

Product Description: 26 inch TFT-LCD PANEL						
AUO Model Name: T260XW02 VF						
Customer Part No/Project Name:						
Customer Signature Date	AUO	Date				
Customer Signature Date	AUO Approved By: PL Chen	Date				
Customer Signature Date						

Document Version: 1.0
Date: 2006/12/1

Product Functional Specification

26" Color TFT-LCD Module Model Name: T260XW02 VF (QDI Model: QD26HL0102)

() Preliminary Specification (*) Final Specification

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

This specification sheet is for model name change, since AUO merged QDI from $2006/10/1\,$

This Specification Sheet keep the original QDI Model name and Spec.

New Model name and old model name comparison table as following:

	AUO	QDI		
Model Name	T260XW02 VF	QD26HL0102		
Change Item	1. Carton Printing format			
	2. Product Serial label format			

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

	Revision History						
REV.	Date	ECN NO.	Change Content				
1	12/1		Change AUO product name				
		*					
)						

Content List

		Pa	age
1.	Application		5
2.	Overview		5
3.	General Specifications		5
1.	Input Terminals		6
5.	Absolute Maximum Ratings		5
5.	Electrical Characteristics		11
7.	Timing Characteristics		15
8.	Input Signals, Basic Display Colors and Gray		
	Scale of Each Color		17
9.	Optical Characterics		18
10.	Display Quality	21	
11.	Handling Precautions	21	
12.	Reliability Test Items	21	
13.	Others		22
14.	Drawing		23

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

TDL: - - - : C: - - 4: - - - - - 1:

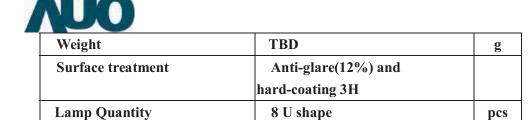
This specification applies to a color TFT-LCD module, QD26HL01

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel; driver ICs, control circuit and power supply circuit and a backlight unit. Graphics and texts can be displayed on a 1366×3×768 dots panel with 16.7 million colors by using the LVDS (Low Voltage Differential Signaling) interface, 8-bit driving method and supplying +12V DC supply voltage for TFT-LCD panel driving.

The TFT-LCD panel used for this module has very high aperture ratio. A low-reflection and higher-color-saturation type color filter is also used for this panel. Therefore, high-brightness and high-contrast image, which is suitable for the LCD TV,HDTV and multimedia use, can be obtained by using this module.

[Features]


- 1) High aperture panel; high-brightness
- 2) Brilliant and high contrast image.
- 3) High speed response
- 4) WXGA resolution. 16:9
- 5) LVDS interface.
- 6) QSV technology
- 7) Wide viewing angle.

3. General Specifications

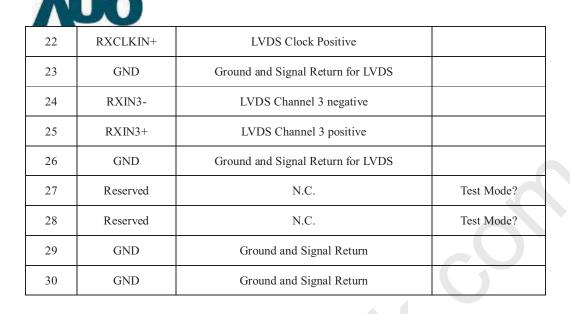
Parameter	Specifications	Unit
Display size	66.05 (26") Diagonal	cm
Active area	575.769 (H)×323.712 (V)	mm
Pixel format	1366 (H)×768 (V)	Pixel
	(1 pixel = R+G+B dots)	
Pixel pitch	0.4215 (H) × 0.4215 (V)	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally Black	
Unit outline dimensions	626 x 373	mm
Thickness	Typ. 40.9	mm

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

4. Input Terminals

4-1. TFT-LCD panel driving

CN1 (LVDS signals and +12V DC power supply)

