VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X461

K-no.: 24620 100 A Current Sensor Module for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit) Date: 24.04.2017

(electronic circuit)

Page 1 of 4

Unit

Customer: Description

Closed loop (compensation)
 Current Sensor with magnetic field probe

Standard type

- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

typ.

max.

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	100	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.0025	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K_N	Turns ratio	13 : 1100	

Customers Part no.:

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±200			
X	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V _{out} - V _{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±2.5	mV
Δ V _o / V _{Ref} / Δ V	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		3	10	ppm/°C
t_r	Response time @ 90% von I _{PN}		500		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		500		ns
f	Frequency bandwidth	DC100			kHz

General data

T_A	Ambient operating	g temperature	-40		+85	°C
T_S	Ambient storage t	Ambient storage temperature (acc to M3101)			+85	°C
m	Mass			15		g
V_{C}	Supply voltage		4.75	5	5.25	V
Ic	Current consumpt	ion		16		mA
		manufactored and tested in acc tion, Insulation material group			0-5-1 (Pin 1 - 6 to	Pin 7 – 10)
S _{clear}	Clearance (compo	nent without solder pad)	10.2			mm
S_{creep}	Creepage (compo	nent without solder pad)	10.2			mm
V_{sys}	System voltage	overvoltage category 3			600	V_{RMS}
V_{work}	Working voltage	(table 7 acc. to EN61800-5-1 overvoltage category 2)		1020	V_{RMS}
U_{PD}	Rated discharge v	voltage			1400	V _P
Max. potenti	ial difference acc. to UL !	508	RMS		600	V _{AC}

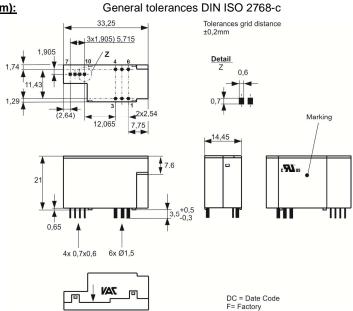
Date	Name	Issue	Amendment					
24.04.17	DJ	85	Page A2, Med	ge A2, Mechanical outline changed (3,5 +/- 0,5 deleted) typo. Minor change				
02.02.17	DJ	85	Page A1, M-s	age A1, M-sheet M3101 added (storage temperature) minor change.				
Hrsg.: MC	C-PD		arb: DJ		MC-PM: ZP			freig.: BEF

SPECIFICATION

T60404-N4646-X461 Item no.:

K-no.: 24620

100 A Current Sensor Module for 5V- Supply Voltage

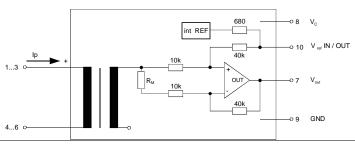

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit)

Date: 24.04.2017

Customer: Standard type Customers Part no.:

Page 2 4 of

Mechanical outline (mm):


Connections:

1...6: Ø 1.5 mm 7..10: 0.7*0.6 mm

Marking:

UL-sign 4646-X461 DC

Schematic diagram

Possibilities of wiring $(@ T_A = 85^{\circ}C)$

primary windings N _P	primary RMS	current maximal	output current RMS I _S (I _P) [mA]	turns ratio	primary resistance R _P [mΩ]	wiring
1	100	±200	2.5±0.625	1:1100	0.1	1 3
2	50	±100	2.5±0.625	2:1100	0.45	3 4 6>
3	33.3	±66	2.5±0.625	3:1100	1	3 4 6>

