<u>TOSHIBA</u>

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA1275BFNG

www.DataSheet4U.com

SECAM Demodulator Processor

The TA1275BFNG is a SECAM demodulation IC, used in combination with the TB1309 series to achieve a multicolor system. This IC requires very few external parts.

Features

- Combines with the TB1309 series, which is a video processor, timing controller, and PWM pulse processor for analog LCDs
- Built-in bell filter
- Built-in FM demodulator with PLL circuit for color demodulation and SECAM identification
- DC voltage offset for demodulated signal adjuster
- Input terminals for external R-Y / B-Y signals

Weight: 0.09 g (typ.)

Pin Connection

Some functional blocks, circuits or constants may be omitted or simplified in the block diagram for explanatory purposes.

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CCmax}	8	V
Input pin voltage	Vin	GND - 0.3 ~ Vcc + 0.3	V
Power consumption	P _D (Note)	780	mW
Power consumption reduction ratio	1 / Qja	6.3	mW / °C
Operating temperature	T _{opr}	-30~85	°C
Storage temperature	T _{stg}	-55~150	°C

Note: When using the device at above TA = 25° C, decrease the power dissipation by 9.1 mW for each increase of 1° C.

The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant.

If any of these ratings are exceeded during operation, the electrical characteristics of the device may be irreparably altered, in which case the reliability and lifetime of the device can no longer be guaranteed.

Moreover, operations with exceeded ratings may cause breakdown, damage and/or degradation in other equipment. Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions.

Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in these documents.

Characteristic	Description	Min	Тур.	Max	Unit
Supply voltage	Pin 2, 15	4.75	5.0	5.25	_
Y Input signal level	White: 100%, including sync.	0.9	1.0	1.1	V _(p-p)
Color difference input level	Burst level	270	300	330	mV _(p-p)
	G level	3.25	4.0	5.0	
SCP input level	H level	1.95	2.1	2.6	V
	V level	1.1	1.25	1.4	
4.43 MHz CW input level	Pin 4	200	_	_	mV (p-p)

Operating Conditions

Electrical Characteristics

(YC V_{cc} / Pulse V_{cc} = 5 V, Ta = 25°C, unless otherwise specified) Current Consumption

Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
V _{CC} (Y / C)	I _{CC1}	_	32.0	38.5	48.1	m۸
V _{CC} (Pulse)	I _{CC2}	—	5.6	6.7	8.4	

Terminal Voltage

www.DataSheet4U.com

Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
4	4.43 MHz CW-IN	V4	-	2.50	2.75	3.00	
5	ID SW	V ₅	—	2.30	2.50	2.70	
6	SECAM ID I / O (killer OFF)	V ₆	—	0.00	0.20	0.60	
7	YOUT	V ₇	—	2.35	2.55	2.75	
8	MODE SW	V ₈	_	1.80	2.00	2.20	
9	R-Y OUT	V ₉	_	2.10	2.40	2.70	
10	R-Y BLACK CONTROL	V ₁₀	_	2.30	2.50	2.70	
11	B-Y OUT	V ₁₁	_	2.10	2.40	2.70	
12	B-Y BLACK CONTROL	V ₁₂	_	2.30	2.50	2.70	V
13	S-ID FILTER (killer OFF)	V ₁₃	—	4.25	4.55	4.85	
14	EXT. R-Y IN	V ₁₄	—	2.40	2.60	2.80	
16	EXT. B-Y IN	V ₁₆	_	2.40	2.60	2.80	
19	F0-ADJ. FILTER	V ₁₉	—	2.55	3.00	3.45	
20	C IN	V ₂₀	_	3.50	3.70	3.90	
22	BELL ADJ. FILTER	V ₂₂	—	2.20	2.50	2.80	
23	Y IN	V ₂₃	-	2.30	2.50	2.70	
24	BELL CONTROL	V ₂₄	_	4.80	5.00	5.20	

Note: The pins numbered 1, 4, 9, 10, 12, 13, 14, 19, 20 and 24 of this product are sensitive to electrostatic discharge. When handling the product, protect the environment to avoid electrostatic discharge.

