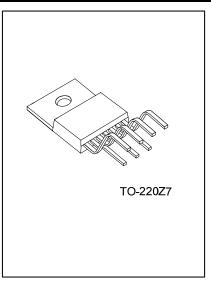
UNISONIC TECHNOLOGIES CO., LTD

T8172

LINEAR INTEGRATED CIRCUIT

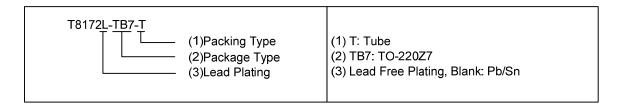

VERTICAL DEFLECTION OUTPUT CIRCUIT

DESCRIPTION

The UTC T8172 is a monolithic integrated circuit and designed for Color and B/W TV, Monitors and Displays application. The IC is a differential input, single ended output amplifier with a flyback generator. It is intended to directly drive vertical windings of deflection coils with high efficiency.

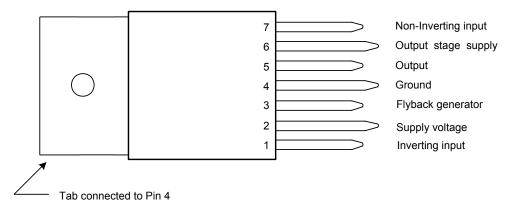
FEATURES

- * Power Amplifier
- * Thermal Protection Circuit
- * Flyback Generator
- * Low cross-over distortion

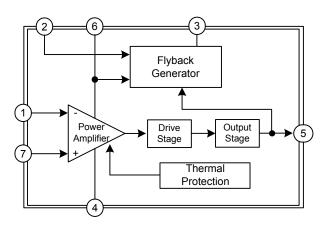

*Pb-free plating product number: T8172L

APPLICATIONS

* Vertical deflection for monitors and TVs


ORDERING INFORMATION

Order N	Package	Dooking		
Normal	Lead Free Plating	Package	Packing	
T8172-TB7-T	T8172L-TB7-T	TO-220Z7	Tube	



www.unisonic.com.tw 1 of 5 QW-R121-009,A

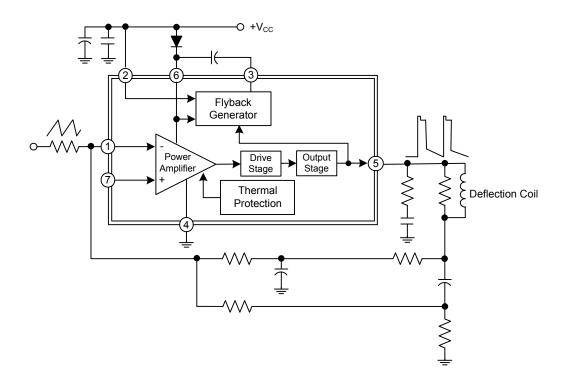
■ PIN CONFIGURATIONS

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

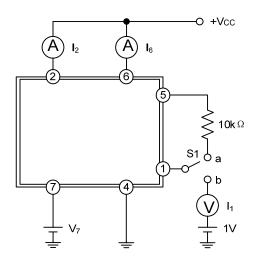
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (pin 2)	V _{CC}	35	V
Flyback Peak Voltage	V ₅ , V ₆	60	V
Voltage at Pin 3	V3	+ V _{CC}	
Amplifier Input Voltage	V ₁ , V ₇	+ V _{cc} – 0.5	V
Output Peak Current (non repetitive, t = 2 ms)	I _{O(PEAK)}	2.5	А
Output Peak Current (f = 50 or 60 Hz, t ≤ 10 us)	I _{O(PEAK)}	3	А
Output Peak Current (f = 50 or 60 Hz, t > 10 us)	I _{O(PEAK)}	2	А
Pin 3 DC Current at V ₅ <v<sub>2</v<sub>	l ₃	100	mA
Pin 3 Peak to Peak Flyback Current (f = 50 or 60 Hz, $t_{fb} \le 1.5$ ms)	I ₃	3	А
Total Power Dissipation (T _C = 90 °C)	P _D	20	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-40~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Thermal Resistance Junction-Case	θ_{JC}	3	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_a = 25°C, V_{CC} = 35V, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Pin 2 Quiescent Current	l ₂	I ₃ =0, I ₅ =0		8	16	mA
Pin 6 Quiescent Current	I ₆	$I_3 = 0, I_5 = 0$		16	36	mA
A and lifting languit Dina Occupant	I ₁	$V_1 = 1V, V_7 = 2V$		-0.1	-1	μΑ
Amplifier Input Bias Current		$V_1 = 2V, V_7 = 1V$		-0.1	-1	μΑ
Pin 3 Saturation Voltage to GND	V_{3L}	I ₃ = 20mA		1	1.5	V
Quiescent Output Voltage	V_5	V _{CC} = 35V, Ra =39kW		18		V
Outside Catalantina Valtana ta CND	V _{5L}	I ₅ = 1.2A		1	1.4	V
Output Saturation Voltage to GND		I ₅ = 0.7A		0.7	1	V
Outroit Saturation Valtage to Cumply	.,,	-I ₅ = 1.2A		1.6	2.2	V
Output Saturation Voltage to Supply	Supply V _{5H}		1.8	V		
Thermal Shutdown Junction Temperature	TJ			140		°C

■ APPLICATION CIRCUIT

■ TEST CIRCUIT

FOR DC Test Circuit

 S_1 : (a) I_2 and I_6 ; (b) I_1

Figure 1. Measurement of I1; I2; I6

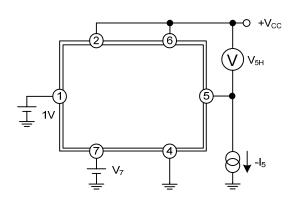
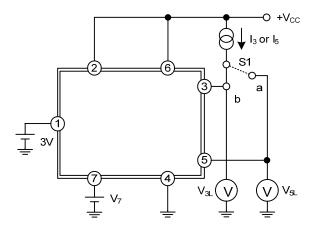



Figure 2. Measurement of V5H

 $S_1 \colon (a) \ V_{3L} \ ; \ (b) \ V_{5L}$

Figure 3. Measurement of V3L; V5L

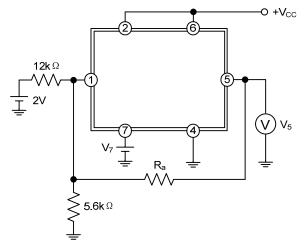


Figure 4. Measurement of V₅

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.