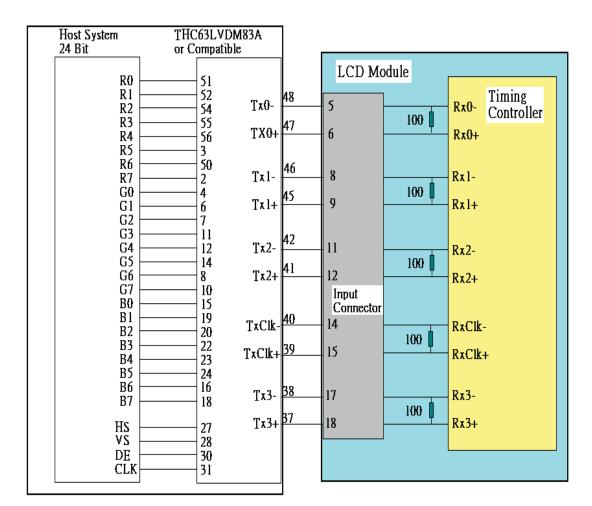

 $Connector\ on\ Panel: FI-X30SSL-HF (Manufactured\ by\ JAE)\ or$

Equivalent

 $Mating\ connector \qquad : FI-30C2L\ (Manufactured\ by\ JAE)\ or\ Equivalent$

1	lating connector	: F1-30C2L (Manufactured by JAE)	or Equivalent
Pin No	Symbol	Description	Default
1	VCC	+12V, DC, Regulated	
2	VCC	+12V, DC, Regulated	
3	VCC	+12V, DC, Regulated	
4	VCC	+12V, DC, Regulated	
5	GND	Ground and Signal Return	
6	GND	Ground and Signal Return	
7	GND	Ground and Signal Return	
8	GND	Ground and Signal Return	
9	LVDS Option	High/Open for Normal (NS), Low for JEIDA	Default NS type
10	Reserved	N.C.	Test Mode?
11	GND	Ground and Signal Return for LVDS	
12	RXIN0-	LVDS Channel 0 negative	
13	RXIN0+	LVDS Channel 0 positive	
14	GND	Ground and Signal Return for LVDS	
15	RXIN1-	LVDS Channel 1 negative	
16	RXIN1+	LVDS Channel 1 positive	
17	GND	Ground and Signal Return for LVDS	
18	RXIN2-	LVDS Channel 2 negative	
19	RXIN2+	LVDS Channel 2 positive	
20	GND	Ground and Signal Return for LVDS	
21	RXCLKIN-	LVDS Clock negative	

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed



 $\label{eq:connected together.} \begin{tabular}{ll} Note 1 & All GND (ground) pins should be connected together. \\ \begin{tabular}{ll} Note 2 & All V_{DD} (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins should be connected together. \\ \begin{tabular}{ll} Power supply (power supply) pins$

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

4-3. Backlight driving

4-3-1. Inverter Connector

Connector on Inverter: S14B-PH-SM3(Manufactured by JST) or

Equivalent

Mating connector : PHR-14 (Manufactured by JST) or Equivalent

():need further discussion on both sides

Pin No	Symbol	Description	Default
1	VIN	Operating Voltage Supply, +24V DC regulated	24V
2	VIN	Operating Voltage Supply, +24V DC regulated	24V
3	VIN	Operating Voltage Supply, +24V DC regulated	24V
4	VIN	Operating Voltage Supply, +24V DC regulated	24V
5	VIN	Operating Voltage Supply, +24V DC regulated	24V
6	BLGND	Ground and Current Return	GND
7	BLGND	Ground and Current Return	GND
8	BLGND	Ground and Current Return	GND
9	BLGND	Ground and Current Return	GND
10	BLGND	Ground and Current Return	GND
11	ADIM	Analog Dimming : Open/High(3.3V) for Max. Lum.	Max
12	ON/OFF	BL On-Off: High(3.3V)or(Open) for BL On as default	On
13	PDIM	PWM Dimming Control : Open/High(3.3V) for Max. Lum	Max
14	PESEL	Selection of lumimance control method, Vcx duty:high/, PWM duty:low/open	

4-3-2. Lamp connector

TBD

5. Absolute Maximum Ratings

LCD module

Parameter	Symbol	Condition	Ratings	Unit	Remark
+12V supply voltage	V_{DD}	Ta=25℃	-0.3 ~ +14.0	V	
Storage temperature	Tstg	_	$-20 \sim +60$	${\mathbb C}$	[Note1]

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

[Note1] Humidity: 90%RH Max. at $Ta \le 40^{\circ}$ C.