Terminal Interface

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
1	SCP IN	The pin for inputting the sand castle pulse (SCP) 3.0V HBLK (2.1V) 1.7V BLK (1.25V) 0.8V		_
2	Vcc 5 V (Pulse)	V_{CC} pin for logic block	_	_
3	N.C. (No Connection)	Connect to GND.	_	-
4	4.43CW-IN GATE WIDTH	The pin for inputting 4.43 MHz of carrier wave for the selfadjustment circuit. Input a 500 mV _{p-p} sine wave through a coupling capacitor. The switch for changing the gate pulse width is overlaid on this pin. +200 nS : to V _{CC} thru 33 kΩ 0ns : open -200 nS : to GND thru 33 kΩ	2-45 ^V 3.09V 2-45 ^V 3.09V 2-45 ^V 3.09V 2-45 ^V 3.09V 2-45 ^V 3.09V 3.09V 1.87V 3.00 ^M 3.09V 1.87V 3.00 ^M 3.00 ^M 3.0	

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
5	H/H+V ID SW	The switch pin for selecting the ID detection mode. H+V : connected to V _{CC} Auto search (H, V, H+V) : opened H : connected to GND		_
6	SECAM ID I / O	The interface pin to the main processor (i.e., TB1309). This input/output interface pin sinks two values of current corresponding to the ID level of the SECAM input signal. Strong SECAM : 420 µA SECAM : 180 µA This pin turns the internal/external switch by the input DC voltage. Internal : GND~2.5 V External : 2.5 V~V _{CC}		_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
7	Y OUT BELL MON	The output pin for the Y signal. The standard output level is 1.0 V_{p-p} . The 5.5 MHz trap filter and delay line on the Y signal processing is controlled by the switch on Pin 8. The output signal of the bell filter can be monitored on this pin by switching Pin 20 for testing.		_
8	DL MODE SW	The pin for controlling the Y processing mode. To V _{CC} : 5.5 MHz trap Open : 5.5 MHz trap + DL To GND : DL		

TOSHIBA

TA1275BFNG

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
13	ID FILTER	The pin for connecting the SECAM ident filter capacitor. Too large a capacitor causes a time delay obtaining color signal on a picture. Yet a weak RF signal performancegrows worse if the capacitor is too small.		_
14	EXT. R-Y IN	The input pin for external R-Y signal. The gain of the internal amplifier is 0 dB.		_
15	Vcc 5 V (Y/C)	The V _{CC} pin for the Y/C processing block.	_	_

2005-03-14

TA1275BFNG

Pin No.	Pin Name	Function	Interface Circuit	Input/Output
20	C IN S-LOW PASS SW	The chroma signal input pin. Apply composite signal through 0.01 μ F of coupling capacitor. The standard input signal level is 1 V _{p-p} . The bell monitor switch for testing is overlaid on this pin. When this pin is connected to GND through 27 k Ω , the bell filter output is observed on Pin 7 (Y-OUT).	25 µA 500/Л 25 µA 500/Л 25 µA 500/Л 25 µA 500/Л 500/Л 500/Л 500/Л 500/Л 500/Л 500/Л 500/Л 500/Л	
21	N.C. (No Connection)	Connect to GND.	_	_
22	BELL f ₀ -ADJ. FILTER	The pin for connecting the filter capacitor for the bell filter f_0 , 4.286 MHz. Too large a capacitor causes a time delay on the bell filter f_0 adjustment. Yet too small a capacitor causes the picture to be noisy.		

www.DataSheet4U.com

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
23	YIN	The Y signal input pin. Apply the composite signal into this pin through a coupling capacitor. The standard input level is 1.0 V _{p-p} .		
24	BELL CONTROL	The pin for selecting the bell filter f_0 $f_0+70 \text{ kHz}$: OPEN $(\approx V_{CC})$ $f_0+35 \text{ kHz}$: 20 k Ω to GND $(\approx 1.7 \text{ V})$ f_0 : to GND $(\approx 0 \text{ V})$	2 4 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	_

AC Characteristics (Unless otherwise specified, $V_{cc} = 5 V$ (Pins 2 & 15), Ta = 25°C)

