
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1290FN

PIF IC FOR TV

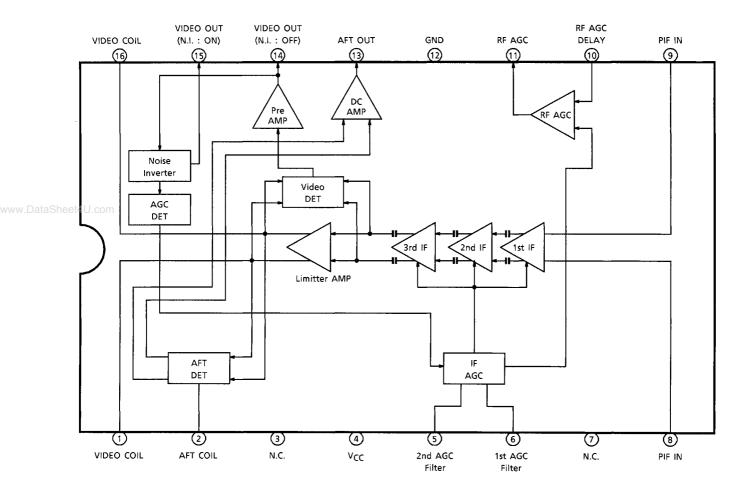
FEATURES

- RF Pre Amp. less by high input sensitivity
- 3-stage IF amplifier with variable gain
- High-speed response AGC with dual time constants
- Single AFT output with defeat function
- Delayed RF AGC output (reverse AGC)
- Output with white / black noise inverter
- Output without white / black noise inverter
- Video mute switch

Weight: 0.07g (Typ.)

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or


to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

BLOCK DIAGRAM

TERMINAL FUNCTION

PIN No	PIN NAME	FUNCTION	INTERFACE			
1	- Video Coil	Connect video detection coil.	VCC			
U.com 16			AFT Vid			
2	AFT Coil	Connect AFT detection coil. AFT output is defeated when this terminal is connected to GND.	2000) 2000) S			
3	N.C.	_	_			
4	Vcc	Connect bypass capacitor between this terminal and PIF GND with shortest wiring. (Typ. : 9V)	-			
5	2nd AGC Filter	This IC is adopted dual time constant AGC circuit to improve AGC responsibility.	VCC S1Ω GRAMP. AGC Det.			
6	1st AGC Filter	Tesponsibility. To mute picture, connect pin 6 with GND.				

	PIN No	PIN NAME	FUNCTION	INTERFACE
	7	N.C.	_	_
	8	PIF Input	PIF input terminal. Input impedance is 2.5kΩ, 4pF.	6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	9			6kΩ 4k 2. 2. 2. 4k
www.DataSheet4U	.com	RF AGC Delay	Changing comparator reference voltage adjusts RF AGC delay point.	VCC TO
	11	RF AGC Out	RF AGC output terminal. (open collector output) Resister (39k Ω) is connected internally between this terminal and V $_{CC}$.	VCC C C C C C C C C C C C C C C C C C C
	12	PIF GND	Connect bypass capacitor between this terminal and PIF GND with shortest wiring.	_
	13	AFT Out	AFT detector output terminal.	VCC 1κΩ
	14	Video Out (With Noise Inverter)	Video signal output terminal. (with noise inverter) To mute picture, connect pin 6 with GND.	Vcc Cow

PIN No.	PIN NAME FUNCTION		INTERFACE		
15	Video Out (Without Noise Inverter)	Video signal output terminal. (without noise inverter) To mute picture, connect pin 6 with GND.	VCC		

MAXIMUM RATINGS (Ta = 25°C)

J.com			
PIN No.	SYMBOL	RATING	UNIT
Power Supply Voltage	V _{CC}	15	٧
Power Dissipation	P _D (Note)	781	mW
Operating Temperature	T _{opr}	-20~65	°C
Storage Temperature	T _{stg}	-55~150	°C

Note: Mounted on the circuit board.

When using the device at above $Ta = 25^{\circ}C$, decrease the power dissipation by 6.25mW for each increase of 1°C.

