
概述

TA6932是LED (发光二极管显示器) 驱动控制专用电路,内部集成有MCU 数字 接口、数据锁存器、LED 大电流驱动等电路。主要应用于电子秤等的高段位显示屏驱 动,采用SOP32封装。

二、 特性说明

- 采用功率CMOS 工艺
- 显示模式 8 段×16 位
- 辉度调节电路(占空比8级可调)
- 串行接口 (CLK, STB, DIN)
- 振荡方式: RC 振荡
- 内置上电复位电路
- 封装形式: SOP32

三、 内部功能框图:

四、 管脚定义:

GR13 GR14 GR15	1O 2 3	32 31 30	GRID12 GRID11 GRID10
GR16	4	29	GRID9
VSS	5	28	VSS
DIN	6	27	GRID8
SCLK	7	26	GRID7
STB	8	25	GRID6
NC	9	24	GRID5
SEG1	10	23	GRID4
SEG2	11	22	GRID3
SEG3	12	21	GRID2
SEG4	13	20	GRID1
SEG5	14	19	VSS
SEG6	15	18	VDD
SEG7	16	17	SEG8

管脚功能定义:

符号	管脚名称	管脚号	说明
DIN	数据输入	6	在时钟上升沿输入串行数据,从低位开始
STB	片选	8	在上升或下降沿初始化串行接口,随后等待接收指令。 STB 为低后的第一个字节作为指令,当处理指令时, 当前其它处理被终止。当STB 为高时,CLK 被忽略
SCLK	时钟输入	7	在上升沿读取串行数据,下降沿输出数据
Seg1~Seg8	输出(段)	10~17	段输出
Grid13~Grid16	输出(位)	1~4	位输出
Grid1∼Grid8	输出(位)	20~27	位输出
Grid9~Grid12	输出(位)	29~32	位输出
VDD	逻辑电源	18	5V ± 10%
VSS	逻辑地	5,19,28	接系统地
NC	NC	9	空脚

五、 显示寄存器地址:

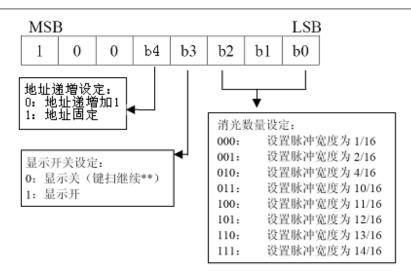
该寄存器存储通过串行接口从外部器件传送到TA6932 的数据, 地址分配如下:

地址	Seg1-Seg4	Seg5-Seg8	GRID
0xC0	Data1 Lower 4 bit	Data1 Upper 4 bit	Grid1
0xC1	Data2 Lower 4 bit	Data2 Upper 4 bit	Grid2
0xC2	Data3 Lower 4 bit	Data3 Upper 4 bit	Grid3
0xC3	Data4 Lower 4 bit	Data4 Upper 4 bit	Grid4
0xC4	Data5 Lower 4 bit	Data5 Upper 4 bit	Grid5
0xC5	Data6 Lower 4 bit	Data6 Upper 4 bit	Grid6
0xC6	Data7 Lower 4 bit	Data7 Upper 4 bit	Grid7
0xC7	Data8 Lower 4 bit	Data8 Upper 4 bit	Grid8
0xC8	Data9 Lower 4 bit	Data9 Upper 4 bit	Grid9
0xC9	Data10 Lower 4 bit	Data10 Upper 4 bit	Grid10
0xCA	Data11 Lower 4 bit	Data11 Upper 4 bit	Grid11
0xCB	Data12 Lower 4 bit	Data12 Upper 4 bit	Grid12
0xCC	Data13 Lower 4 bit	Data13 Upper 4 bit	Grid13
0xCD	Data14 Lower 4 bit	Data14 Upper 4 bit	Grid14
0xCE	Data15 Lower 4 bit	Data15 Upper 4 bit	Grid15
0xCF	Data16 Lower 4 bit	Data16 Upper 4 bit	Grid16

Seg-X	Seg1	Seg2	Seg3	Seg4	Seg5	Seg6	Seg7	Seg8
Data-X	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7

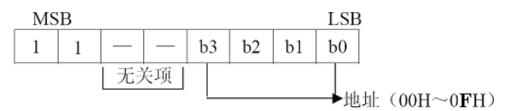
六、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

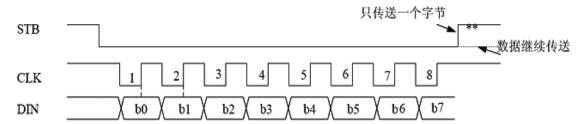

在STB 下降沿后由DIN 输入的第一个字节作为一条指令。

如果在指令或数据传输时STB 被置为高电平,串行通讯被初始化,并且正在传送 的指令或数据无效 (之前传送的指令或数据保持有效)。

(1) 显示控制:

