

Document Version: 0.4

Date: 2008/5/12

Product Specifications

31.5" FHD Color TFT-LCD Module Model Name: T315HW02 V6

> () Preliminary Specifications (*) Final Specifications

○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

Contents

No	
	COVER
	CONTENTS
	RECORD OF REVISIONS
1	GENERAL DESCRIPTION
2	ABSOLUTE MAXIMUM RATINGS
3	ELECTRICAL SPECIFICATIONS
3-1	ELECTRICAL CHARACTREISTICS
3-2	INTERFACE CONNECTIONS
3-3	SIGNAL TIMING SPECIFICATIONS
3-4	SIGNAL TIMING WAVEFORMS
3-5	COLOR INPUT DATA REFERNECE
3-6	POWER SEQUENCE
4	OPTICAL SPECIFICATIONS
5	MECHANICAL CHARACTERISTICS
6	RELIABLITY
7	INTERNATIONAL STANDARDS
8	PACKING
9	PRECAUTIONS

Record of Revision

Version	Date	No	Old Description						Remark							
0	2009/3/23		Firs	First issue												
0.1	2009/4/10	3.6.1	Pov	Power Sequence for LCD					Pov							
			T2 ı	min = 0.1						T2 ı	min = 2000	, max	= 20	50		
0.2	2009/4/14		Upo	date TBD it	tems											
0.3	2009/4/27	3-1	Elec	ctrical Cha	racte	ristic	cs			Icc	Max = 1.4A					
			Upc	date Max V	/alue					Pc I	Max = 16.6	W				>
		3-3	Sigi	nal Timing	Spec	ifica	tions									
			Upo	date Timinç	g Tab	le										
		3.6.1	Pov	ver Seque	nce fo	or LO	CD			Pov	ver Sequen	ce for	LCD			
				Parameter	,	Value	Э	Units			Parameter	V	/alue	s	Unit	
				arameter	Min.	Тур.	Мах.	Office			arameter		Тур.	Мах.	Offic	
				T1	0.4		30	ms			t1	0.4		30	ms	
				T2	2000		2050	ms			t2	2480		2980	ms	
				Т3	300			ms			t3	1300			ms	
				T4	10			ms			t4	10			ms	
				T5	0.1	-	50	ms	•		t5	0.1		50	ms	
				Т6			300	ms			t6			300	ms	
				T7	500			ms			t7	500			ms	
							ľ				t8	2500			ms	
											t9	100			ms	
0.4	2009/5/12	5	Med	chanical C	harac	teris	stics:			Med	chanical Ch	aracte	eristic	cs		
			Old	Old 2D drawing						Upo	lated 2D dr	awing				
			Fina	Final Spec												

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. 4/32 No Reproduction and Redistribution Allowed

1. General Description

This specification applies to the 31.5 inch Color TFT-LCD Module T315HW02 V6. This LCD module has a TFT active matrix type liquid crystal panel 1920x1080 pixels, and diagonal size of 31.5 inch. This module supports 1920x1080 HDTV mode (Non-interlace).

Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with an 8-bit gray scale signal for each dot.

The T315HW02 V6 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

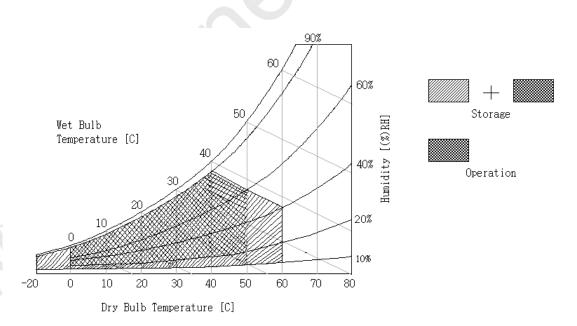
The T315HW02 V6 model is RoHS verified which can be distinguished on panel label.

* General Information

Items	Specification	Unit	Note
Active Screen Size	31.55 inches		
Display Area	698.4 (H) x 392.85 (V)	mm	
Outline Dimension	760.0(H) x 450.0(V) x 45(D)	mm	With inverter
Driver Element	a-Si TFT active matrix		
Display Colors	16.7M	Colors	
Number of Pixels	1920x1080	Pixel	
Pixel Pitch	0.36375	mm	
Pixel Arrangement	RGB vertical stripe		
Display Mode	Normally Black		
Surface Treatment	AG, 3H		Haze = 11%

Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause permanent damage to the unit.


Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	3.6	[Volt]	Note 1
BLU Input Voltage	VDDB	-0.3	28	[Volt]	Note 1
BLU Brightness Control Voltage	Vdim	-0.3	7.0	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	НОР	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2: Maximum Wet-Bulb should be 39°C and No condensation.

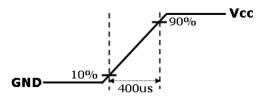
The relative humidity must not exceed 90% non-condensing at temperatures of 40°C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50° C Dry condition

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved.

No Reproduction and Redistribution Allowed

3. Electrical Specification

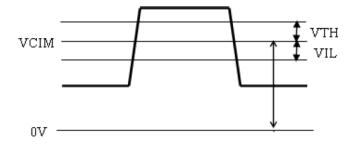

The T315HW02 V5 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the BLU, is to power inverter..

3-1 Electrical Characteristics

	Parameter		Val	ues		l lm!4	Notes
			Min	Тур	Max	Unit	Notes
LCD:							
Power S	Supply Input Voltage	Vcc	10.8	12	13.2	Vdc	1
Power S	Supply Input Current	Icc	-	1.1	1.4	А	2
Power C	Consumption	Pc	-	13.2	16.8	Watt	2
Inrush C	Gurrent	I _{RUSH}	-	-	6	Apeak	3
	Differential Input High Threshold Voltage	VTH			100	mV	4
LVDS Interface	Differential Input Low Threshold Voltage	VTL	-100			mV	4
	Common Input Voltage	VCIM	1.10	1.25	1.40	V	4
CMOS	Input High Threshold Voltage	VIH (High)	2.4		3.3	Vdc	
Interface Input Low Threshold Voltage		VIL (Low)	0		0.7	Vdc	
Backlight I	Power Consumption	PDDB	63.5	67	70.5	Watt	
Life Time			50,000			Hours	6

Note:

- The ripple voltage should be controlled under 10% of V_{CC}
- Vcc=12.0V, $f_v = 60$ Hz, fCLK=81.5Mhz, 25°C, Test Pattern: White Pattern
- Measurement condition:

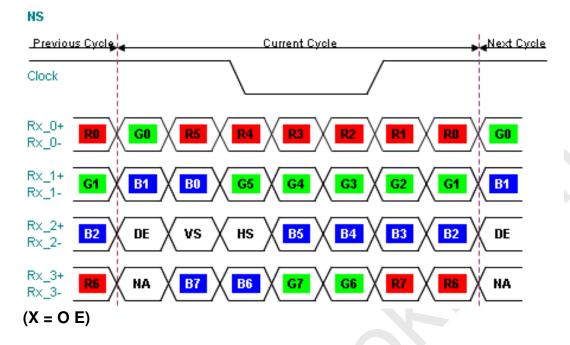


○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

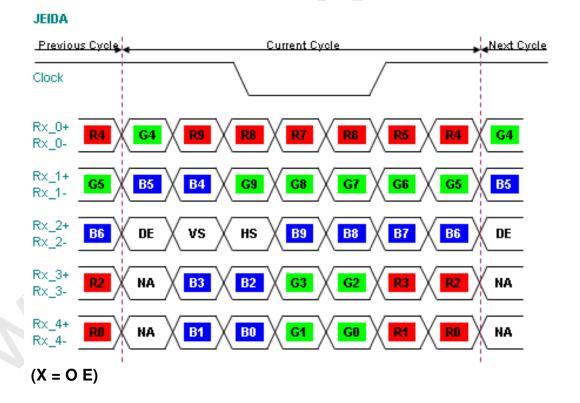
- 5. The performance of the Lamp in LCD panel, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC Inverter. So all the parameters of an inverter should be carefully designed as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter (no lighting, flicker, etc) never occurs. After confirmation, the LCD panel should be operated in the same condition as installed in your instrument.
- Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape.
- The relative humidity must not exceed 80% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C. When operate at low temperatures, the brightness of CCFL will drop and the life time of CCFL will be reduced.