/ww Dat	Nizee	14U com Itom	Symbol	Test	Test Condition		Rating		Unit
mn.bat	110.	Rem	Symbol	Circuit	Test Condition	Min	Тур.	Max	Unit
	1	Bell/Filter f ₀	f _{0B-C}	_	(Note 2)	-23	0	30	kHz
	2	Bell/Filter f ₀ Variable Range	f _{0B-H} f _{0B-L}	_	(Note 3)	+40 +10	+70 +35	+100 +60	kHz kHz
	3	Bell/Filter Q	Q _{BEL}	-	(Note 6)	14	16	18	I
	4	Color Difference Output Amplitude	V _{BS} V _{RS}		(Note 7)	0.39 0.5	0.56 0.7	0.73 0.99	V _(p-p) V _(p-p)
	5	Color Difference Relative Amplitude	R / B-S	_	(Note 8)	1.24	1.35	1.52	_
	6	Linearity	LinB LinR	_	(Note 12)	93 93	100 100	107 107	% %
	7	Rising Time	t _{rR} t _{rB}	—	(Note 13)	_	1.3 1.3	2.0 2.0	μs μs
	8	Demodulation Hold Range	H _{RL} H _{BH}	_	(Note 14)	 4.75	3.5 5.2	3.9 —	MHz MHz
	9	Demodulation Capture Range	C _{RL} C _{BH}	_	(Note 15)	 4.75	3.5 5.2	3.9	MHz MHz
	10	Killer Operation Input Level	e _{SK} e _{SC}	-	(Note 16)	0.15 0.40	0.30 0.65	0.60 1.20	mV _(p-p) mV _(p-p)
	11	Black Level Offset	E _{rR} E _{rB}	-	(Note 18)	-30 -30	0 0	+30 +30	mV mV
	12	ID Voltage	V _{6color} V _{6B / W}	_	(Note 19)	0.12 4.8	0.2 4.9	0.6 5.0	V V
	13	ID Current	I _{6strong} SE I _{6SE} I _{6B / W}	_	(Note 20)	310 133 —	420 180 0	530 225 10	μΑ μΑ μΑ
	14	System SW Threshold Level	V _{6P / N} V _{6S}	-	(Note 21)	2.3 2.3	2.5 2.5	2.7 2.7	V V
	15	Color Difference Output DC Level	V _{9P / N} V _{11P / N} V _{9S} V _{11S}	_	(Note 22)	2.3 2.3 2.1 2.1	2.6 2.6 2.4 2.4	2.9 2.9 2.7 2.7	V V V V
	16	R-Y / B-Y Color Black Level Control Characteristics	ΔE _{rR+} ΔE _{rR-} ΔE _{rB+} ΔE _{rB-}	_	(Note 23)	22 -30 22 -30	26 -26 26 -26	30 -22 30 -22	mV mV mV mV
	17	Ext. Color Difference Gain	G _{EXTR} G _{EXTB}	_	(Note 24)	0.8 0.8	1.0 1.0	1.2 1.2	
	18	Gate Pulse Width Variable Range	W _{GPGND} W _{GP} W _{GPVCC}	_	(Note 26)	1.7 1.9 2.1	1.8 2.0 2.2	1.9 2.1 2.3	μs μs
	19	Y DL Characteristics (at 3 MHz)	t _{YDL}	_	(Note 27)	180	250	360	_
	20	Y Trap Characteristics	f _{0Y5.5} G _{at} f ₀	_	(Note 28)	4.5	5.5 -35	6.5 -20	MHz dB
	21	Y Input Dynamic Range	DR _{YS} DR _{YBW}	_	(Note 29)	0.9 1.1	1.0 1.25	1.1 1.4	V _(p-p) V _(p-p)
	22	Y Gain	GYS GYBW	_	(Note 30)	0.7 0.8	0.9 1.0	1.1 1.2	_

Test Conditions (Unless otherwise specified, V_{cc} = 5 V (Pins 2 & 15), Ta = 25°C)

