

Model Name: T546QB01 V0

Issue Date : 2011/12/06

() Preliminary Specifications(*)Final Specifications

Customer Signature	Date	AUO Date				
Approved By		Approval By PM Director				
中村直正	12/1,20/1	五舸夷砚 9	Way 12/17,			
Note		Reviewed By RD Director				
		Mugene Chan 1-17 Reviewed By Project Leader 一	12/7,2011			
		Prepared By PM 黃好茶 Jama Huang	12/6,2011			

Contents

No		
		CONTENTS
		RECORD OF REVISIONS
1		GENERAL DESCRIPTION
2		ABSOLUTE MAXIMUM RATINGS
3		ELECTRICAL SPECIFICATION
	3-1	ELECTRIACL CHARACTERISTICS
	3-2	INTERFACE CONNECTIONS
	3-3	SIGNAL TIMING SPECIFICATION
	3-4	SIGNAL TIMING WAVEFORM
	3-5	COLOR INPUT DATA REFERENCE
	3-6	POWER SEQUENCE
	3-7	BACKLIGHT SPECIFICATION
4		OPTICAL SPECIFICATION
	4-1	2D OPTICAL SPECIFICATION
	4-2	3D OPTICAL SPECIFICATION
5		MECHANICAL CHARACTERISTICS
6		RELIABILITY TEST ITEMS
7		INTERNATIONAL STANDARD
	7-1	SAFETY
	7-2	EMC
8		PACKING
	8-1	DEFINITION OF LABEL
	8-2	PACKING METHODS
	8-3	PALLET AND SHIPMENT INFORMATION
9		PRECAUTION
	9-1	MOUNTING PRECAUTIONS
	9-2	OPERATING PRECAUTIONS
	9-3	ELECTROSTATIC DISCHARGE CONTROL
	9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE
	9-5	STORAGE
	9-6	HANDLING PRECAUTIONS FOR PROTECT FILM

Record of Revision

Version	Date	Page	Description
0.0	2011/08/12		First release
1.0	2011/09/27	P19 ~ P21	Add 3D OPTICAL SPECIFICATION
2.0	2011/11/01	P4	Modify General Information
		P7	Modify Interface Connections
		P16	Modify LED driver condition
		P19 ~ P21	Modify 3D optical
		P26	Modify the drawing of front view
3.0	2011/11/07	P6	Modify 3.1.1: DC Characteristics
4.0	2011/11/13	P6~P52	Modify Product Specification
5.0	2011/12/03	P30~P31	Modify 3D optical
6.0	2011/12/06	P4 , P38	Modify General Information and RA test
7.0	2012/2/16		Power Sequence modification

1. General Description

This specification applies to the 55 inch Color TFT-LCD Module T546QB01 V0. This LCD module has a TFT active matrix type liquid crystal 3,840*2,160 panel pixels, and diagonal size of 55 inch. This module supports 3,840*2,160 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot.

The T546QB01 V0 has been designed to apply the 10-bit, 16ch V by one interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important. Also, 3D function is also embedded into front glass.

* General Information

Items	Specification	Unit	Note
Active Screen Size	55	inch	
Display Area	1209.6(H) x 680.4(V)	mm	
Outline Dimension	1,241.6 (H) x 724.4 (V) x 30.8 (D)	mm	w/o cover
Driver Element	a-Si TFT active matrix		
Bezel Opening	1217.6(H)X688.4(V)	mm	
Display Colors	10 bit,	Colors	
Number of Pixels	3840 x 2160	Pixel	
Pixel Pitch	0.315(H) x 0.315(W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Rotate Function	Unachievable		Note 1
Display Orientation	Signal input with "A"		Note 2

Note 1: Rotate Function refers to LCD display could be able to rotate.

Note 2: LCD display as below illustrated when signal input with "A".