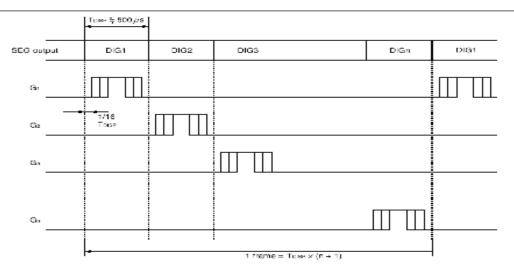

LED 驱动控制专用电路

TA6932

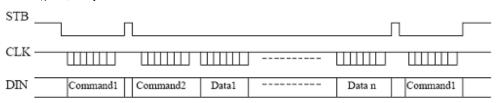

* 上电时, 默认设置为脉冲宽度为1/16, 显示关, 地址递增加1。

(2) 地址设定:

该指令用来设置显示寄存器的地址。 上电时,地址设为00H。


七、串行数据传输格式:

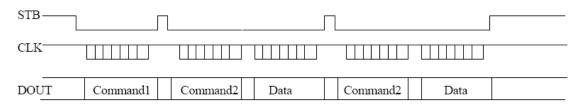
八、 显示周期:


LED 驱动控制专用电路

TA6932

九、 应用时串行数据的传输:

(1) 地址增加模式



Command1: 设置显示控制 (设置地址递增方式为自动加一)

Command2: 设置地址

 $Data1 \sim n$: 传输显示数据(最多 $16 \ bytes$) Command1: 设置显示控制(开屏和亮度设置)

(2) 固定地址

Command1: 设置显示控制(设置地址递增方式为固定方式)

Command2: 设置地址 Data: 显示数据

十、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+6.5	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	V
LED Seg 驱动输出电流	IO1	-50	mA
LED Grid 驱动输出电流	IO2	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	°C
储存温度	Tstg	-65 ∼+150	°C

正常工作范围 (Ta = -40~ +85℃, Vss = 0 V)

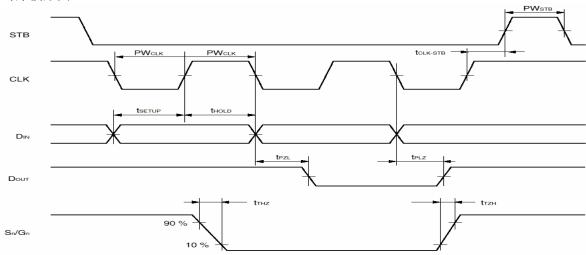
参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	4.5	5	5.5	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -40 \sim +85°C, VDD = 4.5 \sim 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	-20	-25	-40	mA	Seg1~Seg8, Vo = vdd-2V
回也 7 m 山 也 ///	Ioh2	-20	-30	-50	mA	Seg1~Seg8, Vo = vdd-3V
低电平输出电流	IOL1	80	140	-	mA	Grid1~Grid16 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容	Itolsg	-	-	5	%	VO = VDD - 3V,

 许量						Seg1~Seg8
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL	-	-	0.3 VDD	V	CLK, DIN, STB
滞后电压	VH	ı	0.35	-	V	CLK, DIN, STB
动态电流损耗	IDDdyn	-	-	5	mA	无负载, 显示关

开关特性 (Ta = -40 \sim +85 $^{\circ}$ C, VDD = 4.5 \sim 5.5 V)


参数	符号	最小	典型	最大	单位	测试条件	
	tPLZ	-	-	300	ns	CLK → DOUT	
传输延迟时间	tPZL	-	-	100	ns	$CL = 15pF, RL = 10K \Omega$	
	TTZH 1	-	-	2	μs		Seg1 \sim Seg8
上升时间	TTZH 2	-	-	0.5	μs	CL = 300p F	Grid1∼Grid16
下降时间	TTHZ	-	-	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	1	-	-	MHz	占空比50%	
输入电容	CI	-	-	15	pF	-	

* 时序特性 (Ta = -40 \sim +85 $^{\circ}$ C, VDD = 4.5 \sim 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-

_							
	选通脉冲宽度	PWSTB	1	-	-	μs	-
	数据建立时间	tSETUP	100	-	-	ns	-
	数据保持时间	tHOLD	100	-	-	ns	-
	CLK →STB 时间	tCLK STB	1	-	-	μs	CLK ↑ →STB ↑
	等待时间	tWAIT	1	-	-	μs	$CLK \uparrow \rightarrow CLK \downarrow$

时序波形图:

• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

商标:

是深圳市天微电子有限公司依法注册的商标,深圳市天微电子有限公司拥有 该商标的权利。