Maximum wet-bulb temperature at 39°C or less at Ta>40

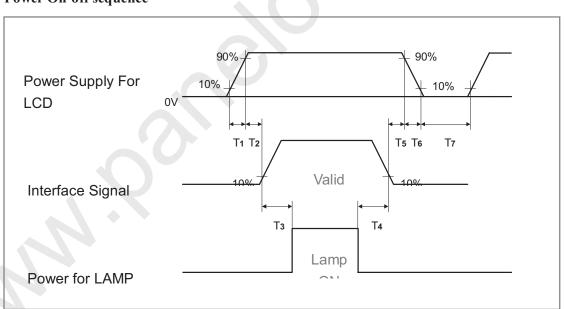
 $^{\circ}\!\! C.$

No condensation.

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

6. Electrical Characteristics

6-1.TFT-LCD panel driving

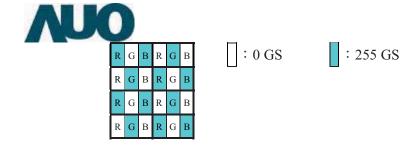

Ta=25°C

Parameter			Symbol	Min.	Тур.	Max.	Unit	Remark
$\mathbf{V}_{\mathbf{DD}}$	Supply voltage	ge	V_{DD}	11.4	+12.0	12.6	V	[Note2]
Current dissipation		I_{DD}	_	340	700	m A	[Note3]	
Pei	Permissive input ripple		V_{RP}	_	_	120	mV p-p	V _{DD} =+12V
volta	ge							
Diffe	rential input	High	V_{TH}	_	_	100	mV	
								V_{CM} =+1.2 V
thr	threshold voltage Low		V_{TL}	-100	_	_	mV	[Note1]
Ru	Rush current		I _{RUSH}			3.0	A	Rise time
								470uS

[Note1] V_{CM} : Common mode voltage of LVDS driver.

[Note2]

Power On-off sequence



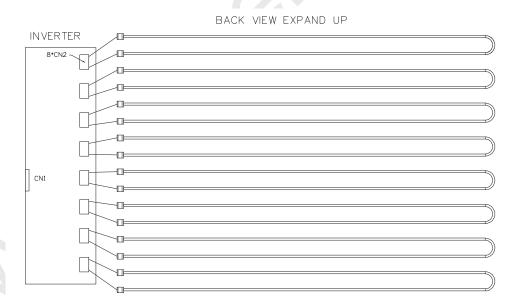
1ms < T1, T6 ≤ 10 ms $0.5 \text{ms} < \text{T2,T5} \le 50 \text{ ms}$ 200 ms < T3,T4T7 > 1 s

[Note3] Maximum current condition; Change to 1x1 dot checker board pattern. V_{DD}=+12V

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

Global LCD Panel Exchange Center

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed


6-2. Backlight driving

The backlight system is a direct-lighting type with 8 U shape CCFT (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp current range	$I_{\rm L}$	5.5	6	6.5	mAr	[Note1]
					ms	
Lamp voltage	V_{L}		1000		Vrms	
Lamp power	\mathbf{P}_{L}		6		W	[Note2] IL=mA
consumption						
Lamp frequency	$\mathbf{F}_{\mathbf{L}}$	42	45	48	kHz	[Note3]
Established starting	Vs		1100	1500	Vrms	Ta=25
voltage						$^{\circ}$
			1200	1500	Vrms	Ta=0°C [Note4]
Lamp life time	$L_{\rm L}$	50000			hour	[Note5]

[Note1] Lamp current is measured with current meter for high frequency as shown below.

[Note2] Calculated Value for reference ($I_L \times V_L$)

[Note3] Lamp frequency may produce interference with horizontal synchronous frequency, and this may cause beat on the display.

Therefore lamp frequency shall be detached as much as possible from

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

No Reproduction and Redistribution Anowec

the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.

- [Note4] The voltage above this value should be applied to the lamp for more than 1 second to start-up. Otherwise the lamp may not be turned on.
- [Note5] Lamp life time is defined as the time when either ① or ② occurs in the continuous operation under the condition of Ta = 25° C and I_L= 6mArms.
- $\ensuremath{\textcircled{1}}$ Brightness becomes 50 % of the original value under standard condition.
 - ② Kick-off voltage at $Ta = 0^{\circ}C$ exceeds maximum value.