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

Connector on Panel: JAE FI-RE51S-HF (Manufactured by JAE)


PIN#	Signal Name	Description
1	V_{DD}	Operating voltage supply, +12V DC regulated
2	V_{DD}	Operating voltage supply, +12V DC regulated
3	V_{DD}	Operating voltage supply, +12V DC regulated
4	V_{DD}	Operating voltage supply, +12V DC regulated
5	V_{DD}	Operating voltage supply, +12V DC regulated
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	RO_0-	LVDS Channel 1, pair 0, negative
11	RO_0+	LVDS Channel 1, pair 0, positive
12	RO_1-	LVDS Channel 1, pair 1, negative
13	RO_1+	LVDS Channel 1, pair 1, positive
14	RO_2-	LVDS Channel 1, pair 2, negative
15	RO_2+	LVDS Channel 1, pair 2, positive
16	GND	Ground
17	RO_CLK-	LVDS Clock, Channel 1, negative
18	RO_CLK+	LVDS Clock, Channel 1, positive
19	GND	Ground
20	RO_3-	LVDS Channel 1, pair 3, negative
21	RO_3+	LVDS Channel 1, pair 3, positive
22	RO_4-	LVDS Channel 1, pair 4, negative
23	RO_4+	LVDS Channel 1, pair 4, positive
24	GND	Ground
25	RE_0-	LVDS Channel 2, pair 0, negative
26	RE_0+	LVDS Channel 2, pair 0, positive
27	RE_1-	LVDS Channel 2, pair 1, negative
28	RE_1+	LVDS Channel 2, pair 1, positive
29	RE_2-	LVDS Channel 2, pair 2, negative
30	RE_2+	LVDS Channel 2, pair 2, positive
31	GND	Ground

○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

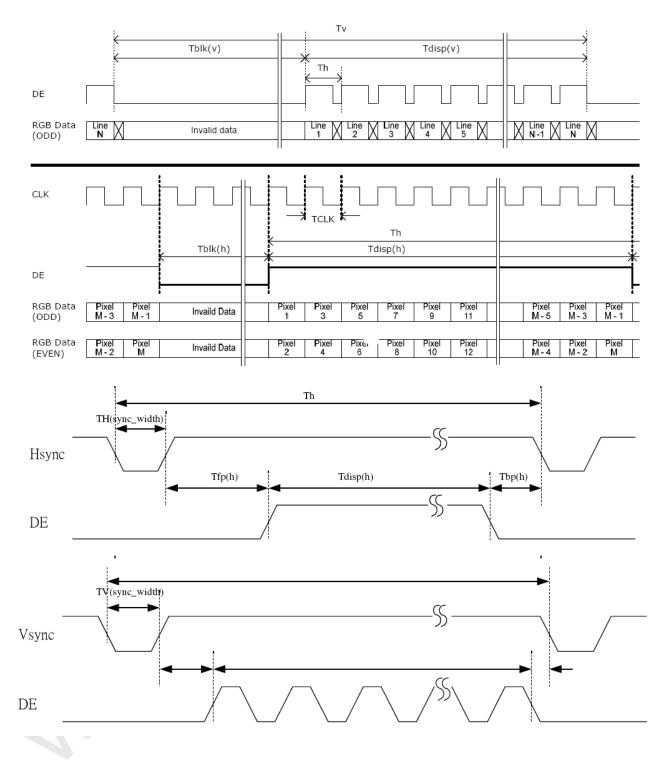


32	RE_CLK-	LVDS Clock, Channel 2, negative
33	RE_CLK+	LVDS Clock, Channel 2, positive
34	GND	Ground
35	RE_3-	LVDS Channel 2, pair 3, negative
36	RE_3+	LVDS Channel 2, pair 3, positive
37	RE_4-	LVDS Channel 2, pair 4, negative
38	RE_4+	LVDS Channel 2, pair 4, positive
39	GND	Ground
40	NC (reserved)	No Connection (AUO internal use)
41	NC (reserved)	No Connection (AUO internal use)
42	NC (reserved)	No Connection (AUO internal use)
43	NC (reserved)	No Connection (AUO internal use)
44	MEMC_ON	MEMC ON/OFF Selection Low: MEMC OFF High/Open: MEMC ON
45	LVDS_FORMAT	LVDS Format Selection Low: Support JEIDA Mode 10/8bits High/Open: Support NS Mode 8bits
46	SCL_E	External I2C from customer's comment
47	NC (reserved)	No Connection (AUO internal use)
48	SDA_E	External I2C from customer's comment
49	NC (reserved)	No Connection (AUO internal use)
50	NC (reserved)	No Connection (AUO internal use)
51	NC (reserved)	No Connection (AUO internal use)