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

ltem	Symbol	Min	Мах	Unit	Conditions
Logic/LCD Drive Voltage (for	Vcc	-0.3	14	[Volt]	Note 1
12V input)					
Logic/LCD Drive Voltage (for 5V	Vcc			[Volt]	Note 1
input)					
Input Voltage of Signal (for 12V	Vin	-0.3	3.6	[Volt]	Note 1
input)					
Input Voltage of Signal (for 5V	Vin			[Volt]	Note 1
input)					
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST	-	65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39 $^\circ\!\mathrm{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50 $^\circ\!\mathbb{C}$ Dry condition

3. Electrical Specification

The T546QB01 V0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

3.1 Electrical Characteristics

3.1.1: DC Characteristics

	Poromotor	Symbol		Value		Unit	Noto
	Farameter	Symbol	Min.	Тур.	Max	Unit	note
LCD							
Power Supp	ly Input Voltage (for input power=12V)	V_{DD}	10.8	12	13.2	V _{DC}	
Power Supp	ly Input Current (Define to section:1.1)	I _{DD}		1.9	4.5	А	1
Power Cons	sumption (Define to section:1.1)	Pc		22.8	54	Watt	1
Inrush Curre	ent (Define to section:1.1)	I _{RUSH}			4	А	2
	Input Differential Voltage	$\mid V_{\text{ID}} \mid$	100			mV_{DC}	3
V by One	Differential Input High Threshold Voltage	V_{TH}	+50			mV_{DC}	3
Interface	Differential Input Low Threshold Voltage	V _{TL}			-50	mV_{DC}	3
	Input Common Mode Voltage	V _{ICM}		0.82		Unit Note V_{DC} V_{DC} A 1 $Watt$ 1 A 2 mV_{DC} 3 mV_{DC} 3 V_{DC} 3 V_{DC} 3 V_{DC} 4 V_{DC} 4 V_{DC} 4 V_{DC} 4 $Watt$ 4 $Hour$ 5,6	3
CMOS	Input High Threshold Voltage	V _{IH} (High)	2.4		3.3	V_{DC}	4
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V _{DC}	4
Backlight Po	ower Consumption(Refer to Section: 3.7)	P _{BL}		150		Watt	
Life time (M	TTF)		30000			Hour	5,6

Note :

- 1. V_{DD} = 12.0V, Fv = 120Hz, Fclk= 78.125MHz , 25 °C , Test Pattern : White Pattern >> refer to "Section:3.3 Signal Timing Specification, Typical timing"
- 2. Measurement condition : Rising time = 400us

3. $V_{ICM} = 0.82V$

- 4. The measure points of V_{IH} and V_{IL} are in LCM side after connecting the System Board and LCM.
- 5. The relative humidity must not exceed 80% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C. When operate at low temperatures, the brightness of LED will drop and the life time of LED will be reduced.
- **6.** The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C]

3.2 Interface Connections

• LCD V by One connector:

V by One CN (41Pin) : FI-RE41S-HF (JAE)

PIN	Symbol	Description	PIN	Symbol	Description
1	GND	Ground	21	Rx11n	V-by-One HS Data Lane 11
2	GND	Ground	22	Rx11p	V-by-One HS Data Lane 11
3	GND	Ground	23	GND	CML Ground
4	GND	Ground	24	GND	CML Ground
5	GND	Ground	25	Rx12n	V-by-One HS Data Lane 12
6	SCL	I2C CLK	26	Rx12p	V-by-One HS Data Lane 12
7	SDA	I2C Data	27	GND	CML Ground
8	GND	CML Ground	28	GND	CML Ground
9	Rx8n	V-by-One HS Data Lane 8	29	Rx13n	V-by-One HS Data Lane 13
10	Rx8p	V-by-One HS Data Lane 8	30	Rx13p	V-by-One HS Data Lane 13
11	GND	CML Ground	31	GND	CML Ground
12	GND	CML Ground	32	GND	CML Ground
13	Rx9n	V-by-One HS Data Lane 9	33	Rx14n	V-by-One HS Data Lane 14
14	Rx9p	V-by-One HS Data Lane 9	34	Rx14p	V-by-One HS Data Lane 14
15	GND	CML Ground	35	GND	CML Ground
16	GND	CML Ground	36	GND	CML Ground
17	Rx10n	V-by-One HS Data Lane 10	37	Rx15n	V-by-One HS Data Lane 15
18	Rx10p	V-by-One HS Data Lane 10	38	Rx15p	V-by-One HS Data Lane 15
19	GND	CML Ground	39	GND	CML Ground
20	GND	CML Ground	40	NC	AUO Internal Use Only
			41	GND	Ground

V by One CN (51Pin) : FI-RE51S-HF (JAE)