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

[Note6] The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

[Note7] The lamp wire length is TBD mm(from AL back cover surface to connector, not including connector length)

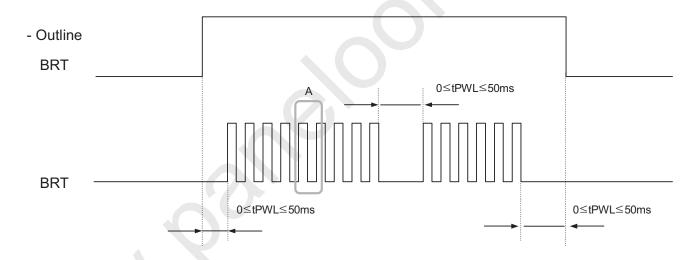
6-3 Backlight inverter

6-3-1. Inverter Electrical Characteristics

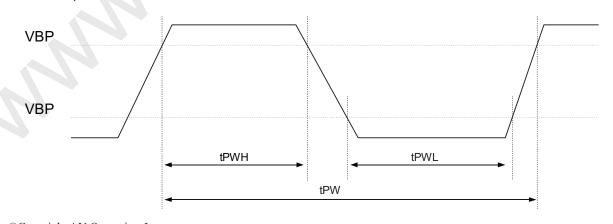
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power	V_{DDB}	22.8	24	25.2	Vdc	
Supply Input						
Voltage						
Power	I_{DDB}	3300	3600	3900	mA	
Supply Input						
Current						
Power	P _B		86.4		W	
Consumption						

6.4 Luminance Controls

Method	Adjustment and	PESEL	PDIM	Remark	
Voltage	Adjustment – C	ontinuous	High/Open	N/A	
control	adjustment of	for max.			
	Luminance by adjusting the voltage				
	of				
	BRTI within the	e rated range.			
	BRTI voltage Luminance ratio				
	0V				
	3.3V	100%			
		(maximum)			
PWM	Adjustment- Th	LOW	PWM	See	
control	controlled by du		singal	PWM	


©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

A	UO		
		WSEL is low and	t
	PWM signal is termial.	s inputted into BRTP	
	Duty Ratio	Luminance Ratio	
	0.2	20%(minimum)	
	1.0	100%	
		(maximum)	


6-5. PWM timing

Global LCD Panel Exchange Center

6-5-1. Timing diagram

- Detail of A part

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

6-5-2. Each parameter

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Luminance control	FL	230	255	280	Hz	1, 2
Duty Ratio	DL	0.2	-	1.0	-	1, 3
Non signal Period	tPWL	0	-	50	Ms	4

Notes: 1. Definition of parameters is as follows

$$\mathsf{FL} = \frac{1}{\mathsf{tPW}} \qquad , \qquad \mathsf{DL} = \frac{\mathsf{tPWH}}{\mathsf{tPW}}$$

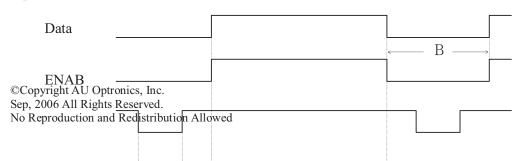
2. See the following formula for luminance control frequency.

Luminance control frequency = tvv X (n+0.25)[or(n+0.72)]

tvv : See "7.1 Signal timing specification"

The interference noise of luminance control frequency and input signal frequency for LCD

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed


- 7. Timing characteristics of LCD module input signals
- 7-1. Timing characteristics

(This is specified at digital outputs of LVDS driver.)

	Symbol		Min	Тур	Max	Unit	Notes
ITIME							
DCLK	Frequency	F _{CLK}	-	80	82	MHz	
	Period	t _{CLK}	12.2	12.5	-	ns	
Hsync	Period	t _{HA}	1512	1648	1780	t _{CLK}	
	Width-Active	t _{HC}	8	16	-		
	Frequency	fH	44	48.54	52	kHz	
Vsync	Frequency	fv	47	60	63	Hz	
	Period	t _{VA}	774	810	•	t _{HA}	
	Width-Active	t _{VC}	2	6	_		
Data	Horizontal back	t_{HD}	8	80	-	t _{CLK}	
Enable	porch						
	Horizontal front	t _{HF}	16	186	-	t_{CLK}	
	porch						
	Horizontal active	t _{HE}	1366	1366	1366	t_{CLK}	
	Horizontal blanking	t _{HB}	146	282		t_{CLK}	
	Vertical back porch	t _{VD}	2	20	-	t _{HA}	
	Vertical front porch	t_{VF}	2	16	-	t _{HA}	
	Vertical active	t _{VE}	768	768	768	t _{HA}	
	Vertical blanking	t_{VB}	6	42		t _{HA}	

Notes: 1. The performance of electro-optical characteristics may be influenced by variance of the vertical refresh rate.

