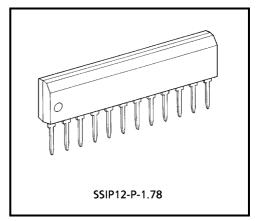
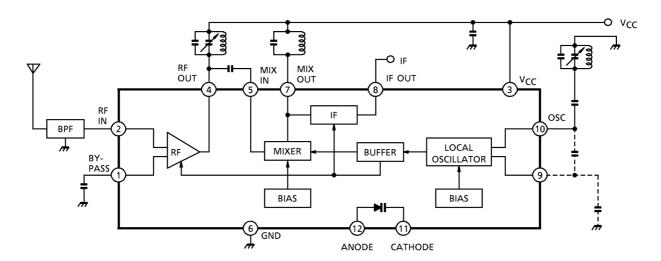
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA8168SN


FM Front End IC

The TA8168SN is a FM front-end IC which is designed for radio cassette recorders and music centers.

Comparing with conventional types, RF inter-modulation characteristics and overload characteristics are improved.


Features

- Improved RF inter-modulation characteristics by double balanced type mixer circuit
- · Low drift oscillation frequency for strong input
- It is available TV band frequency (up to 220MHz)
- Built-in IF amplifier $RO = 330\Omega \text{ (typ.)}, V_0 \text{ (IF)} = 70 \text{mV}_{rms} \text{ (typ.)}$
 - Emitter output of local oscillation transistor
- Built-in varactordiode for AFC
 Cathode and anode are floating
- Operating supply voltage range
 V_{CC} (opr) = 3.5~14V (Ta = 25°C)

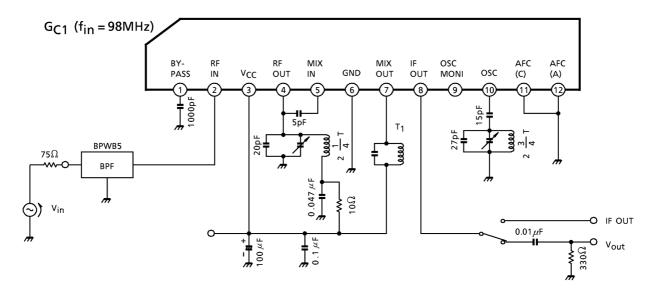
Weight: 0.65g (typ.)

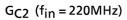
Block Diagram

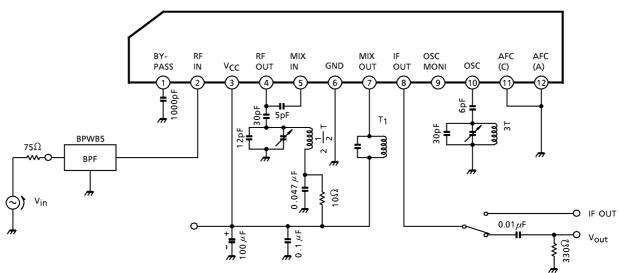
Explanation Of Terminals (terminal voltage is DC voltage at Ta = 25°C, V_{CC} = 5V, and no signal)

Pin No.	Symbol	Contents	Internal Circuit	Terminal Voltage (V)
1	By-pass	Bias terminal for RF amp. Capacitor is connected	VCC 3 TO	2.0
2	RF in	RF input terminal	RF IN 2 C C G G G G G G G G G G G G G G G G G	1.3
3	V _{CC}	Power supply terminal	_	5.0
4	RF out	RF output terminal RF tank circuit is connected	Refer to pin(1), (2).	5.0
5	Mix in	Mixer input terminal		2.0
6	GND	Ground terminal	_	_
7	Mix out	Mixer output terminal Mixer coil is connected	8 IF OUT 7 MIX OUT 3 VCC FROM LOCAL	5.0
8	IF out	IF output terminal output impedance R _{O (IF)} = 330Ω (typ.)	OSC FROM RF AMP.	4.85
9	Monitor	Local OSC monitor terminal	3 VCC 10 LOCAL OSC	4.25
10	Local OSC	Local OSC terminal OSC tank circuit is connected	9 MONITOR 6 GND	4.9
11	AFC (C)	AFC diode cathode terminal	(1) >I I (1)	_
12	AFC (A)	AFC diode anode terminal	711	