PIN	Symbol	Description	PIN	Symbol	Description
1	NC	NC PIN	26	GND	CML Ground
2	NC	NC PIN	27	Rx2n	V-by-One HS Data Lane 2
3	NC	AUO Internal Use Only	28	Rx2p	V-by-One HS Data Lane 2
4	NC	NC PIN	29	GND	CML Ground
5	NC	NC PIN	30	GND	CML Ground
6	NC	NC PIN	31	Rx3n	V-by-One HS Data Lane 3
7	NC	NC PIN	32	Rx3p	V-by-One HS Data Lane 3
8	NC	NC PIN	33	GND	CML Ground
9	NC	AUO Internal Use Only	34	GND	CML Ground
10	NC	NC PIN	35	Rx4n	V-by-One HS Data Lane 4
11	GND	Ground	36	Rx4p	V-by-One HS Data Lane 4
12	GND	Ground	37	GND	CML Ground
13	GND	Ground	38	GND	CML Ground
14	GND	Ground	39	Rx5n	V-by-One HS Data Lane 5
15	GND	Ground	40	Rx5p	V-by-One HS Data Lane 5
16	HTPDN	Hot plug detect	41	GND	CML Ground
17	LOCKN	Lock detect	42	GND	CML Ground
18	GND	CML Ground	43	Rx6n	V-by-One HS Data Lane 6
19	Rx0n	V-by-One HS Data Lane 0	44	Rx6p	V-by-One HS Data Lane 6
20	Rx0p	V-by-One HS Data Lane 0	45	GND	CML Ground
21	GND	CML Ground	46	GND	CML Ground
22	GND	CML Ground	47	Rx7n	V-by-One HS Data Lane 7
23	Rx1n	V-by-One HS Data Lane 1	48	Rx7p	V-by-One HS Data Lane 7
24	Rx1p	V-by-One HS Data Lane 1	49	GND	CML Ground
25	GND	CML Ground	50	NC	AUO Internal Use Only
			51	SYNC3D_I	3D Sync. In Flag (Glasses type)

• LCD Power connector:

Power CN (12Pin) : A2010WR0-12PS-SHP (JWT)

PIN	Symbol	Description
1	PWR Power V12 IN	PWR Power V12 IN
2	PWR Power V12 IN	PWR Power V12 IN
3	PWR Power V12 IN	PWR Power V12 IN
4	PWR Power V12 IN	PWR Power V12 IN
5	PWR Power V12 IN	PWR Power V12 IN
6	NC	NC PIN
7	NC	NC PIN
8	GND Ground	GND Ground
9	GND Ground	GND Ground
10	GND Ground	GND Ground
11	GND Ground	GND Ground
12	GND Ground	GND Ground

4K2K Input Data Format:

2D Mode:

2D Mode Pixel Mapping:

Pixel No	Pixel 1		Pixel 2			Pixel 3		~		Pixel 3840				
Line 1	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 2	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 3	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 4	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 5	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 6	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
:	:	:	:	:	:	:	:	:	:	:	~	:	:	:
Line 2158	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 2159	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840
Line 2160	R1	G1	B1	R2	G2	B2	R3	G3	B3	R4	~	R3840	G3840	B3840

3D Mode (9-View)

Note: 3D multi-view data mapping (1,2,3,4,5,6,7,8,9 is the viewing number)

3D	Mode	Pixel	Map	pina:
00	moduo	1 1/101	iviup	ping.

	Pixel No.		Pixel 1			Pixel 2		Pixel 3		~		Pixel 3840			
	View #	1	2	3	4	5	6	7	8	9	1	~	7	8	9
Line 1	Multi viow	R1	R1	R1	R1	R1	R1	R1	R1	R1	R2	1	R1280	R1280	R1280
Line 2		G1	G1	G1	G1	G1	G1	G1	G1	G1	G2	1	G1280	G1280	G1280
Line 3		B1	B1	B1	B1	B1	B1	B1	B1	B1	B2	~	B1280	B1280	B1280
Line 4	Multi-view	R1	R1	R1	R1	R1	R1	R1	R1	R1	R2	~	R1280	R1280	R1280

T546QB01 V0 Product Specification Rev.6 0

Line 5	Line 2	G1	G2	~	G1280	G1280	G1280								
Line 6		B1	B2	~	B1280	B1280	B1280								
:	:	:	:	:	:	:	:	:	:	:	:	~	:	:	:
Line 2158	Multiviou	R1	R2	~	R1280	R1280	R1280								
Line 2159	Line 720	G1	G2	~	G1280	G1280	G1280								
Line 2160	Line 720	B1	B2	~	B1280	B1280	B1280								