- 2. Hsync period will be a double number of character (8).
- 7-2 Signal Timing Waveform(The time "B" is t_{HB} on horizontal timing and t_{VB} on vertical timing)

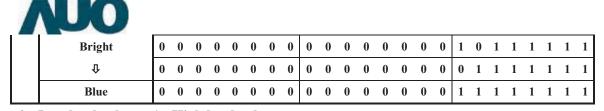
Sync

$$\leftarrow C \rightarrow \leftarrow D \rightarrow \longleftarrow \qquad E \qquad \longrightarrow \leftarrow F \rightarrow \longleftarrow$$

$$\leftarrow \qquad \qquad A \qquad \longrightarrow$$

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

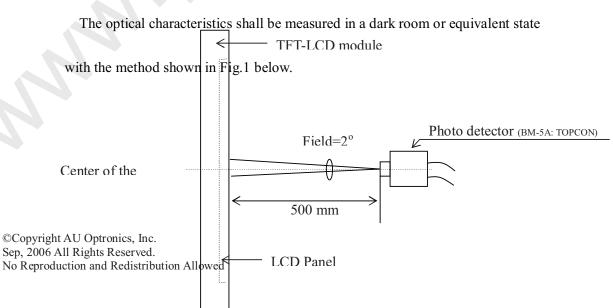


8. Input Signals, Basic Display Colors and Gray Scale of Each Color

	Colors &											Da		Sign											
	Gray scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	В1	B2	В3	B4	В5	В6	В7
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	仓	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
y S	Darker	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	Û				/	^							1	٢								<u> </u>			
	Û				`	l				Ψ						V									
of Red	Bright	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
١	û	0	1	1	1	1	1	. 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gra	Û	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ca	Û				/	١								٢							1	١			
	Û				`	ν <u> </u>								ν <u></u>							\	<u>ا</u>			
f G	Bright	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
of Green G	Û	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ray	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Sc	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ale	Û				/	٢								١								١			
Gray Scale of Blu	Û				_	ν <u> </u>							_	ν <u> </u>							\	<u>ا</u>			

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

0 : Low level voltage, 1 : High level voltage

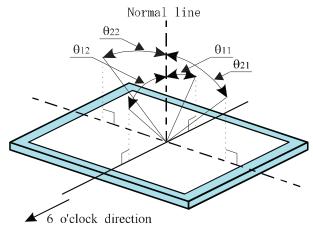


9. Optical Characteristics

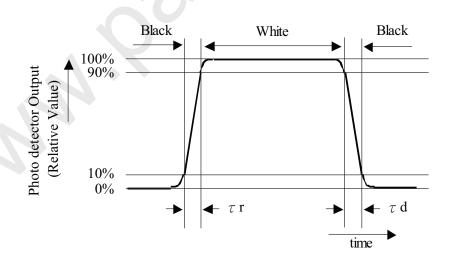
 $Ta=25^{\circ}C, V_{DD}=+12V$

				י עעיי				
Para	ameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark
Viewing	L/R	θ 21, θ 22	CR>10		85		Deg.	[Note1,4]
angle	U	θ 11			85		Deg.	
	D	θ 12			85		Deg.	
range								
Contr	ast ratio	CRn	θ =0°		600	_		[Note2,4]
Respo	onse time	τ		1	25	_	ms	[Note3,4]
Rise tim	ne τ r				TBD	_	ms	
Fall tim	ne τ d				TBD	_	ms	
Chroma	ticity of	Wx		0.245	0.275	0.305		[Note4]
White (0	CIE 1931)	Wy		0.268	0.298	0.328		Color temperature
								10000K
Chroma	ticity of	Rx			TBD			NTSC 72%
Red (CI	E 1931)	Ry			TBD			
Chroma	ticity of	Gx			TBD			
Green (0	CIE 1931)	Gy			TBD			
Chroma	ticity of	Bx			TBD			
Blue (CI	E 1931)	By			TBD			
Luminai	nce of white	YL		400	500		Cd/m	
[N	Note4]						2	
White U	Uniformity	δw		_	-	1.3		[Note5]
Black U	Jniformity (δв				1.3		[Note5]

% The measurement shall be executed 30 minutes after lighting at rating. (typical condition : $I_L = 6mArms$)



[Note1] Definitions of viewing angle range:


[Note2] Definition of contrast ratio:

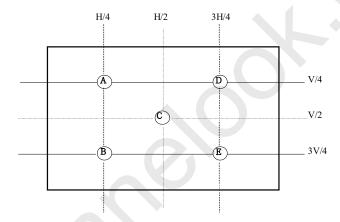
The contrast ratio is defined as the following.

