

Product Description: T400HW02 TFT-LCD PANEL with RoHS guarantee									
AUO Model Name: T400HW02 V3									
Customer Part No/Pro	ject Name								
Customer Signature	Date	AUO	Date						
	Ċ	Approved By: PM Director / Frank	Hsu 						
0	\mathcal{C}	Reviewed By: RD Director / Hong .	Jye Hong						
Reviewed By: Project Leader /Tzuchieh Lai									
		Prepared By: PM /Cynthia Hung 							

 $\langle p \rangle$

Document Version: 0.0 Date:2008/09/30

Product Specifications

40" Full HD Color TFT-LCD Module Model Name: T400HW02 V3

> (*) Preliminary Specifications () Final Specifications

Contents

No		
		CONTENTS
		RECORD OF REVISIONS
1		GENERAL DESCRIPTION
2		ABSOLUTE MAXIMUM RATINGS
3		ELECTRICAL SPECIFICATION
	3-1	ELECTRIACL CHARACTERISTICS
	3-2	INTERFACE CONNECTIONS
	3-3	SIGNAL TIMING SPECIFICATION
	3-4	SIGNAL TIMING WAVEFORM
	3-5	COLOR INPUT DATA REFERENCE
	3-6	POWER SEQUENCE
	3-7	BACKLIGHT CONNECTOR PIN CONFIGURATION
4		OPTICAL SPECIFICATION
5		MECHANICAL CHARACTERISTICS
6		RELIABILITY TEST ITEMS
7		INTERNATIONAL STANDARD
	7-1	Safety
	7-2	EMC
8		PACKING
9		PRECAUTION

Record of Revision

Version	Data	No	Old Description	New Decription	Remark
0.0	2008/09/30		First release		N/A

1. General Description

This specification applies to the 40.0 inch Color TFT-LCD Module T400HW02 V3. This LCD module has a TFT active matrix type liquid crystal panel 1,920x1,080 pixels, and diagonal size of 40.0 inch. This module supports 1,920x1,080 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

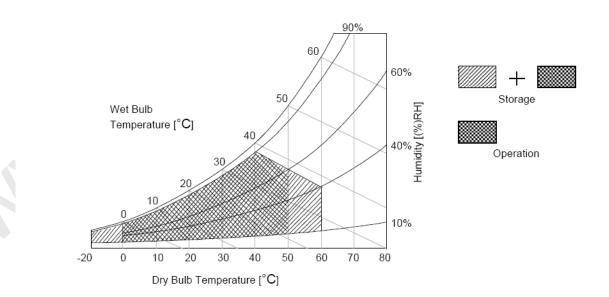
The T400HW02 V3 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

Items	Specification	Unit	Note
Active Screen Size	40.00	inch	
Display Area	885.6(H) x 498.15(V)	mm	
Outline Dimension	952.0(H) x 551.0 (V) x 48.4(D)	mm	With socket cover
Driver Element	a-Si TFT active matrix		
Display Colors	8 bit, 16.7M	Colors	
Number of Pixels	1,920x1,080	Pixel	
Pixel Pitch	0.46125 (H) x 0.46125(W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze=11%

* General Information

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min	Мах	Unit	Condition s
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	3.6	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39 $^\circ\!\mathrm{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40 $^{\circ}$ C or less. At temperatures greater than 40 $^{\circ}$ C, the wet bulb temperature must not exceed 39 $^{\circ}$ C.

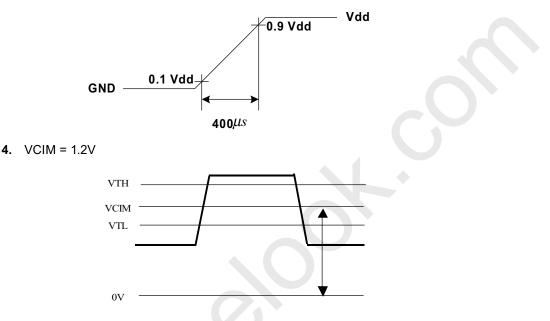
Note 3: Surface temperature is measured at 50 °C Dry condition

3. Electrical Specification

The T400HW02 V3 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input, which powers the CCFL, is typically generated by an integrate power (I/P) system.