V-by-One Lanes of Pixel Data :

	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7
	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS
Blank	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP
	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR
	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8
	Pixel 9	Pixel 10	Pixel 11	Pixel 12	Pixel 13	Pixel 14	Pixel 15	Pixel 16
Line 1				•				
	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel
	1913	1914	1915	1916	1917	1918	19198	1920
	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS	FSBS
Blank	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP	FSBP
	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR	FSBE_SR
	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8
	Pixel 8	Pixel 10	Pixel 11	Pixel 12	Pixel 13	Pixel 14	Pixel 15	Pixel 16
Line2				•				
	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel	Pixel
	1913	1914	1915	1916	1917	1918	19198	1920
•							•	
•	•	•	•	•	•	•	•	•

	Lane 8	Lane 9	Lane 10	Lane 11	Lane 12	Lane 13	Lane 14	Lane 15
	FSBS							
Blank	FSBP							
	FSBE_SR							
	Pixel							
	1921	1922	1923	1924	1925	1926	1927	1928
	Pixel							
Line 1	1929	1930	1931	1932	1933	1934	1935	1936
	•	•	•	•	•	•	•	•
	Pixel							
	3833	3834	3835	3836	3837	3838	3839	3840
	FSBS							
Blank	FSBP							
	FSBE_SR							
	Pixel							
	1921	1922	1923	1924	1925	1926	1927	1928
	Pixel							
Line2	1929	1930	1931	1932	1933	1934	1935	1936
		•	•	•	•	•		•
	Pixel							
	3833	3834	3835	3836	3837	3838	3839	3840
•		•	•					
•	•	•	•	•	•	•	•	•

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be

satisfied with the following specifications for its proper operation.

4K2K (3840x2160) V-by-One Each Lane Timing Spec. (240x2160 @120Hz x16Lanes)

Туре	Item	Symbol	Min	Тур	Max	Unit
Vertical Section	Period	Τv	2172	2200	2244	Th
	Active	Tdisp(v)		2160		Th
	Blanking	Tblk(v)	12	40	Max 2244 84 300 60 78.125	Th
	Period	Th	280	290	300	Tclk
Horizontal Section	Active	Tdisp(h)		240		Tclk
	Blanking	Tblk(h)	40	50	60	Tclk
Frequency	Clock	Tclk		76.48	78.125	MHz

4K2K (3840x2160) V-by-One Each Lane Timing Spec. (240x2160 @100Hz x16Lanes)

Туре	Item	Symbol	Min	Тур	Max	Unit
Vertical Section	Period	Τv	2172	2200	2692	Th
	Active	Tdisp(v)		2160		Th
	Blanking	Tblk(v)	12	40	532	Th
	Period	Th	280	290	354	Tclk
Horizontal Section	Active	Tdisp(h)		240		Tclk
	Blanking	Tblk(h)	40	50	114	Tclk
Frequency	Clock	Tclk		76.48	78.125	MHz

4K2K V-by-One 2area (1920x2160) Timing difference

Туре	Item	Symbol	Min	Тур	Max	Unit
2Area Latency	Difference	Tdiff	-1	0	1	Th

3.4 Signal Timing Waveforms

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color;

the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

														Ir	nput	Col	or D	Data													
	Color					R	Đ								(GRE	EEN									BL	UE				
	COIOI	MS	SB							L	SB	M	SB							LS	ŝВ	MS	SB							LS	SB
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																															
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

COLOR DATA REFERENCE

T546QB01 V0 Product Specification Rev.6 0

	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
G																															
	GREEN(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																															
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

3.6 Power Sequence for LCD

Deveneter		Values		L lus it
Parameter	Min.	Туре.	Max.	Unit
t1	0.4		30	ms
t2-1	1145		3580	ms
t2-2			*1	ms
t2-3	60			ms
t2-4			1	ms
t3	1330			ms
t4	0*2			ms
t5	0			ms
t6			*3	ms
t7	500			ms

Note:

(1) t2-1 : V by One training time after power-on. The timing of HTPDN falling edge to LOCKN falling edge decided by customer system.

(2) t4=0 : concern for residual pattern before BLU turn off.