RECOMMENDED POWER SUPPLY

PIN No.	SYMBOL	MIN	TYP.	MAX	UNIT
4	V _{CC}	8.1	9.0	9.9	V

ELECTRIC CHARACTERISTICS DC CHARACTERISTICS

(Unless otherwise specified, $V_{CC} = 9V$, $Ta = 25^{\circ}C$, $SW_1 : ON$, $SW_2 : ON$)

CHARACTE	RISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT				
Supply Current		Icc		_	20	29	38	mA				
	Pin 1	V ₁		_	5.8	6.3	6.8					
	Pin 2	V ₂		_	2.3	2.8	3.3					
	Pin 8	V ₈	1	SW ₁ : OFF	3.5	4.0	4.5					
	Pin 9	V ₉		_	3.5	3.5 4.0 4.5						
Terminal Voltage	Pin 10	V ₁₀		SW ₂ : OFF	5.7	6.2	6.7	V				
	Pin 13	V ₁₃						_	2.5	4.0	5.5	
	Pin 14	V ₁₄		_	4.2	4.7	5.2					
	Pin 15	V ₁₅		_	4.2	4.7	5.2					
	Pin 16	V ₁₆		_	5.8	6.3	6.8					

AC CHARACTERISTICS (Unless otherwise specified, V_{CC} = 9V, Ta = 25°C) PIF CHARACTERISTICS (Using recommended coil)

CHARACTERIST	TICS	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TY.P	MAX	UNIT
Input Signal Voltage sens	Input Signal Voltage sensitivity			(Note 1)	36	41	46	dΒμV
Maximum Input Signal Vo	oltage	V _{in} Max		(Note 2)	100	110	_	dΒμV
Differential Gain		DG		(Nata 2)	_	_	8	%
Differential phase		DP		(Note 3)	_	_	6	0
Output Voltage at No Sign	nal	V ₁₄ , V ₁₅		(Note 4)	4.0	4.6	5.2	V
Sync. Voltage Level		V _{sync}		(Note 5)	2.0	2.3	2.6	V
Output Signal Voltage		V _{out}		(Note 6)	1.7	2.0	2.3	V _{p-p}
White Noise Inverter Leve	White Noise Inverter Level					5.0	_	
White Noise Clamp Level		V _{wcl}	2	2 (Note 7)		3.8	_	· V
Black Noise Inverter Leve	el	V _{bth}			0.9	1.2	1.5	
Black Noise Clamp Level		V _{bcl}			3.2	3.5	3.8	
Suppression of Career		CR		(Note 8)	40	_	_	dB
Suppression of Career Ha	Suppression of Career Harmonics			(Note 9)	40	_	_	dB
AFT Control Steepness		Δf / ΔV		(Note 10)		20	30	kHz / V
AET Output	Min.	VI			_	0.1	0.5	V
AFT Output	Max.	V _h		_	8.4	8.7	_	
Intermodulation	Intermodulation			(Note 11)	30	38	_	dB

www.DataShoot

TEST CONDITION

Note 1: Input signal voltage sensitivity

PIF input : $f_p = 58.75 \text{MHz}$, $f_m = 15.75 \text{kHz}$, 30%AM, 84dB μ V

Measure output video signal voltage (15-a, that voltage is 0dB). Lower input signal voltage gradually, measure input PIF signal voltage when output video signal voltage is -3dB.

Note 2: Maximum input signal voltage

PIF input : $f_p = 58.75 \text{MHz}$, $f_m = 15.75 \text{kHz}$, 30%AM, 84dB μ V

Raise input signal voltage gradually, measure input PIF signal voltage (15-a) when output video

signal voltage is at the noise inverter threshold.

Note 3: Differential gain / Differential phase

PIF input : $f_p = 58.75 \text{MHz}$, Standard television signal (V / S = 10 : 4 ramp waveform), 87.5%AM,

84dBµV

 $\mathbf{IF}\,\mathbf{AGC}:\mathbf{free}$

Measure deferential gain and deferential phase (15-b).

Note 4: Output voltage at no signal

PIF input : no input IF AGC : GND

Measure output video signal DC voltage (15-b).

Note 5: Sync. voltage level

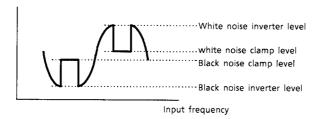
PIF input: fp = 58.75MHz, Standard television signal (V/S = 10:4 ramp waveform), 87.5%AM,

 $84dB\mu V$

Measure sync. voltage level (15-b).

Note 6: Output signal voltage

PIF input : $f_p = 58.75 \text{MHz}$, Standard television signal (V / S = 10 : 4 ramp waveform), 87.5%AM,


84dBµV

Measure output video signal voltage (15-b).