	Parameter	Symbol		Value		Unit	Note
	Falameter	Symbol	Min.	Тур.	Max	Unit	Note
LCD							
Power Su	pply Input Voltage	V _{DD}	10.8	12	13.2	V _{DC}	1
Power Su	pply Input Current	I _{DD}	-	1.14	1.25	А	2
Power Co	nsumption	Pc	-	13.68	15.0	Watt	2
Inrush Cu	rrent	I _{RUSH}			4.5	А	3
	Differential Input High Threshold Voltage	V _{TH})		+100	mV _{DC}	4
LVDS Interface	Differential Input Low Threshold Voltage	VTL	-100			mV_{DC}	4
	Input Common Mode Voltage	V _{ICM}	0.6	1.2	1.8	V _{DC}	4
CMOS	Input High Threshold Voltage	V _⊮ (High)	2.4		3.3	V _{DC}	
Interface	Input Low Threshold Voltage	V _L (Low)	0		0.7	V _{DC}	
Life Time			50000			Hours	

3.1 Electrical Characteristics


One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Note :

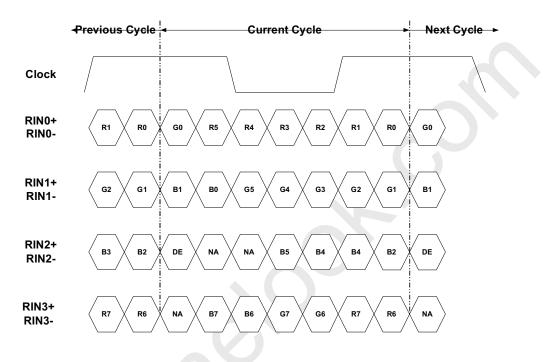
- 1. The ripple voltage should be controlled under 10% of V $_{\rm CC}$
- **2.** Vcc=12.0V, $f_v = 60$ Hz, fCLK=81.5Mhz , 25 °C, Test Pattern : White Pattern
- 3. Measurement condition :

- 5. The performance of the Lamp in LCD panel, for example life time or brightness, is extremely influenced by the characteristics of balanced board and I/P board. All the parameters should be carefully designed as not to produce too much leakage current from high-voltage output. While you design or order the balance board, please make sure unwanted lighting caused by the mismatch of the lamp and the balanced board (no lighting, flicker, etc) never occurs. After confirmation, the LCD panel should be operated in the same condition as installed in your instrument
- 6. Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape.
- 7. The relative humidity must not exceed 80% non-condensing at temperatures of 40 °C or less. At temperatures greater than 40 °C, the wet bulb temperature must not exceed 39 °C. When operate at low temperatures, the brightness of CCFL will drop and the life time of CCFL will be reduced.

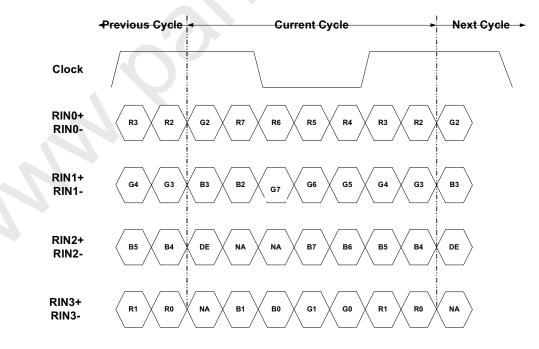
3.2 Interface Connections

- LCD connector: FI-RE51S-HF (JAE)
- Mating connector: FI-RE51S-HL (JAE)