www.Dat	SNote4U	J.com Item	Test Condition
			(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20. $$f_0$$
			(2) : Connect Pin 20 to GND through 27 kΩ.
	1	Bell / Filter f ₀	(3) : Keep Pin 24 GND.
			(4) : Measure the frequency at which the Pin 7 output is the greatest, that is, "f _{0BEL} ".
			(5) : Calculate : $"f_{0B-C}" = f_{0BEL}-4,286 \text{ kHz}.$
			(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20.
			(2) : Connect pin 20 to GND through 27 k Ω .
	2	Bell / Filter f ₀ Variable Range	(3) : Measure the frequency at which the Pin 7 output is the greatest when V _{CC} is 5.5 V / 4.5 V, that is, f _{0BEL5.5} / f _{0BEL4.5} .
			(4) : Calculate : $"f_{0B-H}" = f_{0BELH} - 4,286 \text{ kHz.}$ $"f_{0B-L}" = f_{0BELL} - 4,286 \text{ kHz.}$
			(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20.
			(2) : Connect Pin 20 to GND through 27 kΩ.
	3	Bell / Filter Q	(3) : Pin 24 is GND.
			(4) : Observe the frequency response of the Pin 7 output.
			(5) : Calculate : " Q_{BEL} " = (MAX-3dB Band Width) / f_{0BEL} .
			(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.
		Color Difference Output Amplitude	(2) : Measure the R-Y output amplitude at Pin 9, that is, " V_{RS} ".
	4		(3) : Measure the B-Y output amplitude at Pin 11, that is, "V _{BS} ".
	5	Color Difference Relative Amplitude	Calculate : "R / B-S" = V _{RS} / V _{BS} .
			(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.
			(2) : Measure the amplitude between Black and Cyan / Red, that is, V _{Cyan} / V _{Red} .
	6	Linearity	(3) : Measure the amplitude between Black and Yellow / Blue, that is, V _{Yellow} / V _{Blue} .
			(4) : Calculate : "LinR" = V _{Cyan} / V _{Red} Yellow "LinB" = V _{Yellow} / V _{Blue}
			(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.
	7	Rising Time	(2) : Measure the rising time (from 10% to 90%) between Green and Magenta at Pin 9 / Pin 11, that is, "t _r R" / "t _r B".
ĺ	8	Demodulation Hold Range	(1) : Input a 200 mV _{p-p} , 2 MHz sine wave into Pin 20. $_{4.25M}$
	9		(2) : Increasing the input frequency, measure the frequencies at which demodulated output appears at Pin 9, that is, "C _{RL} ", and at which demodulated output disappears at Pin 11, that is, "H _{BH} ".
	-		(3) : Input a 200 mV _{p-p} , 7 MHz sine wave into Pin 20.
			(4) : Decreasing the input frequency, measure the frequencies at which demodulated output appears at Pin 11, that is, "C _{BH} ", and at which demodulated output disappears at Pin 9, that is, "H _{RL} ".

w.Dati Sheet4L .com (1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20. 10 Killer ON/OFF Level (2) : Decreasing the input amplitude, measure the amplitude at demodulated outputs disappear at Pin 9 and Pin 11, that is (3) : Increasing the input amplitude from 0 mV _{p-p} , measure the demodulated outputs appear at Pin 9 and Pin 11, that is, "example outputs appear at Pin 9, and Pin 11, that is, "example	which s, "e _{SK} ". amplitude at which e _{SC} ". -1 [] _{ErR}
10 Killer ON/OFF Level (2) : Decreasing the input amplitude, measure the amplitude at demodulated outputs disappear at Pin 9 and Pin 11, that is (3) : Increasing the input amplitude from 0 mV _{p-p} , measure the demodulated outputs appear at Pin 9 and Pin 11, that is, "expenditude outputs appear at Pin 9 and Pin 11, that is, "expenditude outputs appear at Pin 9 and Pin 11, that is, "expension"	which s, "e _{SK} ". amplitude at which e _{SC} ".
 (3) : Increasing the input amplitude from 0 mV_{p-p}, measure the demodulated outputs appear at Pin 9 and Pin 11, that is, "e (1) : Input a 200 mV_{c-p} non-modulated chrome. 	amplitude at which e _{SC} ". - 1
(1) \cdot [point a 200 mV/ _e = non-modulated chrome	ٵ []_ _{ErB}
signal into Pin 20.	
11 Black Level Offset (2) : Pin 10 and Pin 12 are opened.	
 (3) : Measure the difference between picture period and blanking period at Pin 9 / Pin 11, that is, "E_{rR}" / "E_{rB}". 	
(1) : Connect the external power supply to Pin 13, as shown in t	the figure.
(2) : Apply 4.0 V to Pin 13, and measure the Pin 6 voltage, that	is, "V _{6color} ".
(3) : Apply 2.0 V to Pin 13, and measure the Pin 6 voltage, that	is, "V _{6B / W} ".
(6)	
12 ID Voltage	
Voltmeter (V)	
+	
(1) : Connect the external power supply to Pin 13, as shown in t	the figure.
(2) : Apply 5.0 V to Pin 13, and measure the Pin 6 current, that	is, "l _{6strongSE} ".
(3) : Apply 4.0 V to Pin 13, and measure the Pin 6 current, that	is, "I _{6SE} ".
(4) : Apply 2.0 V to Pin 13, and measure the Pin 6 current, that	is, "I _{6B / W} ".
TA1275 BFNG	
13 ID Current (4) (6)	
0.01µF	
(A) Ammeter	
•	
(1) : Input a 200 mV _{p.p} , 15 kHz sine wave into Pin 14 and Pin 1	16.
(2) : No input on Pin 20.	
14 System SW Threshold Level (3) : Increasing the Pin 6 voltage from 0 V, measure the voltage	e at which the 15 kHz
Sine wave appears at Pin 9 and Pin 11, that IS, "V ₆ PIN". (4) \therefore Decreasing the Pin 6 voltage from 4 V/ measure the voltage	10 at which the 15 kH
sine wave disappears at Pin 9 and Pin 11, that is, "V _{6S} ".	ye at winch the 13 K⊓∠
(1) : No input on Pin 20.	
15 Color Difference Output DC (2) : Measure the DC voltage on Pin 9 / Pin 11 when Pin 6 is 4 "V11PIN".	V, that is, "V _{9PIN} " /
(3) : Measure the DC voltage on Pin 9 / Pin 11 when Pin 6 is 0 " "V _{11S} ".	V, that is, "V _{9S} " /
(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.	
 (2) : Measure the difference between the picture period and the 9 when Pin 10 is 5 V / 0 V, that is, E_{rR+} / E_{rR-}. 	e blanking period at Pin
(3) : Measure the difference between the picture period and the 11 when Pin 12 is 5 V / 0 V, that is, E _{rB+} / E _{rB-} .	e blanking period at Pin
16 Characteristics (4) : Calculate : " ΔE_{rR+} " = E_{rR+} "= E_{rR+} "= E_{rR+} "=	А
	± E _{rR}
$\Delta E_{rB} = E_{rB} = E_{rB}$	
± ErB	