Note 7: Noise inverter

PIF input : $f_p = 57 \sim 65 MHz$ (sweep signal), $84 dB\mu V$.

Connect monitor scope to video output (15-b). Supply DC voltage to 2nd AGC from external source. Controlling that voltage, measure noise inverter and clamp level when a waveform like that in the following figure is output.

www.DataSheet4U.com

Note 8: Suppression of career

PIF input : $f_p = 58.75 \text{MHz}$, $f_m = 15.75 \text{kHz}$, 30%AM, 84dBµV

Add the 2nd AGC terminal from external power supply, so that the output video signal voltage (15-b) can be $2V_{p-p}$.

Turning modulation off, measure output career (V_{career} [V_{p-p}]) at pin 15. Calculate the following equation.

(Suppression of career) = $20\log (2 / V_{career})$ [dB]

Note 9: Suppression of career harmonics

PIF input : $f_p = 58.75 \text{MHz}$, $f_m = 15.75 \text{kHz}$, 30%AM, 84dBµV

Add the 2nd AGC terminal from external power supply, so that the output video signal voltage (15-b) can be $2V_{p-p}$.

Turning modulation off, measure output career (117.5MHz) level (Vcareer [Vp-p]) at pin 15. Calculate the following equation.

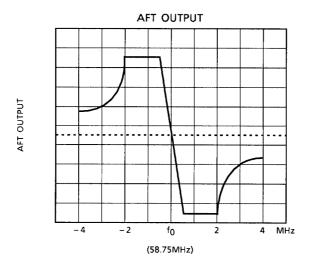
(Suppression of career harmonics) = $20 \log (2 / V_{career}) [dB]$

www.DataSheet4U.Note 10:

AFT control steepness

PIF input : $f_p = 58.75MHz$, 84dB μ V, CW

Input the above signal and adjust the AFT coil so that the AFT output voltage is 4.5V.


Measure AFT output voltage of following conditions.

(input frequency = 58.74MHz): V_{AFT1}

(input frequency = 58.76MHz): VAFT2

AFT control steepness is calculated by following equality.

(AFT control steepness) = $\Delta f / \Delta V = 20 / (V_{AFT1} - V_{AFT2})$

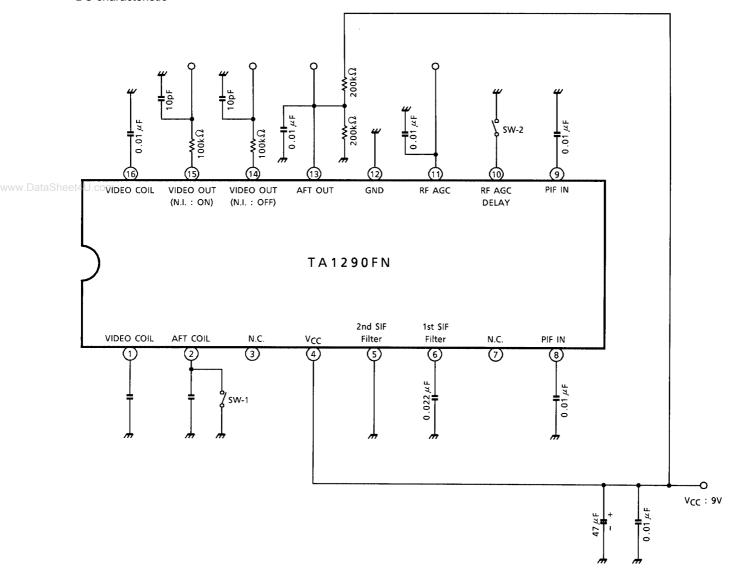
Note 11: Intermodulation

Input following composite signals to the PIF input.