PIN #	Signal Name	Description
1	V _{DD}	12V power supply
2	V _{DD}	12V power supply
3	V _{DD}	12V power supply
4	V _{DD}	12V power supply
5	V _{DD}	12V power supply
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	RO_0-	Negative(-) LVDS differential data input
11	RO_0+	Positive(+) LVDS differential data input
12	RO_1-	Negative(-) LVDS differential data input
13	RO_1+	Positive(+) LVDS differential data input
14	RO_2-	Negative(-) LVDS differential data input
15	RO_2+	Positive(+) LVDS differential data input
16	GND	Ground
17	RO_CLK-	Clock Signal(-)
18	RO_CLK+	Clock Signal(+)
19	GND	Ground
20	RO_3-	Negative(-) LVDS differential data input
21	RO_3+	Positive(+) LVDS differential data input
22	NC	No connection
23	NC	No connection
24	GND	Ground
25	RE_0-	Negative(-) LVDS differential data input
26	RE_0+	Positive(+) LVDS differential data input
27	RE_1-	Negative(-) LVDS differential data input
28	RE_1+	Positive(+) LVDS differential data input
29	RE_2-	Negative(-) LVDS differential data input
30	RE_2+	Positive(+) LVDS differential data input



31	GND	Ground
32	RE_CLK-	Clock Signal(-)
33	RE_CLK+	Clock Signal(+)
34	GND	Ground
35	RE_3-	Negative(-) LVDS differential data input
36	RE_3+	Positive(+) LVDS differential data input
37	NC	No connection
38	NC	No connection
39	GND	Ground
40	SCL	EEPROM Serial Clock
41	Reserved	Please leave it open
42	Reserved	Please leave it open
43	Reserved	Please leave it open
44	Reserved	Please leave it open
45	LVDS	Select LVDS data order (NS: High/Open, JEIDA: Low)
46	Reserved	Please leave it open
47	Reserved	Please leave it open
48	Reserved	Please leave it open
49	Reserved	Please leave it open
50	Reserved	Please leave it open
51	Reserved	Please leave it open



LVDS Option = High/Open→NS

LVDS Option = Low -> JEIDA

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

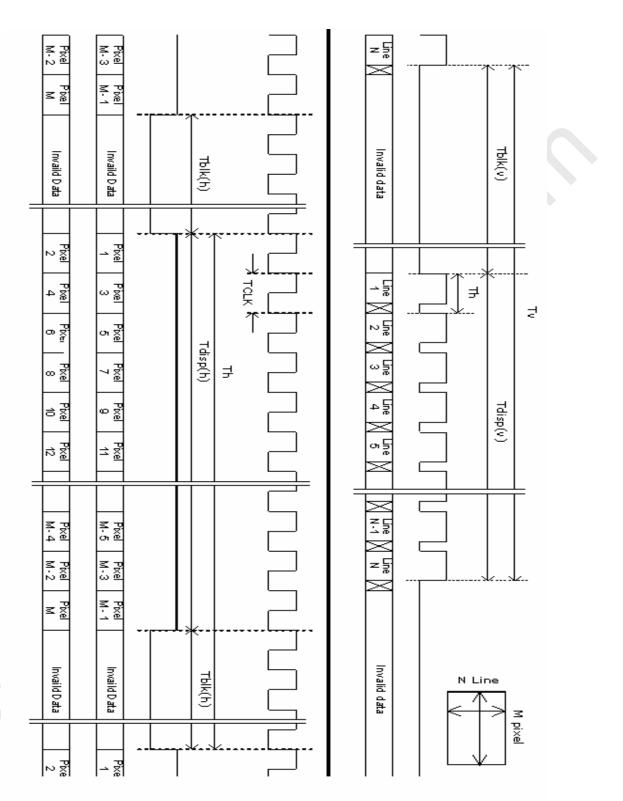
Timing Table (DE only Mode)

For 60Hz

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Τ _V	1090	1125	1480	Тн
Vertical Section	Active	T _{DISP} (V)		1080	\bigcirc	Τ _Η
	Blanking	T _{BLK} (V)	10	45	400	Τ _Η
	Period	Т _н	1030	1100	1300	T _{CLK}
Horizontal Section	Active	T _{DISP} (H)		960		T _{CLK}
	Blanking	T _{BLK} (H)	70	140	340	Т _{ськ}
Clock	Frequency	1/T _{CLK}	50	74.25	82	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fн	60	67.5	73	KHz

Notes:

1.) Display position is specific by the rise of DE signal only.

