VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X975

K-no.: 25792 300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

Date: 21.10.2015

(electronic circuit)

Customer: Standard type Customers Part no.: Page 1 of 2

8Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design

Applications

Mainly used for stationary operation in industrial applications:

Solar converters

Electrical data - Ratings

I _{PN}	Primary rated current, r.m.s	50	Α
$I_{\Delta N}$	Differential rated current, r.m.s	0.3	Α
V _{out}	Output voltage @ I _P	$V_{Ref} \pm (0.74*I_{\Delta P}/I_{\Delta N})$	V
$V_{out}(0)^*$	Output voltage @ I _P =0, T _A =25°C	$V_{Ref} \pm 0.025$	V
V _{out} (Error)	in case of error (current sensor) V _{out} < 0,5V is set	<0.5	V
V_{Ref}	External Reference voltage range	2.5 ± 0.005	V
	Internal Reference voltage	$2,5 \pm 0,100$	V
V _{Ref} (test current)**)	Reference voltage (external)	01	V
V _{out} (test current)**)	Output voltage @ V _{Ref} = 01V	$V_{out}(0) + 0.250 \pm 0.060$	V
K _N	Turns ratio	1:1:1 : 1000	

^{*)} With switching on and after "test current" the current sensor is degaussed by an internal AC-current for about 110ms. Meantime the output is set to V_{out} < 0.5V.

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range (differencial current)	±0.85			
X	Accuracy @ I _{PN} , T _A = 25°C			1.5	%
ϵ_{L}	Linearity			1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±25	mV
$\Delta V_o / \Delta T$	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		0.1		mV/°C
t _r	Response time @ 90% von I _{PN}		35		μs
f	Frequency bandwidth	DC10			kHz

General data

		min.	typ.	max.	Unit
T _A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature	-40		+85	°C
m	Mass		42		g
V_{C}	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		16		mA
	Constructed and manufactored and tested in a Basic insulation, Insulation material group 1, F			(primary vs. se	econdary)
S _{clear}	Clearance (component without solder pad)	8			mm
Screep	Creepage (component without solder pad)	8			mm
V_{sys}	System voltage overvoltage category 3	RMS		600	V
V_{work}	Working voltage over voltage category 2	RMS		1000	V
U_{PD}	Rated discharge voltage	peak val	ue	1414	V

Date	Name	Issue	Amendment						
21.10.15	DJ	81	Typo on page	on page 4: X and Xges. Values adapted on output voltage on Page 1 (0.625 → 0.74).					
			Applicable do	olicable documents changed. Lapidary change					
Hrsg.: KB-E Bearb: Le		arb: Le		KB-PM: KRe.			freig.: Berton		
editor		doo	ionor	ĺ	abaak	1	1	released	

^{**)} Due to external $V_{Ref} = 0...1V$ an internal test current is generated.

SPECIFICATION

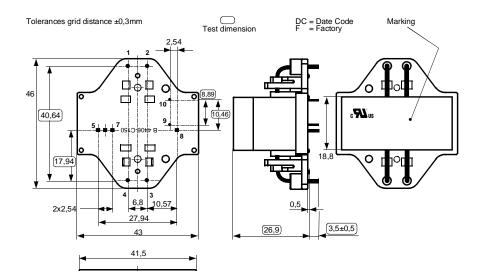
Item no.: T60404-N4646-X975

K-no.: 25792

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 21.10.2015

Customer: Standard type

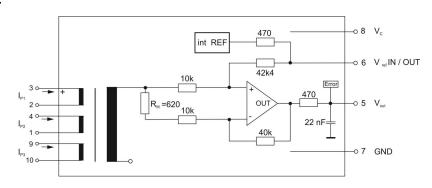

Customers Part no.:

Page 2 of 2

Connections:

Mechanical outline (mm):

General tolerances DIN ISO 2768-c



1...4: 2.8 mm 5...8: 0.6*0.7 mm 9...10: 0.8 mm

Marking:

UL-sign 4646-X975 F DC

Schematic diagram

Applicable documents:

Current direction: A positive output current appears at point V_{out}, by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Temperature of the primary conductor should not exceed 100°C. Short clearance and creepage distances due to metallic shielding. Further standards UL 508, file E317483, category NMTR2 / NMTR8 $\,$

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe.		freig.: Berton
editor	designer	check		released