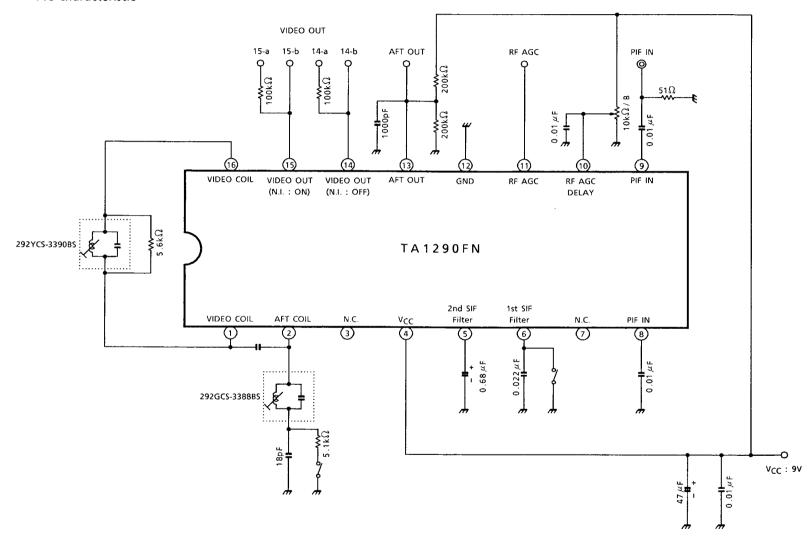
SG:1 58.75MHz, $84dB\mu V$ (picture career) SG:2 54.25MHz, $74dB\mu V$ (sound career) SG:3 55.17MHz, $74dB\mu V$ (chroma)

Supply DC voltage to 2nd AGC terminal from external source, so that bottom of output signal voltage (15-b) matches sync. tip level. Measure the difference of output signal voltage at pin 15 between 3.58MHz component (chroma) and 920kHz component.

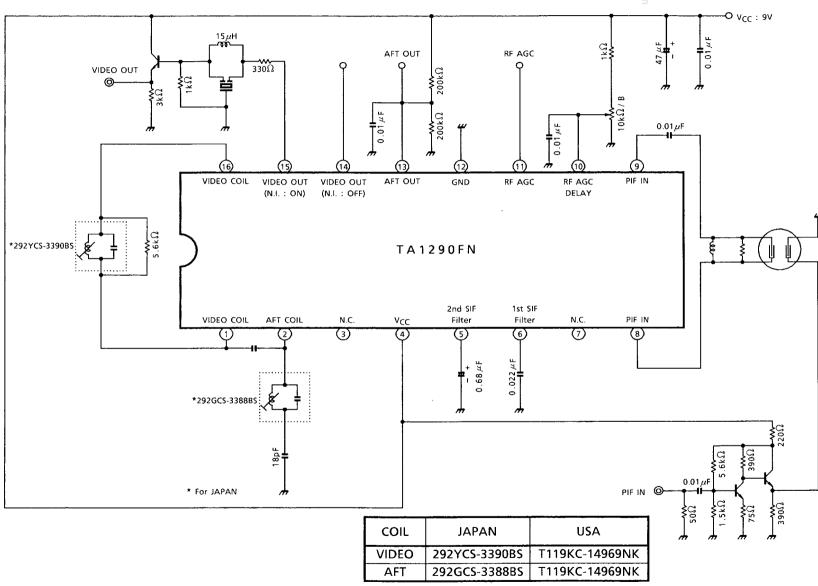
COIL SPECIFICATION


COIL NAME	PART NUMBER	CONNECTION	SPECIFICATION			
			f _{O MAX} Above			
٨٢٦	000000 000000	3	f _{O MIN}	Below 61MHz		
AFT IF = 58.75MHz	292GCS-3388BS (TOKO)	2	Q (non-load)	46±20% (f _{O MIN})		
			fo max	Above 66.5MHz		
DIE	2027/00 220000	3 4	f _{O MIN}	Below 61.8MHz		
PIF IF ≅ 58.75MHz	292YCS-3390BS (TOKO)	2	Q (non-load)	17±20% (f _{O MIN})		
			f _{O MAX}	57.2MHz-8% or above		
DIE AET	T440KO 44000NK	3	f _{O MIN}	42.6MHz+8% or below		
PIF,AFT IF = 45.75MHz	T119KC-14969NK (TOKO)	2 \$ ± (6) C = SH1H680J	Q (non-load)	69±25% (f _{O MIN})		

----- D-4-0l---4

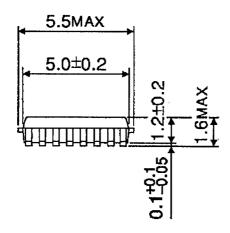

TEST CIRCUIT 1

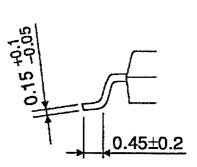
DC characteristic



TEST CIRCUIT 2

AC characteristic




APPLICATION CIRCUIT

TA1290FN - 12

PACKAGE DIEMENSIONS

Weight: 0.07g (Typ.)