(3) t6 : voltage of VDD must decay smoothly after power-off. (Customer system decide this value)

3.7 Backlight Specification (without driver board)

3.7.1 Light bar Driven Condition

Decemeter		Sumbol		Values	i	l lmit	Noto
Parameter		Symbol	Min	Тур	Max	Unit	Note
Forward Current	Anode	IF (anode)		240	400	mA	
(one light bar)	Cathode	IF (cathode)		60	100	mA	
Peak Forward Current		IFP			120	mA	<1msec
							Per LED.
Forward Voltage		VF	9.5	10.4	11.6	V	
Forward Voltage Variation		△VF			1.8	V	
Total Power Consumption (4 ligh	t bars)	PBL	136.8	149.8	167.0	W	

Note 1: Low dimming ratio operation

When PWM dimming duty ratio is operated lower than recommended value, feedback signal and all protection functions should be confirmed by LIPS design. Display performance should also be confirmed by customer's implement.

Note 2: Each LED string should be driven by independent current control/feedback circuit.

Note 3: Fuse protection should be added into LIPS circuit to have better LED driving protection.

3.7.2 Input Pin Assignment

LED connector : P-two 196225-60041

Left Board

Right Board

Pin Number	Connector 1	Connector2	Connector 3	Connector 4	Pin Number	Connector 5	Connector 6	Connector 7	Connector 8
60	NC	NC	NC	NC	1	NC	NC	NC	NC
59	L1_+1	L4_+3	L73-	LA7	2	R1A-	R46-	R72-	RA_+3
58	L1_+2	NC	L74-	LA8	3	R19-	R45-	R71-	RA_+3
57	L1_+2	L41-	L75-	LA9	4	R18-	R44-	NC	RA_+2
56	L1_+3	L42-	L76-	LAA	5	R17-	R43-	R7_+3	RA_+2
55	L1_+3	L43-	L77-	NC	6	R16-	R42-	R7_+3	RA_+1
54	NC	L44-	L78-	NC	7	R15-	R41-	R7_+2	NC
53	L11-	L45-	L79-	LB_+1	8	R14-	NC	R7_+2	NC
52	L12-	L46-	L7A-	LB_+2	9	R13-	R4_+3	R7_+1	RBA-
51	L13-	L47-	NC	LB_+2	10	R12-	R4_+3	NC	RB9-
50	L14-	L48-	NC	LB_+3	11	R11-	R4_+2	NC	RB8-
49	L15-	L49-	L8_+1	LB_+3	12	NC	R4_+2	R8A-	RB7-
48	L16-	L4A-	L8_+2	NC	13	R1_+3	R4_+1	R89-	RB6-
47	L17-	NC	L8_+2	LB1	14	R1_+3	NC	R88-	RB5-
46	L18-	NC	L8_+3	LB2	15	R1_+2	NC	R87-	RB4-
45	L19-	L5_+1	L8_+3	LB3	16	R1_+2	R5A-	R86-	RB3-
44	L1A-	L5_+2	NC	LB4	17	R1_+1	R59-	R85-	RB2-
43	NC	L5_+2	L81-	LB5	18	NC	R58-	R84-	RB1-
42	NC	L5_+3	L82-	LB6	19	NC	R57-	R83-	NC
41	L2_+1	L5_+3	L83-	LB7	20	R2A-	R56-	R82-	RB_+3
40	L2_+2	NC	L84-	LB8	21	R29-	R55-	R81-	RB_+3
39	L2_+2	L51-	L85-	LB9	22	R28-	R54-	NC	RB_+2
38	L2_+3	L52-	L86-	LBA	23	R27-	R53-	NC	RB_+2
37	L2_+3	L53-	L87-	NC	24	R26-	R52-	R8_+3	RB_+1
36	NC	L54-	L88-	NC	25	R25-	R51-	R8_+3	NC
35	L21-	L55-	L89-	LC_+1	26	R24-	NC	R8_+2	NC
34	L22-	L56-	L8A-	LC_+2	27	R23-	R5_+3	R8_+2	RCA-
33	L23-	L57-	NC	LC_+2	28	R22-	R5_+3	R8_+1	RC9-
32	L24-	L58-	NC	LC_+3	29	R21-	R5_+2	NC	RC8-
31	L25-	L59-	L9_+1	LC_+3		NC	R5_+2	NC	RC7-
30	L26-	L5A-	L9_+2	NC	31	R2_+3	R5_+1	R9A-	RC6-
29	L27-	NC	L9_+2	LC1	32	R2_+3	NC	R99-	RC5-
28	L28-	NC	L9_+3	LC2	33	R2_+2	NC	R98-	RC4-
27	L29-	L6_+1	L9_+3	LC3	34	R2_+2	R6A-	R97-	RC3-
26	L2A-	L6_+2	NC	LC4	35	R2_+1	R69-	R96-	RC2-
25	NC	L6_+2	L91-	LC5	36	NC	R68-	R95-	RC1-
24	NC	L6_+3	L92-	LC6	37	NC	R67-	R94-	NC
23	L3_+1	L6_+3	L93-	LC7	38	R3A-	R66-	R93-	RC_+3
22	L3_+2	NC	L94-	LC8	39	R39-	R65-	R92-	RC_+3
21	L3_+2	L61-	L95-	LC9	40	R38-	R64-	R91-	RC_+2
20	L3_+3	L62-	L96-	LCA	41	R37-	R63-	NC	RC_+2
19	L3_+3	L63-	L97-	NC	42	R36-	R62-	<u>R9_+3</u>	RC_+1
18	NC	L64-	L98-	NC	43	R35-	R61-	<u>R9_+3</u>	NC
17	L31-	L65-	L99-	NC	44	R34-	NC	<u>R9_+2</u>	NC
16	L32	L66-	L9A-	NC	45	R33-	R6_+3	<u>R9_+2</u>	NC
15	L33-	L67-	NC	NC	46	R32-		<u></u>	NC
14	L34-	L68-	NC	NC	4/	R31-	R6_+2	NC	NC
13	L33-	L09-	LA_+I	NC	48		R0_+2		NC
11	L30- 1 27	LOA-	LA_+Z	NC	49	K3_+3	KO_+I	KAA-	NC
10	L3/-	NC		NC		KD_+3	NC	КА9- DA9	NC
01	L30- 1.20		LA_+3	NC	51	K3_+2	NC D7A	КАŎ- D 4 7	NC
9	L39-	L/_+1	LA_+3	NC	52	K3_+Z	K/A-	KA/-	NC
0	LOA-	L/_+Z		NC	23	кэ_+I ма	к/9- р70	KAD-	NC
6	NC	L/_+Z	LAI-	NC		NC	K/ŏ- רידים	KAD-	NC
0		L/_+3	LAZ-	NC			K//-	KA4- DA2	NC
ر ا	+1 1/	L/_+3	LHD- T A A	NC		K4H- D40	K/0-	-CHA 0 4 0	NC
2	L4_+Z	NC 171	LH4- T A 5	NC	50	К4У- рио	K7J- 174	<u>КНZ-</u> р л 1	NC
ე ე	1/1 +2	170	LAD-	NC	50	л40- D/17	л/4- р72	NC	NC
1	L4_+3	LIZ- MC	LAO- MC	NC	22	K47-	NC	NC	NC
L	NU	NU	NU	NU	00	NU	NU	NU	NC