LVDS_SEL = Low (0V), JEIDA mode

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

3-3 Signal Timing Specifications


This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

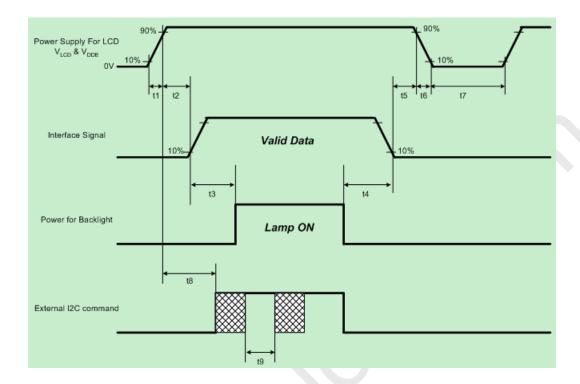
* Timing Table **Vertical Frequency:**

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	T _V	1100	1125	1200	T _H
	Active	T _{DISP} (V)		1080		Тн
Vertical Section	Blanking	T _{BLK} (V)	20	45	120	T _H
Vertical Section	Front porch	Tfp(V)	1	4	110	T _H
	Back porch	Tbp(V)	1	36	110	T _H
	V_sync	TVsync_wdth	2	5	110	T _H
	Period	T _H	1050	1100	1150	T _{CLK}
	Active	T _{DISP} (H)		960		T _{CLK}
Horizontal Section	Blanking	T _{BLK} (H)	90	140	190	T _{CLK}
Honzoniai Section	Front porch	Tfp(H)	5	44	180	T _{CLK}
	Back porch	T(H)	5	74	180	T _{CLK}
	H_sync	THsync_wdth	5	22	180	T _{CLK}
LVDS Clock	Period	T _{CLK}		13.47		ns
LVD3 CIOCK	Frequency	F _{CLK}	70.875	74.25	76	MHz
Vertical Frequency	Frequency	F _V	59.5	60	60.5	Hz
Horizontal Frequency	Frequency	F _H	66	67.5	72	KHz

○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE


														Ir	put	Со	lor [Data	ι												
	Color					RE	ΞD								(GRI	EEN	I								BL	UE				
		MS	В							L	SB	MS	В							LS	SB	MS	В							L	SB
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	В7	B6	B5	В4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																															
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																															
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

3-6 Power Sequence for LCD Module

3.6.1 Power Sequence for LCD

Parameter		Unit		
Farameter	Min.	Тур.	Max.	Offic
t1	0.4		30	ms
t2	2480		2980	ms
t3	1300	-	-	ms
t4	10			ms
t5	0.1		50	ms
t6		-	300	ms
t7	500		-	ms
t8	2500		-	ms
t9	100			ms

Note:

The timing controller will not be damaged in case of TV set AC input power suddenly shut down.

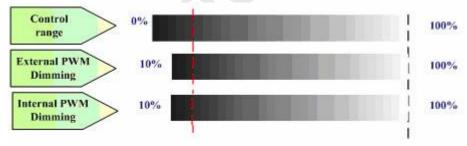
Once power reset, it should follow power sequence as spec. definition.

(1) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become abnormal screen.

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

3-7 Backlight Power Specification for LCD Module

3.7.1 Electrical specification


I	C	L _1	Condition		Spec		T I:4	Mata
Item	Sym	DOI	Condition	Min	Typical	Max	Unit	Note
Input Voltage	V_{DI}	DВ		21.6	24	26.4	VDC	
Input Current	$I_{ m DD}$	В	VDDB=24V	-	2.79		ADC	1
Input Power	P_{DI}	ОВ	VDDB=24V	-	67		W	1
Inrush current	I_{RU}	SH	VDDB=24V	-	-	6	ADC	2
Output Frequency	F_{B}	L	VDDB=24V	53.5	55	56.5	KHz	
0.4055	***	ON	ANDER AND	2	-	5.25	VDC	
On/Off control voltage	V_{BLON}	OFF	VDDB=24V	0	-	0.8		
Dimming Control Voltage	V_{DIM}	MAX	VDDB=24V	0	-	3.3	VDC	
Internal Dimming Ratio	DIM	_R		10		100	%	
DVV 4 1 1 1 1	W EDWA	MAX	VDDB=24V	2		3.3	VDC	
PWM control Voltage	V_EPWM	MIN	VDDB=24V	0		0.8		
External PWM control	I_EP'	WM	VDDB=24V			2	mADC	
Current						2		
External PWM Duty ratio	D_EP	WM	VDDB=24V	10		100	%	3
External PWM Frequency	F_EP	WM	VDDB=24V	120	180	240	Hz	