Hrsg.: MC-PD	Bearb: DJ	MC-PM: ZP		freig.: BEF
editor	designer	check		released

SPECIFICATION Item no.: T60404-N4646-X461 Date: K-no.: 24620 24.04.2017 100 A Current Sensor Module for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit) Customers Part no.: Page 3 of 4 Customer: Standard type **Electrical Data** min. Unit typ. max. Maximum supply voltage (without function) V_{Ctot} Supply Current with primary current $16mA + I_p*K_N+V_{out}/R_L$ mΑ I_{C} ±20 Short circuit output current mA I_{out,SC} Resistance / primary winding @ T_A=25°C 0.3 R_P $\mathsf{m}\Omega$ RsSecondary coil resistance @ T_A=85°C 15 Ω R_{i,Ref} Internal resistance of Reference input 670 Ω Output resistance of Vout Ω R_{i} , (V_{out}) External recommended resistance of Vout 1 kΩ R_L C_L External recommended capacitance of Vout 500 pF $\Delta X_{Ti}/\Delta V$ Temperature drift of X @ T_A = -40 ... +85 °C 40 ppm/K $\Delta V_0 = \Delta (V_{out} - V_{Ref})$ Sum of any offset drift including: 6 2 mV Longtermdrift of V₀ 1 V_{0t} m۷ Temperature drift von $V_0 @ T_A = -40 ... + 85^{\circ}C$ m۷ V_{0T} V_{0H} Hystereses of V_{out} @ $I_P=0A$ (after an overload of 10 x I_{PN}) 0.5 mV

according to M3209/3 30g Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours

Supply voltage rejection ratio

Maximum possible coupling capacity (primary – secondary)

Offsetripple (with 1 MHz- filter first order)

Offsetripple (with 100 kHz- filter firdt order)

Offsetripple (with 20 kHz- filter first order)

Inspection (Measurement after temperature balance of the samples at room temperature, SC = significant characteristic)

V _{out} (SC)	(V) M3011/6:	Output voltage vs. reference (I _P =3x10A _{Peak} , 40-80Hz)	625±0,7%	mV
V_{out} - V_{Ref}	(V) M3226:	Offset voltage (I _P =0A)	± 0.0025	V
V_d	(V) M3014:	Test voltage, 1 s pin 1 – 6 vs. pin 7 – 10	2.5	kV _{RMS}
V _e	(AQL 1/S4)	Partial discharge voltage acc.M3024 with V _{vor}	1500 1875	V _{RMS}

mV/V

m۷

m۷

mV

Mechanical stress

21

6

1.5

3.5

1

Type Testing (Pin 1 - 6 to Pin 7 - 10)

 $\Delta V_0/\Delta V_C$

 V_{oss}

Voss

Voss

V_W	HV transient test according to M3064 (1,2 µs / 50	µs-wave form)	8	kV
V_d	Testing voltage to M3014	(5 s)	5	kV
Ve	Partial discharge voltage acc.M3024		1500	V_{RMS}
	with V _{vor}		1875	Vene

Applicable documents

Temperature of the primary conductor should not exceed 100°C.

Current direction: A positive output current appears at point Vout, by primary current in direction of the arrow.

Further standards UL 508; file E317483, category NMTR2 / NMTR8

Enclosures according to IEC529: IP50.

Hrsg.: MC-PD	Bearb: DJ	MC-PM: ZP		freig.: BEF
editor	designer	check		released

SPECIFICATION

T60404-N4646-X461 Item no.:

K-no.: 24620

100 A Current Sensor Module for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit)

Date: 24.04.2017

Page Customers Part no .: 4 of 4 Customer: Standard type

Explanation of several of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) Δt (I_{Pmax}): measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt ≥ 100 A/µs.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $= \sqrt{2} * V_e / 1.5$ U_{PD}

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * UPD required for partial discharge test in IEC 61800-5-1

 $= 1.875 *U_{PD} / \sqrt{2}$ V_{vor}

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_{work}

V₀: Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2,5V$. $V_o = V_{out}(0) - 2,5V$

Zero variation of Vo after overloading with a DC of tenfold the rated value V_{0H}:

V_{0t}: Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right| \%$$

Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN} $X_{ges}(I_{PN})$:

$$\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \mathrm{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \mathrm{V}} - 1 \right| \quad \%$$

 $\varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{out}(I_{\rm P}) - V_{out}(0)}{V_{out}(I_{\rm PN}) - V_{out}(0)} \right| \%$ Linearity fault defined by ε_L: