# Model Name: T650HVN03.0 SKD

## Issue Date : 2013/5/28

# (\*)Preliminary Specifications

# ()Final Specifications

| Customer Signature | Date | AUO                                       | Date |  |  |  |  |
|--------------------|------|-------------------------------------------|------|--|--|--|--|
| Approved By        |      | Approval By PM Director<br>CP Wang        |      |  |  |  |  |
| Note               |      | Reviewed By RD Director<br>Eugene CC Chen |      |  |  |  |  |
|                    |      | Reviewed By Project Leader<br>Bear Syong  |      |  |  |  |  |
|                    | -    |                                           |      |  |  |  |  |

# Contents

| No |     |                                       |
|----|-----|---------------------------------------|
|    |     | CONTENTS                              |
|    |     | RECORD OF REVISIONS                   |
| 1  |     | GENERAL DESCRIPTION                   |
| 2  |     | ABSOLUTE MAXIMUM RATINGS              |
| 3  |     | ELECTRICAL SPECIFICATION              |
|    | 3-1 | ELECTRIACL CHARACTERISTICS            |
|    | 3-2 | INTERFACE CONNECTIONS                 |
|    | 3-3 | SIGNAL TIMING SPECIFICATION           |
|    | 3-4 | SIGNAL TIMING WAVEFORM                |
|    | 3-5 | COLOR INPUT DATA REFERENCE            |
|    | 3-6 | POWER SEQUENCE                        |
| 4  |     | OPTICAL SPECIFICATION                 |
| 5  |     | OPEN CELL DRAWING                     |
| 6  |     | RELIABILITY TEST ITEMS                |
| 7  |     | PACKING                               |
|    | 7-1 | DEFINITION OF LABEL                   |
|    | 7-2 | PACKING METHODS                       |
|    | 7-3 | PALLET AND SHIPMENT INFORMATION       |
| 8  |     | PRECAUTION                            |
|    | 8-1 | MOUNTING PRECAUTIONS                  |
|    | 8-2 | OPERATING PRECAUTIONS                 |
|    | 8-3 | ELECTROSTATIC DISCHARGE CONTROL       |
|    | 8-4 | PRECAUTIONS FOR STRONG LIGHT EXPOSURE |
|    | 8-5 | STORAGE                               |
|    | 8-6 | HANDLING PRECAUTIONS FOR PROTECT FILM |

# **Record of Revision**

| Version | Date       | Page | Description   |
|---------|------------|------|---------------|
| 0.0     | 2013/05/28 |      | First release |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |
|         |            |      |               |

### **1. General Description**

This specification applies to the 65.0 inch Color TFT-LCD Module T650HVN03.0 This LCD module has a TFT active matrix type liquid crystal panel 1,920x1,080 pixels, and diagonal size of 65.0 inch. This module supports 1,920x1,080 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

The T650HVN03.0 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

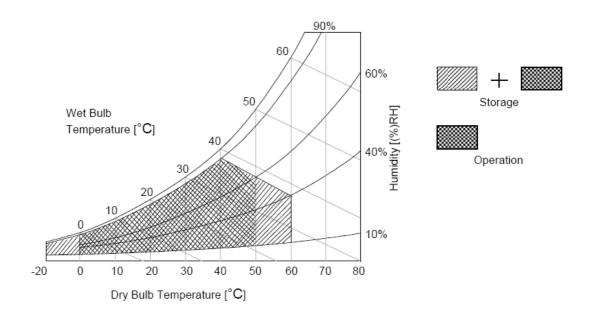
| Items                  | Specification            | Unit   | Note   |
|------------------------|--------------------------|--------|--------|
| Active Screen Size     | 65.00                    | inch   |        |
| Display Area           | 1428.48 (H) x 803.52 (V) | mm     |        |
| Outline Dimension      | 1461.98 (H) x 839.24 (V) | mm     |        |
| Driver Element         | a-Si TFT active matrix   |        |        |
| Display Colors         | 10 bit, 1073.7M          | Colors |        |
| Number of Pixels       | 1,920x1,080              | Pixel  |        |
| Pixel Pitch            | 0.744 (H) x 0.744 (W)    | mm     |        |
| Pixel Arrangement      | RGB vertical stripe      |        |        |
| Display Operation Mode | Normally Black           |        |        |
| Surface Treatment      | SC                       |        |        |
| Rotate Function        | Unachievable             |        | Note 1 |

#### \* General Information

Note 1: Rotate Function refers to LCD display could be able to rotate.

### 2. Absolute Maximum Ratings

|                           |          |      | aj tabet aanij | oporation of e |            |
|---------------------------|----------|------|----------------|----------------|------------|
| Item                      | Symbol   | Min  | Max            | Unit           | Conditions |
| Logic/LCD Drive Voltage   | $V_{DD}$ | -0.3 | 14             | [Volt]         | Note 1     |
| Input Voltage of Signal   | Vin      | -0.3 | 4              | [Volt]         | Note 1     |
| Operating Temperature     | TOP      | 0    | +50            | [°C]           | Note 2     |
| Operating Humidity        | HOP      | 10   | 90             | [%RH]          | Note 2     |
| Storage Temperature       | TST      | -20  | +60            | [°C]           | Note 2     |
| Storage Humidity          | HST      | 10   | 90             | [%RH]          | Note 2     |
| Panel Surface Temperature | PST      |      | 65             | [°C]           | Note 3     |


The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be  $39^\circ\!\mathrm{C}$  and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of  $40^{\circ}$ C or less. At temperatures greater than  $40^{\circ}$ C, the wet bulb temperature must not exceed  $39^{\circ}$ C.

Note 3: Surface temperature is measured at 50  $^\circ\! \mathbb C$  Dry condition



### 3. Electrical Specification

The T650HVN03.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power back light unit.

#### **3.1 Electrical Characteristics**

#### 3.1.1: DC Characteristics

| Parameter S |                                                  | Symbol                    |      | Value | Unit     | Note                |      |
|-------------|--------------------------------------------------|---------------------------|------|-------|----------|---------------------|------|
|             | Farameter                                        | Symbol                    | Min. | Тур.  | Max      | Unit                | NOLE |
| LCD         |                                                  |                           |      |       |          |                     |      |
| Power Sup   | ply Input Voltage                                | $V_{\text{DD}}$           | 10.8 | 12    | 13.2     | V <sub>DC</sub>     |      |
| Power Sup   | ply Input Current                                | I <sub>DD</sub>           |      | 0.61  | 0.75     | А                   | 1    |
| Inrush Cur  | rent                                             | I <sub>RUSH</sub>         |      |       | 7.5      | А                   | 2    |
| Permissible | Permissible Ripple of Power Supply Input Voltage |                           |      |       | Vdd * 5% | $mV_{pk\text{-}pk}$ | 3    |
|             | Input Differential Voltage                       | V <sub>ID</sub>           | 200  | 400   | 600      | $mV_{DC}$           | 4    |
| LVDS        | Differential Input High Threshold Voltage        | $V_{\text{TH}}$           | +100 |       | +300     | $mV_{DC}$           | 4    |
| Interface   | Differential Input Low Threshold Voltage         | $V_{TL}$                  | -300 |       | -100     | $mV_{DC}$           | 4    |
|             | Input Common Mode Voltage                        | V <sub>ICM</sub>          | 1.1  | 1.25  | 1.4      | $V_{\text{DC}}$     | 4    |
| CMOS        | Input High Threshold Voltage                     | V <sub>IH</sub><br>(High) | 2.7  |       | 3.3      | V <sub>DC</sub>     | 5    |
| Interface   | Input Low Threshold Voltage                      | V <sub>IL</sub><br>(Low)  | 0    |       | 0.6      | $V_{\text{DC}}$     | 5    |

LED lightbar and LED Backlight structure are designed by customers, AUO can not guarantee life time and backlight power consumption.

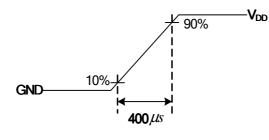
#### 3.1.2: AC Characteristics

|           | Sumbol                                                       |                        | Value        | Unit | Note        |      |   |
|-----------|--------------------------------------------------------------|------------------------|--------------|------|-------------|------|---|
|           | Symbol                                                       | Min.                   | Тур.         | Max  | Unit        | NOLE |   |
|           | Input Channel Pair Skew Margin                               | t <sub>SKEW (CP)</sub> | -500         |      | +500        | ps   | 6 |
| LVDS      | Receiver Clock : Spread Spectrum<br>Modulation range         | Fclk_ss                | Fclk<br>-3%  |      | Fclk<br>+3% | MHz  | 7 |
| Interface | Receiver Clock : Spread Spectrum<br>Modulation frequency     | Fss                    | 30           |      | 200         | KHz  | 7 |
|           | Receiver Data Input Margin<br>Fclk = 85 MHz<br>Fclk = 65 MHz | tRMG                   | -0.4<br>-0.5 |      | 0.4<br>0.5  | ns   | 8 |
|           | SCL clock frequency                                          | F <sub>SCL</sub>       | 0            |      | 400         | KHZ  |   |
|           | I2C clock high level                                         | T <sub>SCHi</sub>      | 0.6          |      |             | us   |   |
| 12C       | I2C clock low level                                          | T <sub>SCLo</sub>      | 1.2          |      |             | us   |   |
| Interface | I2C data setup time                                          | T <sub>SDS</sub>       | 100          |      |             | ns   |   |
| menace    | I2C data hold time                                           | $T_{SDH}$              | 0            |      | 900         | ns   |   |
|           | SDA and SCL rise time                                        | T <sub>R</sub>         |              |      | 1000        | ns   |   |
|           | SDA and SCL fall time                                        | T <sub>F</sub>         |              |      | 300         | ns   |   |

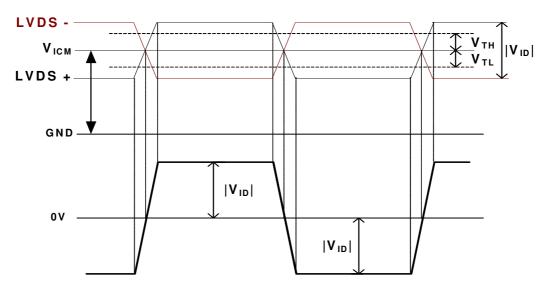
#### **3.1.3: Driver Characteristics**

| Item                       | Symbol | Min | Max | Unit | condition |
|----------------------------|--------|-----|-----|------|-----------|
| Driver Surface Temperature | DST    |     | 100 | [°C] | Note      |

Note : Any point on the driver surface must be less than  $100^{\circ}$  under any conditions.

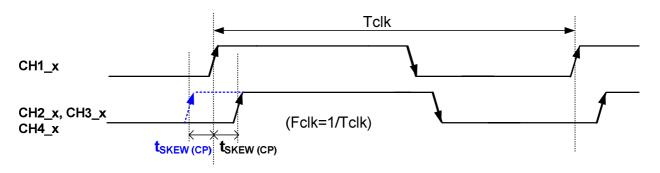

#### **3.1.4: TCON Characteristics**

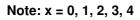
| Item                     | Symbol | Min | Max | Unit | condition |
|--------------------------|--------|-----|-----|------|-----------|
| TCON Surface Temperature | TST    |     | 85  | [°C] | Note      |


Note : Any point on the TCON surface must be less than  $85^{\circ}$  under any conditions.

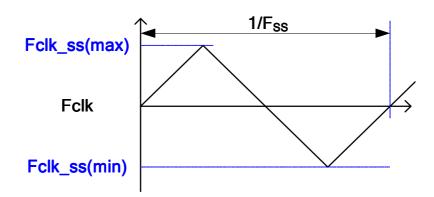
#### Note :

- 1. Test Condition:
  - (1)  $V_{DD} = 12.0V$
  - (2) Fv = 60Hz
  - (3) Fclk= 82MHz
  - (4) Temperature = 25  $^{\circ}C$
  - (5) Typ. Input current : White Pattern Max. Input current: Heavy loading pattern defined by AUO
- 2. Measurement condition : Rising time = 400us





- 3. Test Condition:
  - (1) The measure point of  $V_{\text{RP}}\,$  is in LCM side after connecting the System Board and LCM.
  - (2) Under Max. Input current spec. condition.
- **4.** V<sub>ICM</sub> = 1.25V

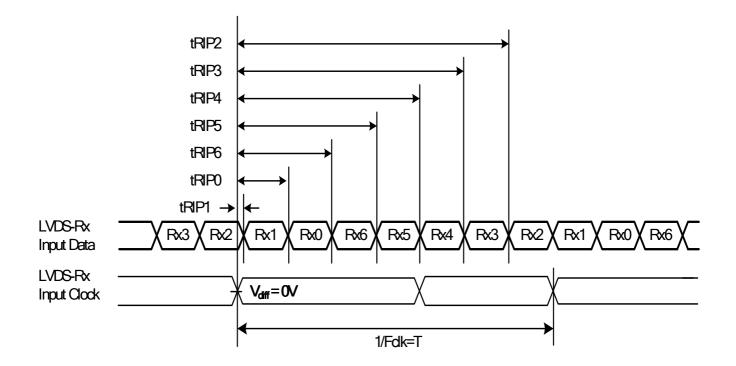



5. The measure points of  $V_{IH}$  and  $V_{IL}$  are in LCM side after connecting the System Board and LCM.

6. Input Channel Pair Skew Margin.



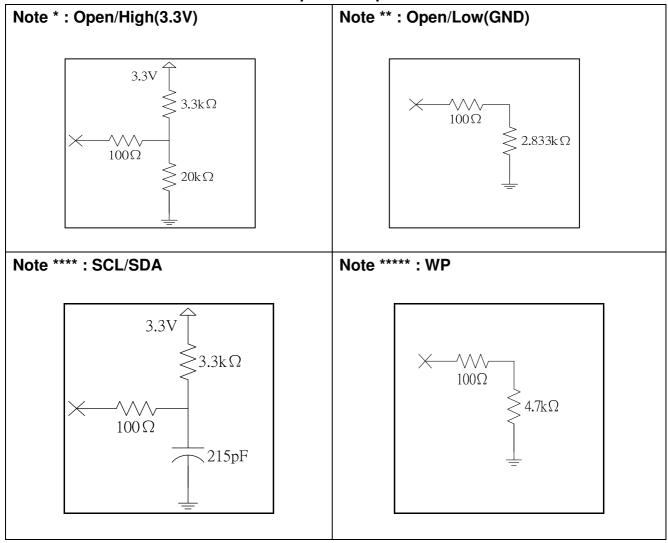



7. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.





#### 8. Receiver Data Input Margin


| Parameter             | Symbol |            | Unit | Note       |     |          |
|-----------------------|--------|------------|------|------------|-----|----------|
| Parameter             | Symbol |            |      | /pe Max    |     | Note     |
| Input Clock Frequency | Fclk   | Fclk (min) |      | Fclk (max) | MHz | T=1/Fclk |
| Input Data Position0  | tRIP1  | - tRMG     | 0    | tRMG       | ns  |          |
| Input Data Position1  | tRIP0  | T/7- tRMG  | T/7  | T/7+ tRMG  | ns  |          |
| Input Data Position2  | tRIP6  | 2T/7- tRMG | 2T/7 | 2T/7+ tRMG | ns  |          |
| Input Data Position3  | tRIP5  | 3T/7- tRMG | 3T/7 | 3T/7+ tRMG | ns  |          |
| Input Data Position4  | tRIP4  | 4T/7- tRMG | 4T/7 | 4T/7+ tRMG | ns  |          |
| Input Data Position5  | tRIP3  | 5T/7- tRMG | 5T/7 | 5T/7+ tRMG | ns  |          |
| Input Data Position6  | tRIP2  | 6T/7- tRMG | 6T/7 | 6T/7+ tRMG | ns  |          |





#### **3.2 Interface Connections**

3.2.1: LVDS connector control and I2C pin description



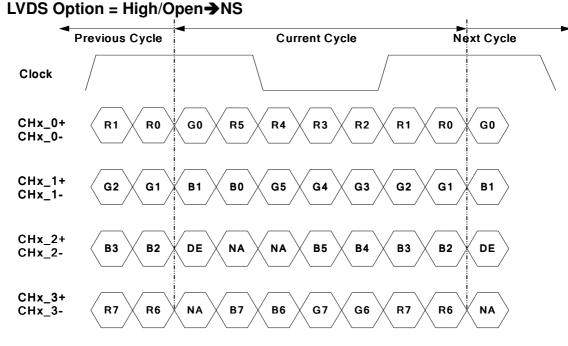


#### 3.2.2:

LCD connector: FI-RE51S-HF (JAE, LVDS connector)

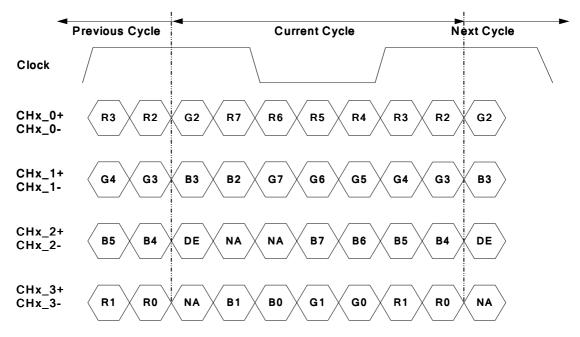
| PIN | Symbol   | Description                              | PIN     | Symbol   | Description                          |  |
|-----|----------|------------------------------------------|---------|----------|--------------------------------------|--|
|     | Cymbol   | No connection (for AUO test only. Do not |         | Cymoor   | No connection (for AUO test only. Do |  |
| 1   | N.C.     |                                          | 26      | N.C.     | · · · ·                              |  |
|     |          | connect)                                 |         |          | not connect)                         |  |
| 2   | SCL      | EEPROM Serial Clock                      | 27      | N.C.     | No connection (for AUO test only. Do |  |
| _   |          |                                          |         |          | not connect)                         |  |
|     |          | EEPROM Write Protection                  |         |          |                                      |  |
| 3   | WP       | High(3.3V) for Writable,                 | 28      | CH2_0-   | LVDS Channel 2, Signal 0-            |  |
|     |          | Low(GND) for Protection                  |         |          |                                      |  |
| 4   | SDA      | EEPROM Serial Data                       | 29      | CH2_0+   | LVDS Channel 2, Signal 0+            |  |
|     |          | No connection (for AUO test only. Do not |         |          |                                      |  |
| 5   | N.C.     | connect)                                 | 30      | CH2_1-   | LVDS Channel 2, Signal 1-            |  |
|     |          | No connection (for AUO test only. Do not |         |          |                                      |  |
| 6   | N.C.     |                                          | 31      | CH2_1+   | LVDS Channel 2, Signal 1+            |  |
|     |          | connect)                                 |         |          |                                      |  |
| 7   | LVDS_SEL | Open/High(3.3V) for NS,                  | 32      | CH2_2-   | LVDS Channel 2, Signal 2-            |  |
|     |          | Low(GND) for JEIDA                       |         |          |                                      |  |
| 8   | N.C.     | No connection (for AUO test only. Do not | 33      | CH2_2+   | LVDS Channel 2, Signal 2+            |  |
|     |          | connect)                                 |         |          |                                      |  |
| 9   | N.C.     | No connection (for AUO test only. Do not | 34      | GND      | Ground                               |  |
| 9   | N.O.     | connect)                                 | 34 GIND | Ground   |                                      |  |
| 10  | N.C.     | No connection (for AUO test only. Do not | 35      |          | LVDS Channel 2. Clask                |  |
| 10  | N.C.     | connect)                                 | 35      | CH2_CLK- | LVDS Channel 2, Clock -              |  |
| 11  | GND      | Ground                                   | 36      | CH2_CLK+ | LVDS Channel 2, Clock +              |  |
| 12  | CH1_0-   | LVDS Channel 1, Signal 0-                | 37      | GND      | Ground                               |  |
| 13  | CH1_0+   | LVDS Channel 1, Signal 0+                | 38      | CH2_3-   | LVDS Channel 2, Signal 3-            |  |
| 14  | CH1_1-   | LVDS Channel 1, Signal 1-                | 39      | CH2_3+   | LVDS Channel 2, Signal 3+            |  |
| 45  |          |                                          | 40      | CH2_4-   | LVDS Channel 2,Signal 4-(for 10bit   |  |
| 15  | CH1_1+   | LVDS Channel 1, Signal 1+                | 40      | 0⊓2_4-   | input)                               |  |
|     |          |                                          |         |          | LVDS Channel 2,Signal 4+(for 10bit   |  |
| 16  | CH1_2-   | LVDS Channel 1, Signal 2-                | 41      | CH2_4+   | input)                               |  |
|     |          |                                          |         |          | No connection (for AUO test only. Do |  |
| 17  | CH1_2+   | LVDS Channel 1, Signal 2+                | 42      | N.C.     | not connect)                         |  |
|     |          |                                          |         |          | ,                                    |  |
| 18  | GND      | Ground                                   | 43      | N.C.     | No connection (for AUO test only. Do |  |
| 10  |          |                                          | 4.4     |          | not connect)                         |  |
| 19  | CH1_CLK- | LVDS Channel 1, Clock -                  | 44      | GND      | Ground                               |  |
| 20  | CH1_CLK+ | LVDS Channel 1, Clock +                  | 45      | GND      | Ground                               |  |
| 21  | GND      | Ground                                   | 46      | GND      | Ground                               |  |
| 22  | CH1_3-   | LVDS Channel 1, Signal 3-                | 47      | N.C.     | No connection (for AUO test only. Do |  |
|     | —        |                                          |         |          | not connect)                         |  |




#### T650HVN03.2 SKD Product Specification Rev. 01

| 23 | CH1_3+ | LVDS Channel 1, Signal 3+                 | 48 | $V_{DD}$        | Power Supply, +12V DC Regulated |
|----|--------|-------------------------------------------|----|-----------------|---------------------------------|
| 24 | CH1_4- | LVDS Channel 1,Signal 4-(for 10bit input) | 49 | $V_{DD}$        | Power Supply, +12V DC Regulated |
| 25 | CH1_4+ | LVDS Channel 1,Signal 4+(for 10bit input) | 50 | $V_{DD}$        | Power Supply, +12V DC Regulated |
|    |        |                                           | 51 | V <sub>DD</sub> | Power Supply, +12V DC Regulated |

Note: N.C. : please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High). Note: Open / High(3.3V) / Low(GND)/ WP / SDA / SCL described in 3.2.1




#### 3.2.3: LVDS Option for 8bit



Note: x = 1, 2, 3, 4...

#### ■ LVDS Option = Low→JEIDA



Note: x = 1, 2, 3, 4...



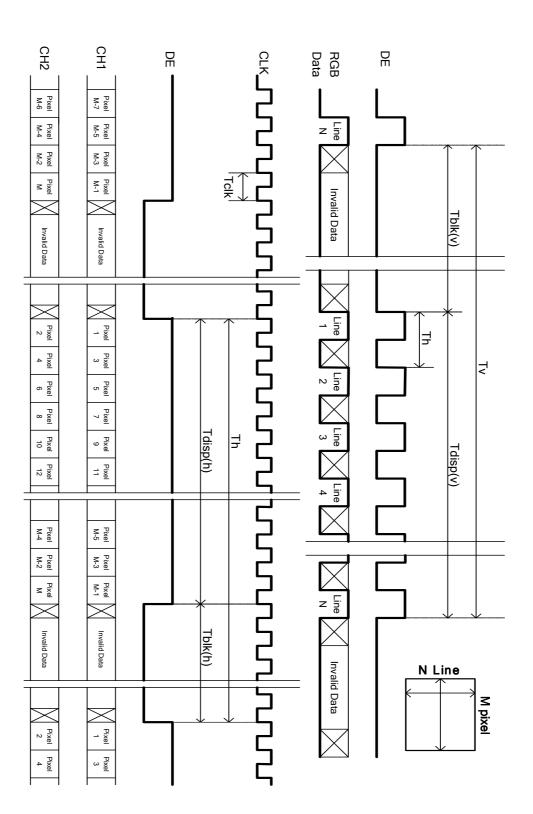
#### 3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

#### Timing Table (DE only Mode)

| Signal               | Item      | Symbol        | Min. | Тур.  | Max  | Unit |
|----------------------|-----------|---------------|------|-------|------|------|
|                      | Period    | Τv            | 1100 | 1125  | 1480 | Th   |
| Vertical Section     | Active    | Tdisp (v)     |      | 1080  |      |      |
|                      | Blanking  | Tblk (v)      | 20   | 45    | 400  | Th   |
|                      | Period    | Th 1040       |      | 1100  | 1328 | Tclk |
| Horizontal Section   | Active    | Tdisp (h) 960 |      |       |      |      |
|                      | Blanking  | Tblk (h)      | 80   | 140   | 368  | Tclk |
| Clock                | Frequency | Fclk=1/Tclk   | 50   | 74.25 | 82   | MHz  |
| Vertical Frequency   | Frequency | Fv            | 47   | 60    | 63   | Hz   |
| Horizontal Frequency | Frequency | Fh            | 60   | 67.5  | 73   | KHz  |

Notes:


(1) Display position is specific by the rise of DE signal only.

Horizontal display position is specified by the rising edge of 1<sup>st</sup> DCLK after the rise of 1<sup>st</sup> DE, is displayed on the left edge of the screen.

- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1<sup>st</sup> data corresponding to one horizontal line after the rise of 1<sup>st</sup> DE is displayed at the top line of screen.
- (3) If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.
- (4) The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

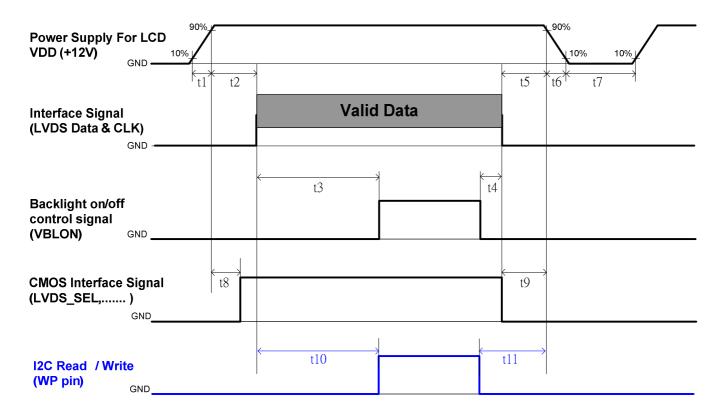


#### 3.4 Signal Timing Waveforms





#### 3.5 Color Input Data Reference


The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

|       |            |    | Input Color Data |    |    |    |    |    |    |    |    |    |     |     |    |    |    |    |    |    |    |    |    |    |    |
|-------|------------|----|------------------|----|----|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|
|       | Color      |    |                  |    | RE | ED |    |    |    |    |    |    | GRE | EEN |    |    |    |    |    |    | BL | UE |    |    |    |
|       | COIOI      | MS | В                |    |    |    |    | LS | SΒ | MS | В  |    |     |     |    | LS | βB | MS | В  |    |    |    |    | LS | SB |
|       |            | R7 | R6               | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4  | G3  | G2 | G1 | G0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
|       | Black      | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | Red(255)   | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | Green(255) | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Basic | Blue(255)  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Color | Cyan       | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|       | Magenta    | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|       | Yellow     | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | White      | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|       | RED(000)   | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | RED(001)   | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| R     |            |    |                  |    |    |    |    |    |    |    |    |    |     |     |    |    |    |    |    |    |    |    |    |    |    |
|       | RED(254)   | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | RED(255)   | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | GREEN(000) | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | GREEN(001) | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| G     |            |    |                  |    |    |    |    |    |    |    |    |    |     |     |    |    |    |    |    |    |    |    |    |    |    |
|       | GREEN(254) | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | GREEN(255) | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | BLUE(000)  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | BLUE(001)  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| В     |            | -  |                  |    |    |    |    |    |    |    |    |    |     |     |    |    |    |    |    |    |    |    |    |    |    |
|       | BLUE(254)  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
|       | BLUE(255)  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |

#### COLOR DATA REFERENCE



#### 3.6 Power Sequence for LCD

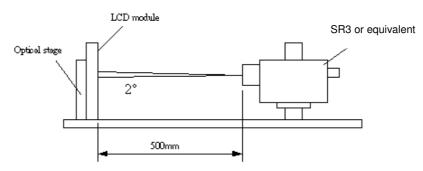


| Describer |                  | 11    |      |      |
|-----------|------------------|-------|------|------|
| Parameter | Min.             | Туре. | Max. | Unit |
| t1        | 0.4              |       | 30   | ms   |
| t2        | 0.1              |       | 50   | ms   |
| t3        | 450              |       |      | ms   |
| t4        | 0 <sup>*1</sup>  |       |      | ms   |
| t5        | 0                |       |      | ms   |
| t6        |                  |       | *2   | ms   |
| t7        | 500              |       |      | ms   |
| t8        | 10 <sup>*3</sup> |       | 50   | ms   |
| t9        | 0                |       |      | ms   |
| t10       | 450              |       |      | ms   |
| t11       | 150              |       |      | ms   |

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.

(2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)


(3) When CMOS Interface signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.



### 4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of  $\phi$  and  $\theta$  equal to 0 °.

#### Fig.1 presents additional information concerning the measurement equipment and method.



| Parameter                  | Symbol          | Condition       | Condition |        |           | Unit              | Notes |  |
|----------------------------|-----------------|-----------------|-----------|--------|-----------|-------------------|-------|--|
| Parameter                  | Symbol          | Condition       | Min.      | Тур.   | Max       | Unit              | NOLES |  |
| Contrast Ratio             | CR              |                 | 4000      | 5000   |           |                   | 1     |  |
| Surface Luminance          | 1               |                 |           | 300    |           | cd/m <sup>2</sup> | 2     |  |
| (White)                    | L <sub>WH</sub> |                 |           | 300    |           | Cu/III            | 2     |  |
| 256 Gray Gamma(Center)     |                 |                 | 1.9       | 2.2    | 2.5       |                   | 3     |  |
| L/R Gamma                  |                 |                 | -0.25     | Center | +0.25     |                   | 3     |  |
| Low Gray Uniformity        |                 | *               |           |        | 55%       |                   | 3     |  |
| (Center 5nits)             |                 |                 |           |        | 5578      |                   | 5     |  |
| Color Uniformity (9 point) |                 |                 | -0.011    | 0      | 0.011     |                   | 3     |  |
| ∆ж , ∆у                    |                 |                 | -0.011    | 0      | 0.011     |                   | 5     |  |
| Response Time (G to G)     | Тγ              |                 |           | 8      |           | Ms                | 4     |  |
| Center Transmittance       | Т%              |                 |           | 4.35   |           | %                 | 7     |  |
| Color Chromaticity         |                 |                 |           |        |           |                   | 5     |  |
| Red                        | R <sub>x</sub>  |                 |           | 0.650  |           |                   |       |  |
|                            | R <sub>Y</sub>  |                 |           | 0.329  |           |                   |       |  |
| Green                      | G <sub>X</sub>  |                 |           | 0.313  |           |                   |       |  |
|                            | G <sub>Y</sub>  | *               |           | 0.638  |           |                   |       |  |
| Blue                       | B <sub>X</sub>  |                 | Тур0.03   | 0.153  | Тур.+0.03 |                   |       |  |
|                            | B <sub>Y</sub>  |                 |           | 0.036  |           |                   |       |  |
| White                      | W <sub>X</sub>  |                 |           | 0.276  |           |                   |       |  |
|                            | W <sub>Y</sub>  |                 |           | 0.292  |           |                   |       |  |
| Viewing Angle              |                 | With AUO Module |           |        |           |                   | 6     |  |
| x axis, right(φ=0°)        | θ <sub>r</sub>  |                 |           | 89     |           | degree            |       |  |

© Copyright AUO Optronics Corp. 2013 All Rights Reserved.