Note1: VDIM= 3.3V (MAX) (Ta=25 \pm 5°C, Turn on for 45minutes)

Note 2 : Measurement condition Rising time = 20 ms (VDDB : 10%~90%); Note 3 : (a) Uniformity and flicker do not guarantee below 20% dimming control. (b) 10% dimming control is function okay and no backlight shut down

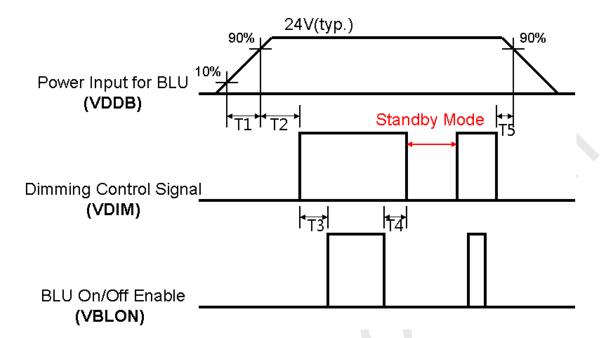
Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	DET	BLU status detection: Normal : 0~0.8V ; Abnormal : Open collector
12	VBLON	BL On-Off control: High/Open (2.0V~5.5V) : BL On ; Low (GND): BL off
13	VDIM	Internal PWM (0~3.1V for 10~100% Duty) < NC ; at External PWM mode>
14	PDIM	External PWM (10%~100% Duty Ratio) < NC ; at Internal PWM mode>

PWM Dimming: include Internal and External PWM Dimming

(note*) IF External PWM function includes 10% dimming function. Judge condition is shown below:

- 1.) Backlight module must be lighted ON normally.
- 2.) All protection function must operate normally.
- 3.) Uniformity and flicker could NOT be guaranteed!

When External or Internal PWM working Duty ratio is above 20%, all function condition MUST be in SPEC. (note**) In Product SPEC Description, Inverter will NOT guarantee optical performance when Dimming ratio under 20%; and NOT guarantee Protection function when Dimming ratio under 10%.


○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. 17/32

No Reproduction and Redistribution Allowed

3.7.2 Power Sequence for Inverter

Parameter		Units		
	Min.	Тур.	Max.	
T1	20		-	Ms
T2	50	-	-	Ms
Т3	0	-	-	Ms
T4	0	-	-	Ms
T5	0	-	-	Ms

3.8 MEMC Function Specification

3.8.1 Setting by hardware

Global LCD Panel Exchange Center

Pin name	Input/ ouptut	Content	Note	Default
MEMC_ON *1	I	MEMC ON/OFF Selection 0: MEMC OFF 1: MEMC ON	MEMC ON: 10 frames latency (~170ms) for film FLC, MBR + video MBR MEME OFF: 1 frame latency (~16.7ms)	1
LVDS_FORMAT	I	LVDS Format Selection 0: JEIDA Mode 10/8bits 1: NS Mode 8bits		1
SDA_MCU	I/O	Internal I2C to control MEMC		1
SCL_MCU	I/O	Internal I2C to control MEMC		
SDA_E *2	I/O	External I2C from customer's comment	When MCU gets external I2C signals from customer's comment, MCU will download	1
SCL_E *2	I/O	External I2C from customer's comment	register setting for MEMC chip by MCU_SDA and MCU_SCL. The sheet of register map shows detail register setting.	

Note 1.

MEMC ON/OFF can also control by external I2C. If users want to change the setting, only need to change hardware setting or provide external I2C command. Ex: When MEMC ON of the hardware is L for MEMC OFF, external I2C can set address=0x79 and data=0x00 for MEMC ON.

The below figure shows the I2C format of customer's single-byte commend. Ex. Address: 0x65.

_		Jan						
ſ	START	0XE4 (*1)	ACK (*2)	Address	ACK	Data	ACK	STOP

The next figure shows the I2C format of customer's multi-byte commend. Ex. Address: 0x23

The flext ligate shows the 120 format of customer's main byte commend. Ex. Address . 0x20.													
START	0XE4	ACK	Add	ACK	Data (Byte 0)	ACK	Data (Byte 1)	ACK	Data (Byte 2)	ACK	Data (Byte 3)	ACK	STOP

Note (1)

Slave address of MEMC chip is 0x72 plus the least significant bit indicating a write (0xE4).

Shaded items are issued by the slave (MEMC chip).

○Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

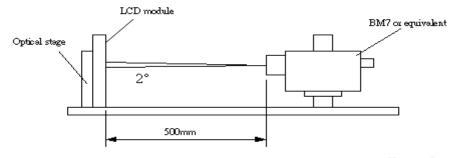
3.8.2 Setting by External I2C

Address (Hex)	Byte	Bit	Description	Note	Default
1B	0	7:0	Output black data 0x00: unblank (normal display) 0x01: blank (output black data)	Initial state is unblanked.	0x00
79	0	7:0	MEMC ON/OFF Selection 0x00: MEMC ON 0x02: MEMC OFF	MEMC ON: 10 frames latency (~170ms) for film FLC, MBR + video MBR MEME OFF: 1 frame latency (~16.7ms)	0x00
65	0:1	15:0	Control the demo option 0x0000: Demo OFF. 0x0004: Demo ON.	Demo OFF: Normal display; Demo ON: MEMC enable at Left side, and MEMC disable at right side.	0x0000
59	0	7:0	OSD ON/OFF control 0x00: OSD OFF 0x04: OSD ON	OSD On/Off Control	0x00
	0:1	15:0	OSD width define (Unit: pixel ; range 0~1920)		0x0000
	2:3	15:0	OSD height define (Unit: pixel ; range 0~1080)	1. OSD Protection Size Define	0x0000
23	23 4:5 15:	15:0	The amount of H pixels that the left upper corner of the OSD is from the left top corner of the output window (Unit: pixel; range 0~1920)	(Width, height, x, y) 2. Usable in OSD ON status. (The data of address 0x59 must	0x0000
	6:7	15:0	The amount of V pixels that the left upper corner of the OSD is from the left top corner of the output window (Unit: pixel; range 0~1080)	be 0x04.)	0x0000
	0	6:0	Thickness of the OSD left and right border (Unit: pixel; range 0~127)		0x00
6-	1	6:0	Thickness of the OSD top and bottom border (Unit: pixel ; range 0~127)	1. OSD border width and color decision	0x00
25	2:4	7:0 7:0	Red component of the OSD border color Green component of the OSD border color	2. Usable in OSD ON status. (The data of address 0x59 must be 0x04.)	0x00 0x00
		7:0	Blue component of the OSD border color (Unit: 8 bit level ; range 0~255)		0x00

○Copyright AU Optronics, Inc.January, 2008 All Rights Reserved.20/32No Reproduction and Redistribution Allowed

6E	0	7:0	0x00: Normal MEMC level 0x01: Strong MEMC level	Usable in MEMC ON status. (The data of address 0x79 must be 0x00.)	0x00	
----	---	-----	--	--	------	--

○Copyright AU Optronics, Inc.January, 2008 All Rights Reserved.21/32No Reproduction and Redistribution Allowed



Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0° .

Fig.1 1 presents additional information concerning the measurement equipment and method.

Parameter	Symbol	Values		Units	Notes	
		Min.	Тур.	Max.	•	
Contrast Ratio	CR	3200	4000			1
Surface Luminance, white	LWH	400	500		cd/m²	2
Luminance Variation	$\delta_{ ext{white}}$ 9 p			1.30		3
Response time G to G	Τγ		6.5		ms	4
Color Gamut	NTSC		72		%	
Color Coordinates						
RED	R_X		0.64			
	R_{Y}		0.33			
GREEN	G_X		0.29			
	G_{Y}	Тур0.03	0.60	Typ.+0.03		
BLUE	B_X	Тур0.03	0.15	1 yp.+0.03		
	B_{Y}		0.06			
WHITE	W_X		0.28			
	W_{Y}		0.29			
Viewing Angle						
x axis, right(φ=0°)	θ_{r}		89		degree	5
x axis, left(φ=180°)	θ_{l}		89			
y axis, up(φ=90°)	θ_{u}		89			
y axis, down (φ=0°)	θ_{d}		89			

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved.

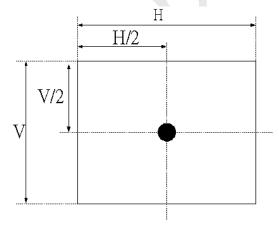
No Reproduction and Redistribution Allowed

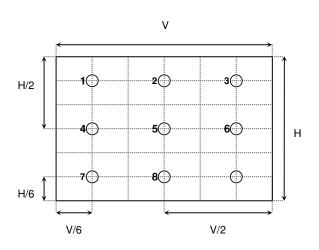
Note:

1. Contrast Ratio (CR) is defined mathematically as:

Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. When VDDB = 24V, IDDB = 5A, LWH=Lon5, where Lon5 is the luminance with all pixels displaying white at center 5 location..

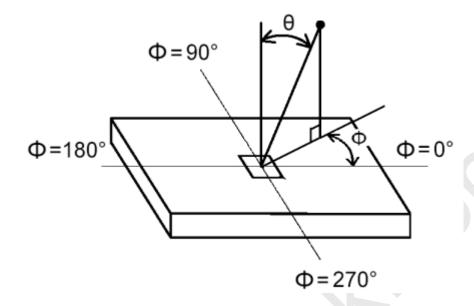
The variation in surface luminance, δWHITE is defined (center of Screen) as:


$$\delta_{\text{WHITE}(9P)}$$
= Maximum($L_{\text{on1}}, L_{\text{on2}}, ..., L_{\text{on9}}$)/ Minimum($L_{\text{on1}}, L_{\text{on2}}, ..., L_{\text{on9}}$)

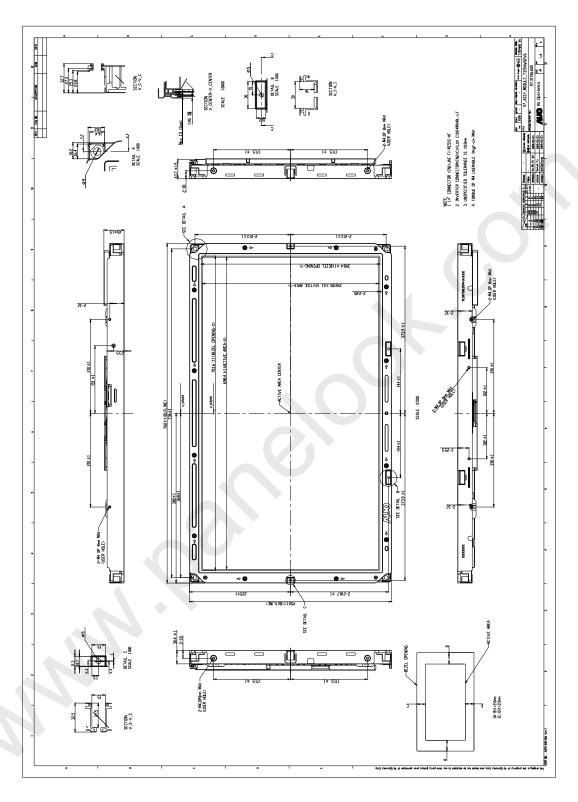

Response time $T\gamma$ is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on f_v =60Hz to optimize.

	0%	25%	50%	75%	100%
0%		t:0%-25%	t:0%-50%	t:0%-75%	t:0%-100%
25%	t:25%-0%		t:25%-50%	t:25%-75%	t:25%-100%
50%	t:50%-0%	t:50%-25%		t:50%-75%	t:50%-100%
75%	t:75%-0%	t:75%-25%	t:75%-50%		t:50%-100%
100%	t:100%-0%	t:100%-25%	t:100%-50%	t:100%-75%	<i> </i> <i> </i>

Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

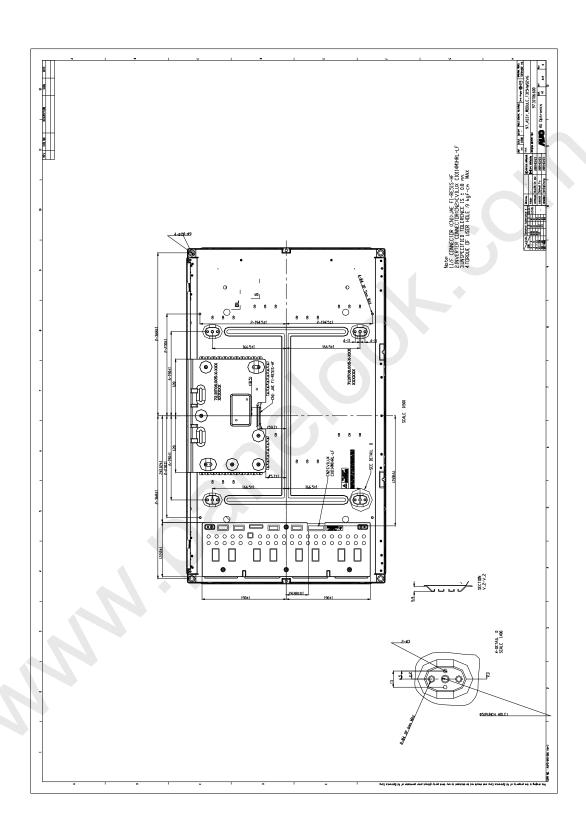

FIG. 2 Luminance

Ocopyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed


5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model T315HW02 V6. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	760.0mm	
Outline Dimension	Vertical	450.0mm	
	Depth	45mm	
Pagal Opaning	Horizontal	703.6mm	
Bezel Opening	Vertical	398.4mm	
Active Display Area	Horizontal	698.4mm	
Active Display Area	Vertical	392.85mm	
Weight	6500g Typ.		
Surface Treatment	AG, 3H, Haze=11%		



©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. 26/32 No Reproduction and Redistribution Allowed

Back:

○Copyright AU Optronics, Inc.January, 2008 All Rights Reserved.27/32No Reproduction and Redistribution Allowed

6. Reliability:

Environment test condition

No	Test Item	Condition
1	High temperature storage test	Ta=60°C 300h
2	Low temperature storage test	Ta=-20°C 300h
3	High temperature operation test	Ta=50°C 300h
4	Low temperature operation test	Ta=-5°C 300h
5	Vibration test (non-operating)	"(10 ~ 300Hz/1.5G/11min SR, XYZ 30min/axis) Vibration level: 1.5G RMS, Bandwidth: 10-300Hz Duration: X, Y, Z 30min, "
6	Shock test (non-operating)	Shock level: 50G Waveform: half since wave, 11ms Direction: ±X, ±Y, ±Z, one time each direction
7	Vibration test (with carton)	Random wave (1.5 Grms 10~200Hz) 30mins / Per each X.Y.Z axes "
8	Drop test (with carton)	Height: 38cm 1 corner, 3 edges, 6 surfaces (ASTMD4169-I)

7. International Standard

7-1. Safety

i. UL1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995

Standard for Safety of Information Technology Equipment Including electrical Business Equipment.

ii. CAN/CSA C22.2 No. 950-95/60950 Third Edition, Canadian Standards Association,

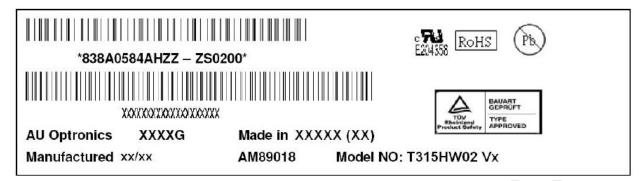
Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.

iii. EN60950: 1992+A2: 1993+A2: 1993+C3: 1995+A4: 1997+A11: 1997

IEC 950: 1991+A1: 1992+A2: 1993+C3: 1995+A4:1996

European Committee for Electrotechnical Standardization (CENELEC)

EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.


7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

8. Packing

Panel label:

838A0584AHZ - ZS0200

838A0584AHZZ: Panel Unique ID

ZS0200: AUO internal use

Manufactured 09/02

2009 week 02

AM89018

AUO internal use

Carton Label:

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer).
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of flue still on the Bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.