4. Optical Specification

4.1 2D Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark

environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing

angle of φ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

Parameter	Symbol		Values		Linit	Notos
raiametei	Symbol	Min.	Тур.	Max	Onit	NOLES
Contrast Ratio	CR	4000	5000			1
Surface Luminance (White)	L _{WH} (2D)	360	450		cd/m ²	2
	L _{wн} (3D)		450			6
Luminance Variation	$\delta_{\text{WHITE(9P)}}$			1.3		3
Response Time (G to G)	Тγ		5.5		Ms	4
Color Gamut	NTSC		72		%	
Color Coordinates						

	Red	R _X		0.640	- Typ.+0.03		
		R _Y	Тур0.03	0.330			
	Green	G _x		0.310			
		G _Y		0.620			
	Blue	B _X		0.150			
		B _Y		0.050			
	White	W _x		0.280			
		W _Y		0.290			
Viewing Angle							5
	x axis, right(φ=0°)	θr		89		degree	
2D	x axis, left(φ=180°)	θι		89		degree	
	y axis, up(φ=90°)	θս		89		degree	
	y axis, down (φ=270°)	θ _d		89		degree	

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Surface Luminance of L_{on5} Contrast Ratio=

Surface Luminance of Loff5

2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels

displaying white. From more information see FIG 2. When LED current I_F = typical value (without driver board),

LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all

pixels displaying white at center 5 location.