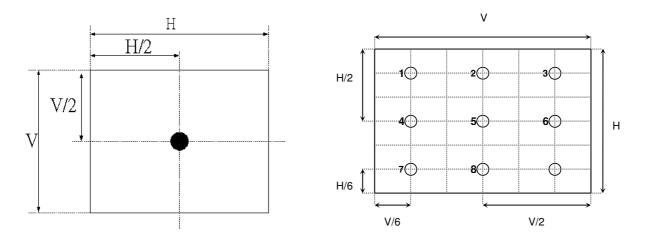


### T650HVN03.2 SKD Product Specification

|                       |                |  |    |            | nev. u |
|-----------------------|----------------|--|----|------------|--------|
| x axis, left(φ=180°)  | θι             |  | 89 | <br>degree |        |
| y axis, up(φ=90°)     | θ <sub>u</sub> |  | 89 | <br>degree |        |
| y axis, down (φ=270°) | $\theta_{d}$   |  | 89 | <br>degree |        |

1. Light source here is the BLU of AUO T645HW05 V0 module.

\* The typical values of contrast ratio, surface luminance, luminance variation, and color chromaticity are based on the average value of DVT samples with T645HW05 V0 backlight.


\* T650HW05 V0 LED lightbar and LED backlight structure are designed by customers, AUO can not guarantee the typical value of NTSC, RGBW, contrast ratio, luminance, and maximum value of luminance variation.

2. Contrast Ratio (CR) is defined mathematically as:

#### Surface Luminance of L<sub>on5</sub> Contrast Ratio= Surface Luminance of L<sub>off5</sub>

3. The criteria is for reference. When condition about out of criteria happened, to clarify root cause due to open cell or back light unit is necessary.

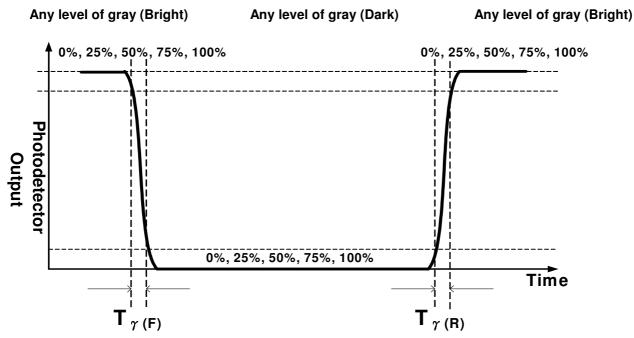
#### FIG. 2 Luminance



4. The variation in surface luminance,  $\delta WHITE$  is defined (center of Screen) as:

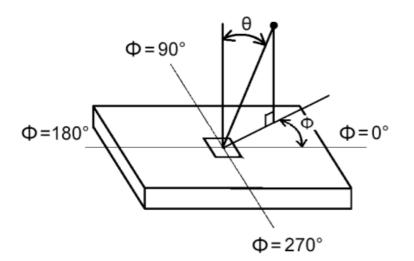
 $\delta_{\text{WHITE(9P)}} = Maximum(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}}) / Minimum(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}})$ 

5. Response time  $T_{\gamma}$  is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on  $F_{\nu}$ =240Hz to optimize.


| Ме            | asured |            |             | Target      |             |             |
|---------------|--------|------------|-------------|-------------|-------------|-------------|
| Response Time |        | 0%         | 25%         | 50%         | 75%         | 100%        |
|               | 0%     |            | 0% to 25%   | 0% to 50%   | 0% to 75%   | 0% to 100%  |
|               | 25%    | 25% to 0%  |             | 25% to 50%  | 25% to 75%  | 25% to 100% |
| Start         | 50%    | 50% to 0%  | 50% to 25%  |             | 50% to 75%  | 50% to 100% |
|               | 75%    | 75% to 0%  | 75% to 25%  | 75% to 50%  |             | 75% to 100% |
|               | 100%   | 100% to 0% | 100% to 25% | 100% to 50% | 100% to 75% |             |

© Copyright AUO Optronics Corp. 2013 All Rights Reserved.




The response time is defined as the following figure and shall be measured by switching the input signal for "any level of grey(bright) " and "any level of gray(dark)".

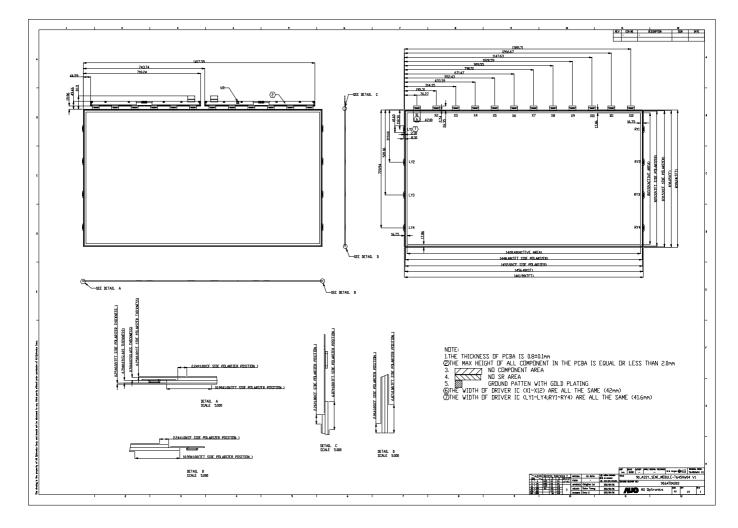
#### FIG.3 Response Time



6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

#### FIG.4 Viewing Angle




7. Definition of Transmittance (T%):

Transmittance = 
$$\frac{\text{Luminance of LCD module}}{\text{Luminance of backlight}} * 100\%$$

During transmittance measurement, the backlight of LCD module contains no brightness enhancement film. Two diffuser sheets which diffuse the light source uniformly are suggested to use for transmittance measurement.



### 5. Open Cell Drawing



### 6. Reliability Test Items (Reference Only)

Open cell reliability is based on T645HW04 V0 module RA result, except open cell packing vibration and drop.

|   | Test Item                       | Q'ty   | Condition                                                                            |
|---|---------------------------------|--------|--------------------------------------------------------------------------------------|
| 1 | High temperature storage test   | 3      | 60℃ , 300hrs                                                                         |
| 2 | Low temperature storage test    | 3      | -20℃, 300hrs                                                                         |
| 3 | High temperature operation test | 3      | 50℃ , 300hrs                                                                         |
| 4 | Low temperature operation test  | 3      | -5℃, 300hrs                                                                          |
| 5 | Vibration test (With carton)    | 1(PKG) | Random wave (1.5G RMS, 10-200Hz)<br>30mins/ Per each X,Y,Z axes                      |
| 6 | Drop test (With carton)         | 1(PKG) | Drop Height: 10.2 cm, 6 Flats<br>(Front→Rear→Left→Right→Top→Bottom)<br>(ASTMD4169-I) |

Note: Test item 1~4Test item 1~4 RA tests are done on AUO T645HW04 V0 panels.

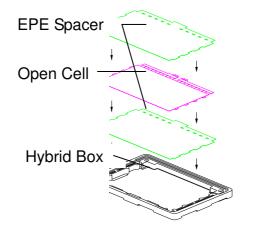


### 7. Packing

#### 7-1 DEFINITION OF LABEL:

A. Open cell shipping Label:




- (1) AUO internal code
- (2) Manufactured date
- (3) Model name

#### B. Carton Label:

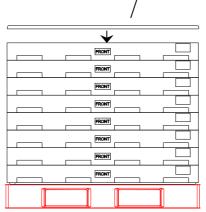




#### 7-2 PACKING METHODS:



### 1Box for 9 pcs cells & 10 pcs spacers

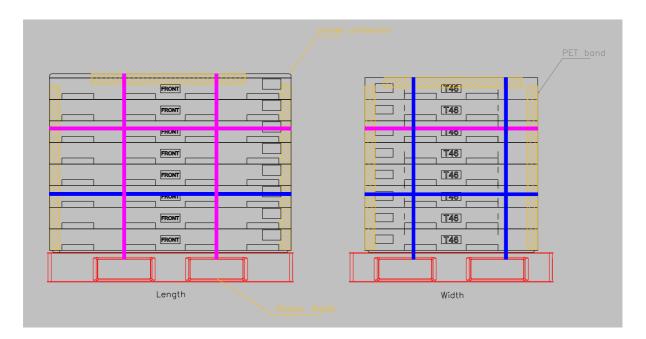





9 Pcs/Box,



EPP Top Cover




Pallet Dimension:1680\*1150\*140 mm 8 Boxes/Pallet, after stack 8 boxes, then put EPP top cover on it.



#### 7-3 Pallet and Shipment Information

|   |                   |                 | Specification                                                 |              |         |  |  |  |  |  |
|---|-------------------|-----------------|---------------------------------------------------------------|--------------|---------|--|--|--|--|--|
|   | Item              | Qty.            | Dimension                                                     | Weight (kg)  | Remark  |  |  |  |  |  |
| 1 | Packing Box       | 9 pcs/box       | 1650(L)mm*1070(W)mm*123(H)mm                                  | 52           |         |  |  |  |  |  |
| 2 | Pallet            | 1               | 1680(L)mm*1150(W)mm*145(H)mm                                  | 20           |         |  |  |  |  |  |
| 3 | Boxes per Pallet  | 9 boxes/Palle   | boxes/Pallet (By Air) ; 9 Boxes/Pallet*Double Pallet (By Sea) |              |         |  |  |  |  |  |
| 4 | Panels per Pallet | 81 pcs/pallet(l | By Air) ; 81 pcs/Pallet*Double Pallet (By Sea)                |              |         |  |  |  |  |  |
| 5 | Pallet            | 81 (by Air)     | 1680(L)mm*1070(W)mm*1079(H)mm (by Air)                        | 438 (by Air) |         |  |  |  |  |  |
|   | after packing     | 162(by Sea)     | 1200(L)mm*1000(W)mm*2158(H)mm (by Sea)                        | 876 (by Sea) | 40ft HQ |  |  |  |  |  |





### 8. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

#### **8-1 MOUNTING PRECAUTIONS**

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

#### 8-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage:  $V=\pm 200 mV(Over and under shoot voltage)$
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of CCFL depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall



be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

#### 8-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

#### 8-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

#### 8-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between  $5^{\circ}$ C and  $35^{\circ}$ C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

#### 8-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.