N	ote	ltem	Test Condition
w.DataSh	aSheet4l	J.com	(1) : Input a 200 mV _{p-p} , 15 kHz sine wave into Pin 14 and Pin 16.
		Ext. Color Difference Gain	(2) : Supply 4 V to Pin 6.
17	17		(3) : Measure the respective output amplitudes at Pin 9 and Pin 11: $V_{\mbox{EXTR}}$ and $V_{\mbox{EXTB}}.$
			(4) : Calculate : "G _{EXTR} " = V _{EXTR} / 200 mV "G _{EXTB} " = V _{EXTB} / 200 mV
	18 Gate Pulse Width Varia Range		(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.
		Gate Pulse Width Variable	(2) : Connecting Pin 13 to GND via 1 kΩ, observe the gate pulse at Pin 13.
		Range	(3) : Measure the respective gate pulse widths for when Pin 4 is opened and for when it is connected to V _{CC} / GND: "W _{GP} ", "W _{GPVCC} " and "W _{GPGND} ".
	19	Y DL Characteristics	(1) : Connect Pin 13 to V _{CC} via 10 k Ω .
-			(2) : Connect Pin 8 to GND.
			(3) : Measure the delay time between Pin 23 input and Pin 7 output, that is, "t_{YDL}".
		Y Trap Characteristics	(1) : Input a sweep signal with sync. (1 V_{p-p}).
			(2) : Connect Pin 13 to V _{CC} via 10 k Ω .
	20		(3) : Connect Pin 8 to V_{CC} .
	20		(4) : Observing the frequency response at Pin 7, measure the frequency at which the attenuation is maximum, that is, "f _{0Y5.5} "; and measure the attenuation at f _{0Y5.5} against that at 1 MHz, that is, "G _{Y5.5} ".
		Y Input Dynamic Range	(1) : Connect Pin 13 to V_{CC} via 10 k Ω .
	21 Y Input Dynamic Range		(2) : Increasing the amplitude of the Y signal input into Pin 23, measure the amplitude at which the output signal from Pin 7 begins to be distorted, that is, "DR _{YS} ".
		(3) : Open Pin 13.	
			(4) : Repeat (2), that is, "DR _{YBW} ".
	22	Y Gain	(1) : Input a Y signal (picture period amplitude: 0.7 V_{p-p}) into Pin 23.
			(2) : Connect Pin 13 to V_{CC} via 10 k Ω .
2			(3) : Measure the gain between Pin 23 input and Pin 7 output, that is, "Gys".
			(4) : Open Pin 13.
			(5) : Repeat (3), that is, "G _{YBW} ".

Test Circuit

Application Circuit

www.DataSheet4U.com

The application circuits shown in this document are examples provided for reference purposes only. Thorough evaluation is required in the mass production design phase. By furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.

Outline Drawing

www.DataSheet41.com SSOP24-P-300-0.65A

Unit: mm

Weight: 0.09 g (typ.)

www.DataSheet4U.com

About solderability, following conditions were confirmed

• Solderability

- (1) Use of Sn-63Pb solder Bath
 - solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - \cdot the number of times = once
 - · use of R-type flux
- (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - \cdot the number of times = once
 - use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.