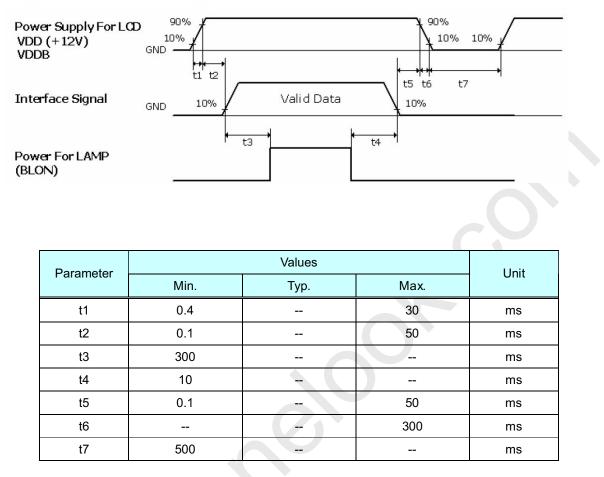

Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.

Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise the of 1st DE is displayed at the top line of screen.

3.) If a period of DE "High" is less than 1366 DCLK or less than 768 lines, the rest of the screen displays black.

4.) The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

3.4 Signal Timing Waveforms



3.5 Color Input Data Reference

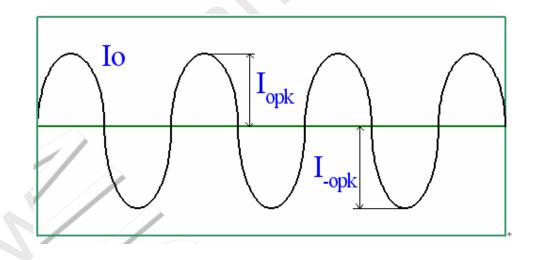
The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

							Input Color Data																		
	RED								GREEN						BLUE										
	MS	В		r		1	L	SB	MSB LSB						MS	В					L	SB			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	Β7	B6	В5	Β4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

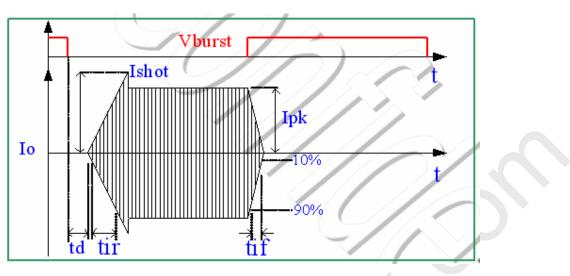
3.6 Power Sequence

Note:

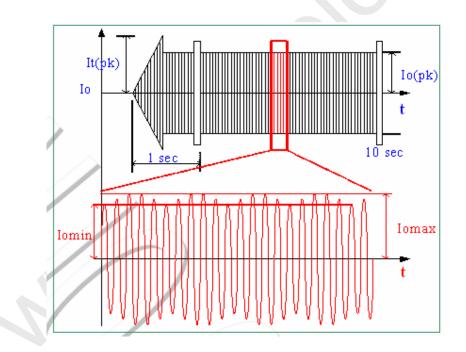
The timing controller will not be damaged in case of TV set AC input power suddenly shut down.