Maximum Ratings (Ta = 25°C)

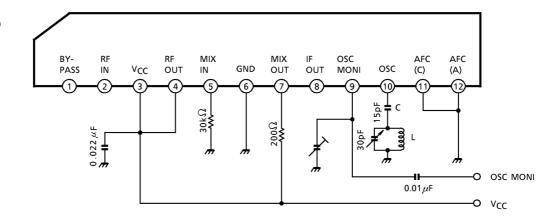

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	15	V
AFC diode reverse voltage	V _R	4	V
Power dissipation	P _D (Note)	750	mW
Operating temperature	T _{opr}	-25~75	°C
Storage temperature	T _{stg}	-55~150	°C


(Note) Derated linearly above Ta = 25° C in the proportion of 6mW / $^{\circ}$ C.


Electrical Characteristics (unless otherwise specified, Ta = 25°C, V_{CC} = 5V, f_m = 1kHz, f = 98MHz, Δf = ±22.5kHz dev.)

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Supply current	Icc	1	V _{in} = 0	_	10	15	mA	
Conversion gai	G _{C1}	1	f _{in} = 98MHz, V _{in} = 50dBμV EMF	42	46	50	dB	
Conversion gai	G _{C2}	1	f_{in} = 220MHz, V_{in} = 50dB μ V EMF	_	42	_	uв	
Local oscillatio	n voltago	V _{OSC1}	2	f _{OSC} = 108.7MHz	220	310	440	m\/
Local oscillation voltage		V _{OSC2}	2	f _{OSC} = 230MHz	_	100	_	mV _{rms}
Pin(2) input	Parallel input resistance	r _{ip2}	3		_	50	_	Ω
impedance	Parallel input capacitance	c _{ip2}	3		_	-15	_	pF
Pin(4) output	Parallel output resistance	r _{op4}	3	f = 98MHz	_	70	_	kΩ
impedance	Parallel output Capacitance	c _{op4}	3	II – 90IVITIZ	_	1.5	_	pF
Pin(5) input	Parallel input resistance	r _{ip5}	3		_	4.0	_	kΩ
impedance	Parallel input capacitance	c _{ip5}	3		_	2.0	_	pF
Pin(7) output	Parallel output resistance	r _{op7}	3	f = 10.7MHz	_	80	_	kΩ
impedance	Parallel output capacitance	c _{op7}	3	1 - 10.7 WIDZ	_	2.5	_	pF
Local OSC sto	Local OSC stop voltage		2	f _{OSC} = 108.7MHz	_	1.5	1.8	V
AFC diode cap	acitance	C _{AFC}	3	f = 98MHz, V _{AFC} = 3V	_	13	_	pF

Test Circuit 1

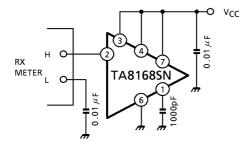

Coil Data For Test Circuit

Coil	Test Frequency	L	Co	0	Turns					Wire	Note
No.	(Hz)	(µH)	(pF)	30	1–2	2–3	1–3	1–4	4–6	(mmφ)	Note
T ₁	10.7M	_	75	100	_	_	13	_	2	0.1UEW	(S) 2153-414-041A