[Note3] Definition of response time:

The response time is defined as the following figure and shall be measured by

switching the input signal for "black" and "white".

[Note4] This shall be measured at center of the screen.


©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

No Reproduction and Redistribution Anowec

[Note5] Definition of white uniformity:
White and black uniformity is defined as the following with nine measurements

Maximum Luminance (of 5 points measurement)

 $\delta_{\rm W}$ R = Minnum Luminance (of 5 points measurement)

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

10. Display Quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

11 · Handling Precautions

a) Be sure to turn off the power supply when inserting or disconnecting the cable.

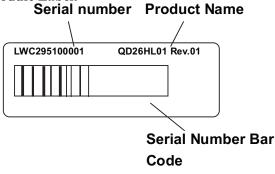
b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.

- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
 - f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
 - g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
 - h) Observe all other precautionary requirements in handling components.
 - i) This module has its circuitry PCBs on the rear side and should be handled carefully in order not to be stressed.
 - j) Laminated film is attached to the module surface to prevent it from being scratched . Peel the film off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc..

12. Reliability test items

	Test item	Conditions
No.		
1	High temperature storage test	$Ta = 60^{\circ}C \qquad 240h$
2	Low temperature storage test	Ta =-20°C 240h
3	High temperature	$Ta = 50^{\circ}C$; 80 %RH 240h
	& high humidity operation test	
4	High temperature operation	$Ta = 60^{\circ}C \qquad 240h$
	test	
5	Low temperature operation test	$Ta = 0^{\circ}C \qquad 240h$

©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

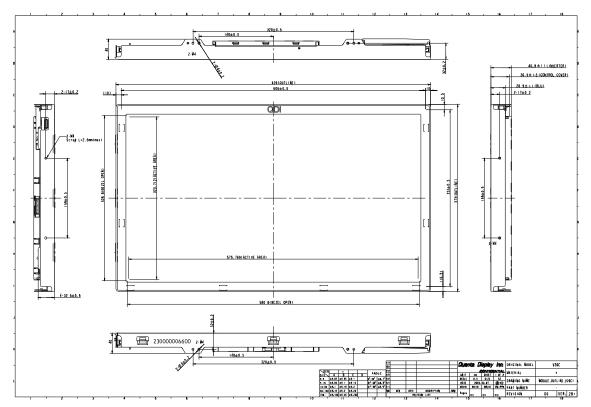


	MO	
6	Vibration test (non-	Frequency: 10~500Hz, 1.0G, 20 min/each axis
	operating)	
7	Shock test	Gravity: 100G
	(non- operating)	Pulse width: 2ms, half sine wave
		Direction: ±X,±Y,±Z
		Once for each direction.

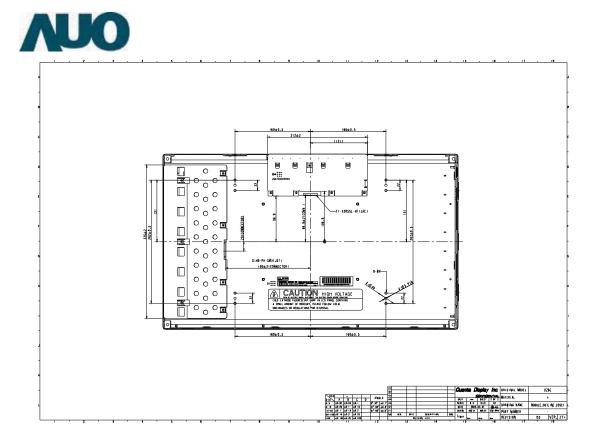
1) LCD Module Label:

LWC295100001 Digital code 4, 5 is Date code.

Digital 4 (Year) 1: 2001, 2: 2002, 3:2003,....


Digital 5 (Month) 1: Jan, 2: Feb,..., A:Oct, B:Nov., C: Dec.

- 2) Adjusting volume has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
 - 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
 - 5) If any problem occurs in relation to the description of this specification, it shall be resolved through discussion with spirit of cooperation.


©Copyright AU Optronics, Inc. Sep, 2006 All Rights Reserved. No Reproduction and Redistribution Allowed