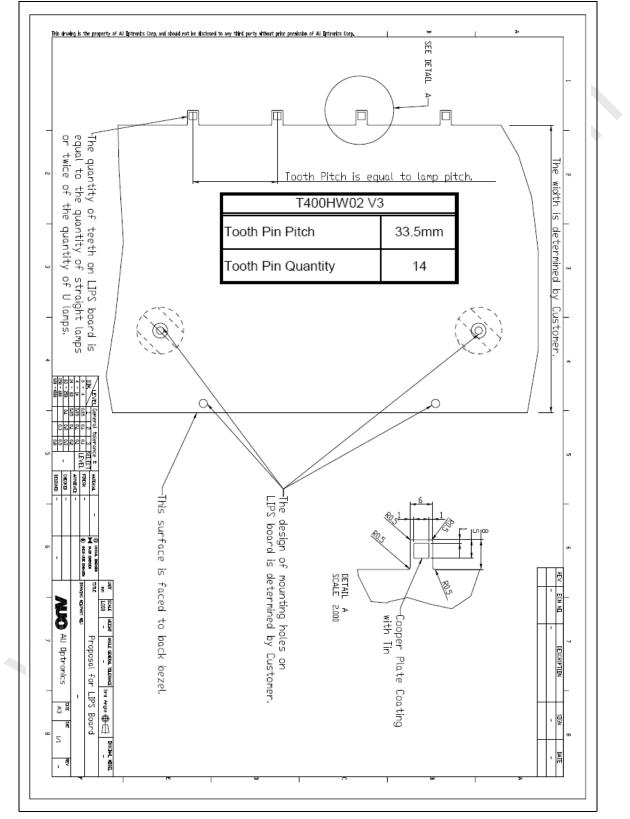

Once power reset, it should follow power sequence as spec. definition.

(1) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become abnormal screen.


Ċ	

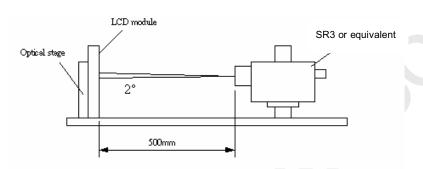
	Item	Symbol	Condition			Specification					I	
No			Dimming	Temp. (°C)	Description	Min	Тур	Max	unit	Note		
1	Output current	lo	Max	25	Output current of each lamp (HV terminal)	10.0	TBD	11.0	mA			
2	Output current variation	IVAR	Max	25	IVAR=Imax-Imin, Imax and Imin are max and min lamp current within whole backlight		-	1	mA			
3	Output working voltage	VL	Max	25	Lamp voltage of one lamp	950	TBD	1000	Volt (rms)		1	
4	Power consumption	Pin	Max	25	Pin spec on max brightness	135	150	165	w		1	
5	Lamp current DC bias	Idc	Max	25	$Idc = \frac{I_{opk} - I_{opk} }{(I_{opk} + I_{opk})/2}$		_	5	%	(1)		
6	Lamp current harmonic	HR	Max	25	HR = $\frac{\sqrt{J_{2}^{2} - L_{4}^{2} + I_{4}^{2} + I_{2}^{2}}}{I_{2}}$,	-	_	20	%			
_	Burst mode dimming waveform of lamp current	Over ratio			Over Ratio=(Ishot-Ipk)/Ipk	-	_	10	%		1	
7			moflamp tir N	Max	Max 25	tir: Lamp current rising time	-	450	500	us	(2)	L
		tif			tif: Lamp current falling time	-	_	100	us		L	
8	Lamp current vibration	VBR	Max	25	VBR=(Iomax-Iomin) /(Iomax+Iomin)/2	-20	-	20	%	(3)		
	and brightness flicker	flicker			Brightness flicker	No flicker						
		Vstirke			V _{strike} : trigger voltage of one lamp	1.44	1.64	1.835	kVolt (rms)			
9	Lamp striking voltage	np striking voltage tstrike Max 0 t _{strike} : trigger t	t _{strike} : trigger time of one lamp	1	1.5	-	ms		1			
11	LTS		20%	-20	Turn on inverter at -20'C temperature (5hrs at least)	No Flicker phenomenon						


Note 1



Note 3

Input Interface for LIPS board


CN1 :EL7H001ZZ2 (JAE)

