured in Test Configuration with V $_{\rm in}$ = 100 mV (RMS), f = 1 kHz, C $_{\rm c}$ = 10 pF, V $_{\rm DD}$ = 1.3 V, R $_{\rm L}$ $\ge$ 1 MEG $\Omega$ |                                                                  |
| 1              | s | BV DSS           | Drain-Source<br>(Drain-Gate) Breakdown <sup>1</sup> | 30   |      |      | 30   |      |      | >                                                                                                                                                               | $I_D$ = 1 $\mu$ A, $V_{IN}$ = 0, $C_c$ Shorted                   |
| 2              | Ļ | I <sub>D</sub>   | Operating Drain Current Range                       | 10   |      | 50   | 70   |      | 350  | μА                                                                                                                                                              | V <sub>IN</sub> = 0, C <sub>c</sub> Shorted                      |
| 3              |   | R <sub>in</sub>  | Input Resistance <sup>2</sup>                       | 200M | 5G   |      | 200M | 5G   |      | 52                                                                                                                                                              | V <sub>IN</sub> = 100 mV DC Measurement , C <sub>C</sub> Shorted |
| 4              | С | Rout             | Output Resistance                                   | 1500 |      | 3500 | 500  |      | 1300 |                                                                                                                                                                 | V <sub>IN</sub> = 0, C <sub>c</sub> Shorted                      |
| 5              | _ | A <sub>V</sub>   | Voltage Gain                                        | 0.40 | 0.60 |      | 0.30 | 0.45 |      | V/V                                                                                                                                                             |                                                                  |
| 7              | Ÿ | THD              | Total Harmonic Distortion                           |      | 1.0  |      |      | 1.0  |      | 46                                                                                                                                                              |                                                                  |
|                | A | e <sub>out</sub> | Broadband Output Noise Voltage                      |      |      | 4.0  |      |      | 2.0  | μ٧                                                                                                                                                              | V <sub>1N</sub> = 0, f = 10 Hz to 10 kHz, C <sub>C</sub> Shorted |
| 8              | M | Cin              | Input Capacitance                                   |      | 3.0  | 4.0  |      | 3.0  | 4.0  | DΕ                                                                                                                                                              | V <sub>DD</sub> 20 V, V <sub>IN</sub> 0,                         |
| 9              | С | Cout             | Output Capacitance                                  |      | 4.4  | 6.0  |      | 4.4  | 6.0  | ۲                                                                                                                                                               | f = 1 MHz, C <sub>c</sub> Shorted                                |

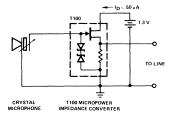
. . . . . . . . .

1, Drain-Gate Breakdown Guaranteed by Drain-Source Breakdown Test.

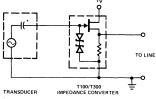
2. M = 10<sup>6</sup>, G = 10<sup>9</sup>

NYFA

### **APPLICATIONS**

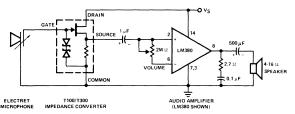

Basic JFET Source Follower Equations are:

$$I_D = I_{DSS} \left( 1 - \frac{V_{GS}}{V_P} \right)^2$$
 (1)  $R_{OUT} = \frac{R_S}{1 + g_{fs} R_S}$  (4)

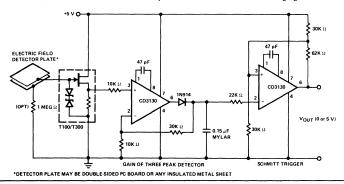

where 
$$V_{GS} = -I_D R_S$$
 (2)  $A_V = g_{fs} R_{OUT}$  (5)

$$g_{fs} = \frac{-2 I_{DSS}}{V_P} \left(\frac{I_D}{I_{DSS}}\right)^{\gamma_2}$$
 (3)

T100 as a Micropower Preamplifier —
As in a Hearing Aid Input

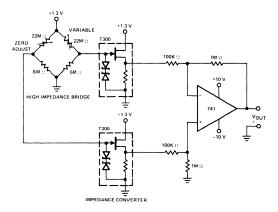



T100/T300 as an Impedance Converter for Transducer Input

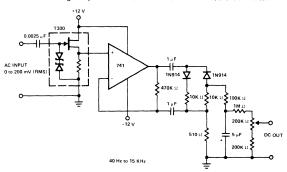



\*NO CAPACITOR ISOLATION IS REQUIRED FOH CAPACITIVE TRANSDUCERS OR HIGH-IMPEDANCE PURE VOLTAGE SOURCES.

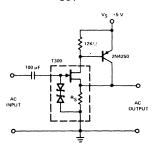
### T100/T300 as a Preamplifier in a Microphone Amplifier Circuit




### T100/T300 as a Self-Biased Proximity Sensor Works on Detected Changing Field




## APPLICATIONS (Cont'd)


T300's as Low Signal Level, High Impedance Instrumentation Amplifier



T100 in a High Impedance Precision Rectifier for AC/DC Converter



Source Follower with Voltage Gain Typically Greater Than 0.95 V/V and  $Z_{\mbox{OUT}}$  Typically Less Than 60  $\Omega$ 