SPECIFICATION T60404-N4646-X975 Item no.: K-no.: 25792 Date: 21.10.2015 300 mA Differential Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Customers Part no.: Page 2 3 of Standard type Customer: **Electrical Data**

		min.	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	16mA	$+I_p*K_N+V_{ol}$	ıt/R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
$R_{P1,P2}$	Primary resistance @ T _A =25°C		0.17		mΩ
R _{P3}	Primary resistance @ T _A =25°C		1.14		mΩ
R _S	Secondary coil resistance @ T _A =85°C			80	Ω
$R_{i,Ref}$	Internal resistance of Reference input		470		Ω
R_{i} , (V_{out})	Output resistance of Vout		470		Ω
R_L	External recommended resistance of Vout		100		$k\Omega$
C_L	External recommended capacitance of Vout		no limit		pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 °C			400	ppm/K
$\Delta V_{Ref}/\Delta T$	Temperature drift of V_{Ref} @ $T_A = -40 \dots +85 ^{\circ}C$		5	50	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		16	25	mV
V_{0t}	Longtermdrift of V ₀		12		mV
V_{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		10		mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio		7.5	1	mV/V
$V_{ m 0H}$ $V_{ m 0H,\;Demag}$	Hystereses of V_{out} @ I_{P} =0 (after an overload of 1000 x Hystereses after Degaussing	I _{PN})	75	175 12	mV mV
V _{oss}	Offsetripple (without external filter)			120	mV
V _{oss}	Offsetripple (with 20 kHz- filter firdt order)		35	50	mV
Voss	Offsetripple (with 1.6 kHz- filter first order)		10	15	mV
	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Decade, 2 hours			3g	

Inspection (Measurement after temperature balance of the samples at room temperature)

Vout (I _P =I _I	_{PN}) (V)	M3011/6:	Output voltage vs. reference (Ip=0.4A, 40-80Hz)	0.972 1.002	V
V _{out} -V _{Ref}	f (I _P =0) (V)	M3226:	Offset voltage	± 0.025	V
V _{out} (test o	current) (V)		Output voltage @ V _{Ref} = 0V	0.250± 0.060	V
V _d	(V)	M3014:	Test voltage, RMS, 1 s pin 1 – 4 vs. 5 – 10	3.6	kV
Ve	(AQ	L 1/S4)	Partial discharge voltage acc.M3024 (RMS)	1500	V
			with V _{vor} (RMS)	3600	V

Type Testing (Pin 1 – 4 vs. 5 -10)

V_W	HV transient test according to M3064 (1,2 µs / 50 µs-wave	e form)	6	kV
V_d	Testing voltage to M3014	(1min)	3.6	kV
Ve	Partial discharge voltage acc.M3024 (RMS)		1500	V
	with V _{vor} (RMS)		3600	V

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe.		freig.: Berton
editor	designer	check		released

SPECIFICATION

Item no.: T60404-N4646-X975

Page

K-no.: 25792

Customer:

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit Date: 21.10.2015

4 of

2

(high power) and secondary circuit (electronic circuit)

Explanation of sever al of the terms used in the tablets (in alphabetical order)

 t_r : Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

Customers Part no .:

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2}$ * V_e / 1.5

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

Standard type

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$.

 $V_0 = V_{out}(0) - 2.5V$

 V_{0H} : Zero variation of V_{o} after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.74V} - 1 \right| \%$$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - 2,5V}{0.74V} - 1 \right| \% \text{ or } X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{ref}}{0.74V} - 1 \right| \%$$

 $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle P}) - V_{\scriptscriptstyle out}(0)}{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle PN}) - V_{\scriptscriptstyle out}(0)} \right| \, \%$

For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)							
For electronic current measurement DC. AC. pulsed, mixed	VACUUMSCHMELZE	SPECIF	CATION		Item no.:	T60404-N	N4646-X975
Hrsg.: KB-E Boatb: Le KB-PM: KRo. freig: Berton	K-no.: 25792	For electronic condition DC, AC, pulsed isolation between	urrent measurement , mixed, with a gal en primary circuit	:	· Supply Voltage	Date:	21.10.2015
Hrsg.: KB-E Boatb: Le K6-PM: KRo. Ifreig.: Berton	Customer: Stand	dard type		Customers Part	no.:	Page	5 of 2
Hrsg.: KB-E Bearb: Le KB-PM: KRe. freig.: Berton	ousioniei. Stant	aut type					
	Hrsg.: KB-E						freig.: Berton