4. Optical Specification

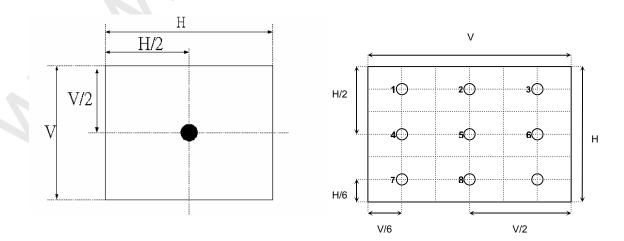
Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of φ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

Parameter	Symbol		Values			Notes	
Falameter	Symbol	Min.	Typ. Max		Unit	Notes	
Contrast Ratio	CR	4000	5000			1	
Surface Luminance (White)	L _{WH}	400	500		cd/m ²	2	
Luminance Variation	δ _{WHITE(9P)}	-		1.3		3	
Response Time (G to G)	Тү		8		Ms	4	
Color Gamut	NTSC		72		%		
Color Coordinates	NV						
Red	R _X		0.637	- Typ.+0.03			
	R _Y		0.336				
Green	G _X		0.277		[
	G _Y	Turn 0.02	0.590				
Blue	B _X	Тур0.03	0.145				
	B _Y		0.057				
White	W _X		0.280				
	W _Y		0.290				
Viewing Angle						5	
x axis, right(φ=0°)	θ _r		89		degree		
x axis, left(φ=180°)	θι		89		degree		
y axis, up(φ=90°)	θ _u		89		degree		
y axis, down (φ=270°)	θ _d		89		degree		

Note:

1. Contrast Ratio (CR) is defined mathematically as:


Contrast Ratio= Surface Luminance of L_{on5} Surface Luminance of L_{off5}

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. When lamp current $I_H = 11$ mA. $L_{WH}=Lon5$ where Lon5 is the luminance with all pixels displaying white at center 5 location.
- The variation in surface luminance, δWHITE is defined (center of Screen) as: δ_{WHITE(9P)}= Maximum(L_{on1}, L_{on2},...,L_{on9})/ Minimum(L_{on1}, L_{on2},...L_{on9})
- 4. Response time T γ is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on f v=60Hz to optimize.

	0%	25%	50%	75%	100%
0%		t:0%-25%	t:0%-50%	t:0%-75%	t:0%-100%
25%	t:25%-0%		t:25%-50%	t:25%-75%	t:25%-100%
50%	t:50%-0%	t:50%-25%		t:50%-75%	t:50%-100%
75%	t:75%-0%	t:75%-25%	t:75%-50%		t:50%-100%
100%	t:100%-0%	t:100%-25%	t:100%-50%	t:100%-75%	

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

FIG. 2 Luminance

$\langle \! \! \rangle$

FIG.3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright) " and "any level of gray(dark)".