FIG. 2 Luminance

3. The variation in surface luminance, δ WHITE is defined (center of Screen) as:

 $\delta_{\text{WHITE(9P)}} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}})$

4. Response time T γ is the average time required for display transition by switching the input signal for five

luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{v} =60Hz to optimize.

Measured		Target							
Response Time		0%	25%	50%	75%	100%			
Start	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%			
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%			
	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%			
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%			
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%				

 T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of grey(bright) " and "any level of gray(dark)".

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

FIG.3 Viewing Angle

4.2 3D Optical Specification

. 3D performance specification is expressed by 3D luminance, 3D Crosstalk and 3D viewing angle. 3D luminance which is defined by L255 in all 9 views and measured at panel center point. Also, 3D crosstalk is measured at panel center point

4-2-1 measurement items

No	Evaluation Items	Unit	Definition	55"			Notes
INO.				Min	Тур	Max	NOLES
1	Lens pitch	um	Fig.1	Тур-2.5	481.53	Typ+2.5	Incoming Inspection
2	Lens curvature	um	Fig.1		301.8		Incoming Inspection
3	Lens sag	um	Fig.1	Тур-2.0	119.8	Тур+2.0	Incoming Inspection
4	Lens slant angle	deg	Fig.1	Тур-0.3	9.7824	Тур+0.3	Incoming Inspection

-	Converging distance		After AUO	0.0	O - l'har ti - a
5	Original	m	calibration	 2.2	 Calibration

FIG.1 Lens structure

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model T546QB01 V0. In addition the figures in the

next page are detailed mechanical drawing of the LCD.

I	tem	Dimension	Unit	Note
	Horizontal	1241.6	mm	
Outline Dimension	Vertical	714.4	mm	
	Depth (Dmin)	30.8	mm	to rear
	Depth (Dmax)	56	mm	
Weight	166	42	g	

Front View

Back View

6. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60℃, 300hrs
2	Low temperature storage test	3	-20℃, 300hrs
3	High temperature operation test	3	50℃, 300hrs
4	Low temperature operation test	3	-5℃, 300hrs
			Wave form: random
			Vibration level : 1.0G RMS
5	Vibration test (non-operation)	3	Bandwidth : 10-300Hz
			Duration : X,Y,Z 10min per axes
			X,Y,Z: Horizontal, face up
			Shock level
			30G,11ms in ±X,Y,Z axis
6	Shock test (non-operation)	3	Waveform: half sine wave
			Direction: One time each direction
_		5	Random wave (1.05Grms 10~200Hz)
	Vibration test (With carton)		Duration : X,Y,Z 10min per axes
		5	Height: 25.4cm (ASTMD4169-I)
8	Drop test (With carton)		surround four flats, bottom flat two times
			(refer ASTM D 5276)

7. International Standard

7.1 Safety

- UL 60950-1, UL 60065; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1 : 2001, IEC 60065:2001 ; Standard for Safety of International Electrotechnical Commission
- (3) EN 60950 : 2001+A11, EN 60065:2002+A1:2006; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7.2 EMC

- ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information
 Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC),
 1998

8. Packing

A. Panel Label:

Green mark description

- (1) For Pb Free Product, AUO will add (Pb) for identification.
- (2) For RoHs compatible products, AUO will add $\boxed{\text{RoHS}}$ for identification.

Note: The green Mark will be present only when the green documents have been ready by AUO internal green

team. (definition of green design follows the AUO green design checklist.)

B. Carton Label:

8-2 PACKING METHODS:

8-3 Pallet and Shipment Information

	Itom		Packing Remark			
	nem	Qty. Dimension Total Weight		Total Weight (kg)	Qty.	
1		6pcs/box	1355(1)*565(\)/)*806(H)		6pcs/box	
1		opes/box	1333(L) 303(W) 800(H)		Cushion = 3.6kg	
2	Pallet	1	1390(L)*1150(W)*138(H)	Pallet	1	
3	Boxes per Pallet	Pallet 2 boxes/pallet				
4	Panels per Pallet					
	Pallet after packing	32	1390(L)*1150(W)*944(H)	Pallet after packing	32	

9.PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause

chemical damage to the polarizer.

(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes

deformations and color fading.

(9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of CCFL depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a

very small amount of glue still on the bezel after the protection film is peeled off.

(3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized,

please wipe them off with absorbent cotton waste or other soft material like chamois soaked with

normal-hexane.