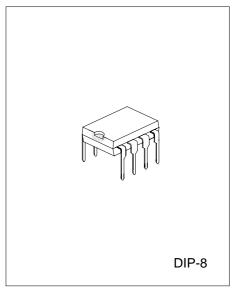
UNISONIC TECHNOLOGIES CO., LTD

TA31002

LINEAR INTEGRATED CIRCUIT

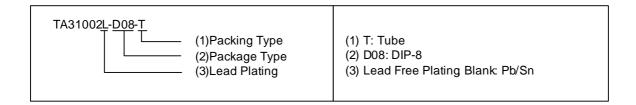

TELEPHONE TONE RINGER

■ DESCRIPTION

The UTC **TA31002** is a bipolar integrated circuit designed for telephone bell replacement. It can also be used as alarms or other alerting devices.

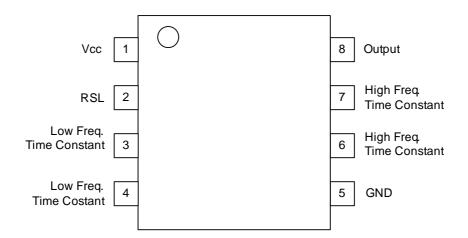
■ FEATURES

- *Current consumption is small. (at no-load)
- *Package is compaction. (DIP-8 pin)
- *Oscillation frequency is variable.
- *Built-in threshold circuits prevent false triggering due to power noise as well as "chirps" due to rotary dial.
- *Few external components.

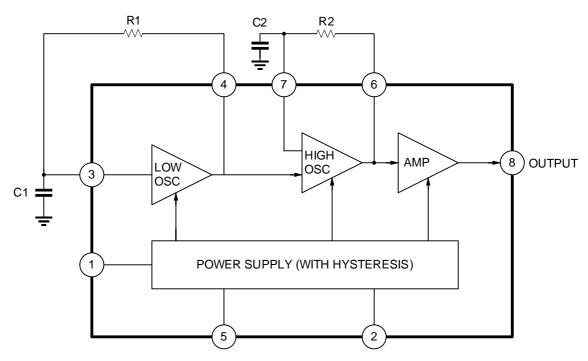


*Pb-free plating product number: TA31002L

QW-R108-004.B


■ ORDERING INFORMATION

Ordering	Dookogo	Dooking		
Normal	Lead Free Plating	Package	Packing	
TA31002-D08-T	TA31002L-D08-T	DIP-8	Tube	



<u>www.unisonic.com.tw</u> 1 of 4

■ PIN CONFIGURATIONS

■ BLOCK DIAGRAM

Note:R1,R2,C1 and C2 are parts externally mounted

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

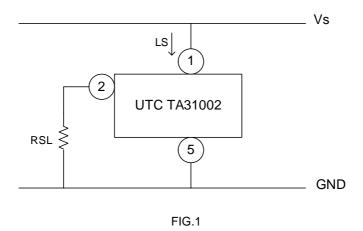
PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V _{CC}	30	V
Power Dissipation	P_{D}	800	mW
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (Ta=25°C)

(All voltage referenced to GND unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V_{OPR}				29	V
Initiation Supply Voltage	Vsi	(note 1)	17	19	21	V
Sustaining Supply Voltage	Vsus	(note 2)	10.5	12	ı	V
Initiation Current Consumption	Isi	-No-Load	1.4	3.3	4.2	mA
Sustaining Current Consumption	Isus	No-Load	0.7	1.4	2.5	mA
Oscillation Frequency (not3)	FI	C1=0.47μF, R1=165kΩ	9	10	11	Hz
	fH1	C2 6900pF D2 404kG	461	512	563	Hz
	fH2	C2=6800pF, R2=191kΩ	576	640	703	Hz
Output Voltage "H" Level	V _{OH}	Vcc=24V, V _{OH} =-10mA PIN7=GND	20.0	21.5	22.5	V
Output Voltage "L" Level	V _{OL}	Vcc=24V, V _{OL} =10mA PIN7=7V	0.7	1.0	2.0	V


^{*}Note: 1. Initiation supply voltage (Vsi) is a supply voltage required to start oscillation of the tone ringer.

- 2. Sustaining supply voltage (Vsus) is a supply voltage required to maintain oscillation of the tone ringer.
- 3. Oscillation frequency is determined by the following equations 1, 2, and 3.
 - (1) fL=1/1.234•R1•C1 (Hz); (2)fH1=1/1.515•R2•C2 (Hz); (3)fH2=1.24 fH1(Hz)

■ APPLICATION NOTE

In the UTC **TA31002** the initiation current consumption (Isi) can be changed by using the RSL terminal. The resistor RSL is connected to GND from PIN2 as shown in fig.1. Further, the initiation current consumption (Isi) can be changed by changing the value of RSL.

Fig.2 show the graph of Vs-Is characteristic at the time when RSL has been changed to three values. The Vs-Is characteristic in UTC **TA31002** at the time when RSL= $6.8k\Omega$ coincides with that at the time when PIN2 of the TA31001 has been used at an open state.

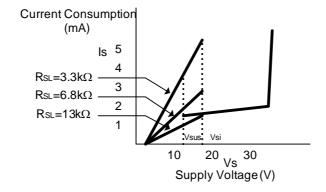
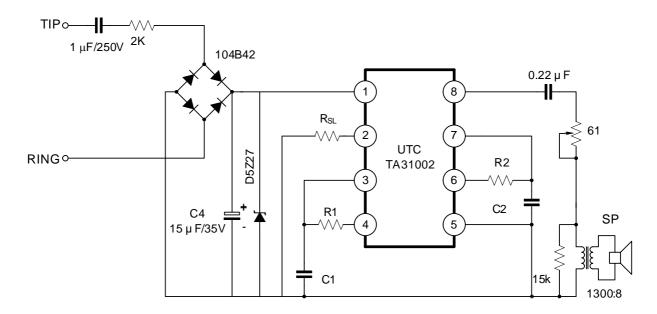



FIG.2

■ APPLICATION CIRCUIT

fL=1/1.234R1*C1 fH1=1/1.515R2*C2 fH2=1.24fH1

when:

 $\begin{array}{ll} \text{R1=165} \text{K}\Omega & \text{R2=191} \text{K}\Omega \\ \text{C1=0.47} \mu \text{F/16V} & \text{C2=0.0068} \mu \text{F/16V} \end{array}$

fL≅10Hz fH1≅500Hz fH2≅630Hz

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.