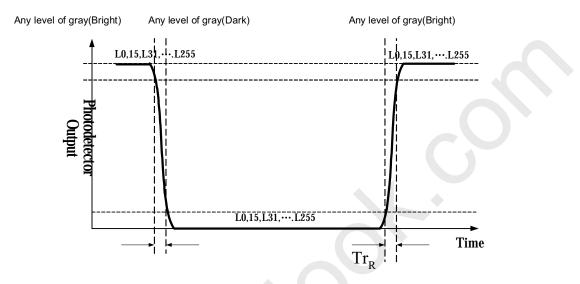
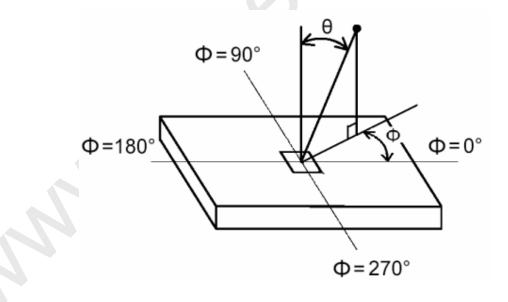
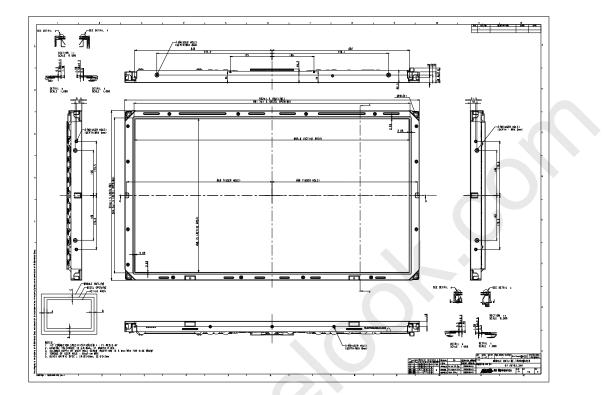
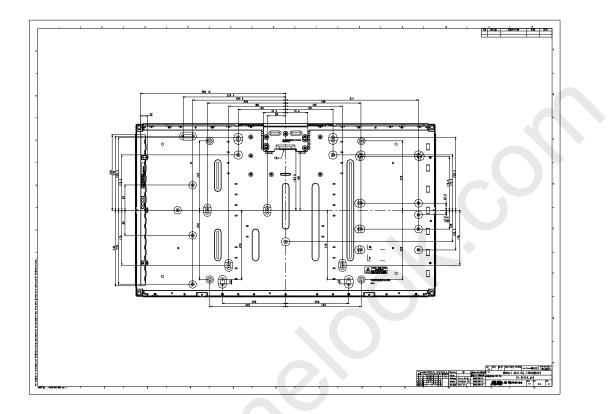



FIG.4 Viewing angle



5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model T400HW02 V3. In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal	952.0 mm		
Outline Dimension	Vertical	551.0 mm		
	Depth	48.4 mm(to socket cover)		
	Horizontal	891.7 mm		
Bezel Opening	Vertical	504.2 mm		
Active Display Area	Horizontal	885.6mm		
Active Display Area	Vertical	498.15 mm		
Weight	10500g (Typ.)			
Surface Treatment	Anti-Glare, 3H			

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

\Diamond

6. Reliability Test Items

	Test Item		Condition
1	High temperature storage test	3	60 ℃, 300hrs
2	Low temperature storage test	3	-20 ℃, 300hrs
3	High temperature operation test	3	50 °C, 300hrs
4	Low temperature operation test	3	-5 ℃, 300hrs
5	Vibration test (non-operation)	3	(10~300Hz/1.5G/11min SR, XYZ 30,im/axis) Vibration level : 1.5G RMS, Bandwidth: 10-300Hz, Duration: X, Y, Z 30min
6	Shock test (non-operation)	3	Shock level: 50G Waveform: half since wave, 11ms Direction: ±X, ±Y, ±Z, One time each direction
7	Vibration test (With carton)	3	Random wave (1.5G RMS, 10-200Hz) 30mins/ Per each X,Y,Z axes
8	Drop test (With carton)	3	Height: 38.1cm 1 corner, 3 edges, 6 surfaces (ASTMD4169-I)

\bigotimes

7. International Standard

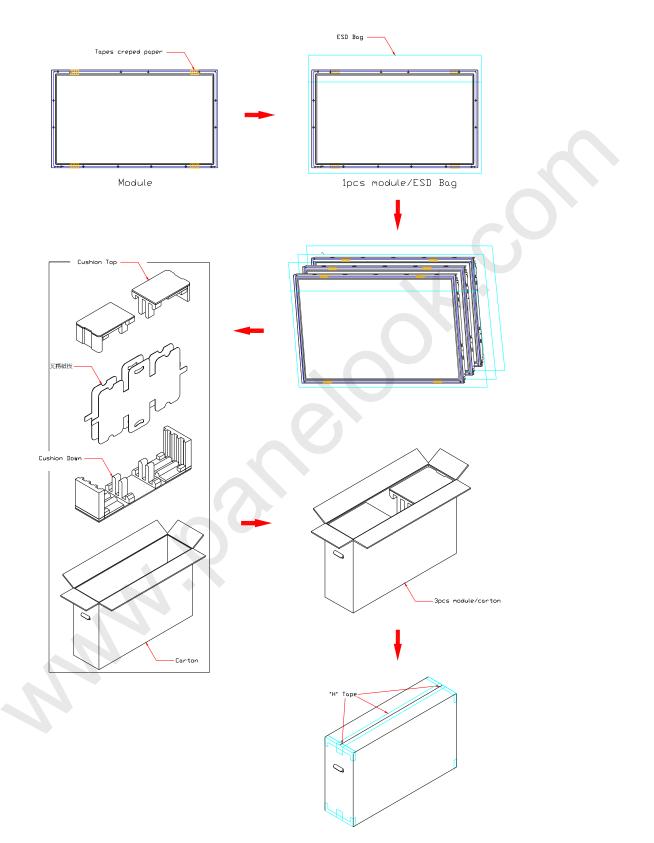
7.1 Safety

- UL1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995
 Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) CAN/CSA C22.2 No. 950-95/60950 Third Edition, Canadian Standards Association, Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- (3) EN60950: 1992+A2: 1993+A2: 1993+C3: 1995+A4: 1997+A11: 1997
 IEC 950: 1991+A1: 1992+A2: 1993+C3: 1995+A4:1996
 European Committee for Electrotechnical Standardization (CENELEC)
 EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7.2 EMC

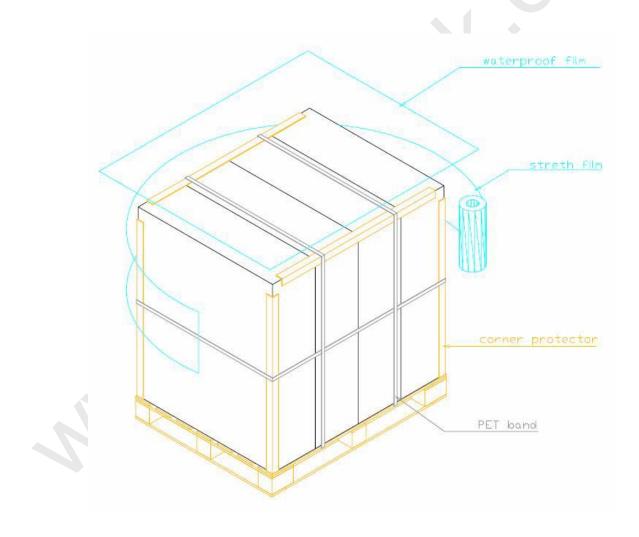
- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

8. Packing


8-1 DEFINITION OF LABEL:

A. Panel Label:

*xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Green mark description
For Pb Free Product, AUO wil add for identification.
For RoHs compatible products, AUO will add for identification.
Note: The green Mark will be present only when the green documents have been ready by AUO internal
green team. (The definition of green design follows the AUO green design checklist.)
B. Carton Label:


	AU Optronics QTY:3
	MODEL NO: T400HW02
	PART NO: 97.40T03.3XX
	CUSTOMER NO:
~	CARTON NO:
	Made in XXXXXX *xxxxx—xxxxxxxxxx*

8-3 Pallet and Shipment In	formation
----------------------------	-----------

	ltem		Packing Remark			
	nem	Qty.	Dimension	Weight (kg)		
1	Packing BOX	3pcs/box	bcs/box 1050(L)*280(W)*650(H)			
2	Pallet	1	1140(L)*1060(W)*138(H)			
3	Boxes per Pallet	8 boxes/pa	B boxes/pallet			
4	Panels per Pallet	24pcs/palle	24pcs/pallet			
	Pallet after packing	24	1140(L)*1060(W)*1438(H)	320		

\bigotimes

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of CCFL depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

\bigotimes

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5 °C and 35 °C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of flue still on the Bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.