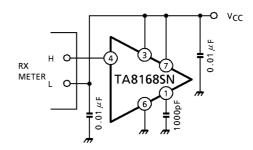
(S): SUMIDA ELECTRIC CO., LTD

Test Circuit 2

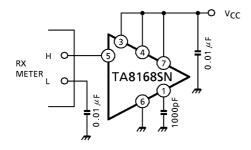
Vosc, Vstop

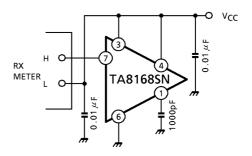


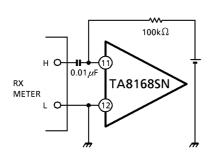
- (1)
- $f_{OSC} = 108.7 MHz$ L: $5mm\phi$, $2\frac{1}{2}turn$ with ferrite core
- (2) fosc = 230MHz
 - L: 5mm ϕ , 3 turn without ferrite core
 - C: 6pF


5

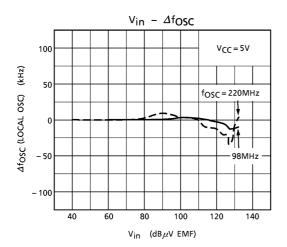
Test Circuit 3

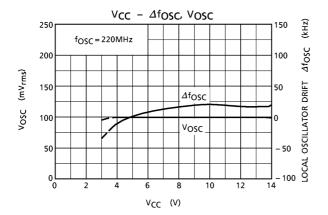

Pin② input resistance, input capacitance

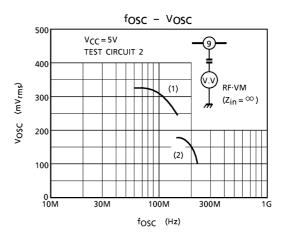

Pin 4 output resistance, output capacitance

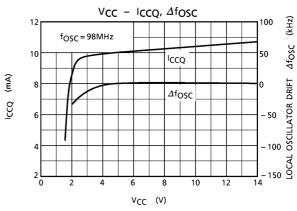

Pin^⑤ input resistance, input capacitance

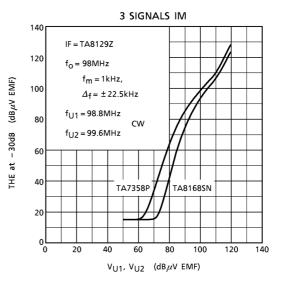
Pin output resistance, output capacitance

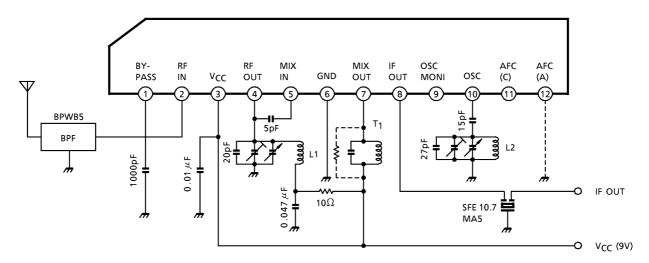



AFC diode capacitance



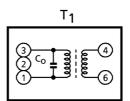

6





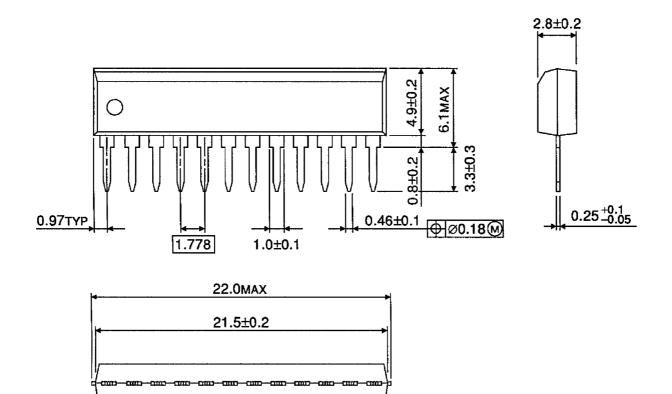
7

Application Circuit



Coil Data For Application Circuit

Coil	Coil		L	Co	0		Tu	rns		Wire	Remarks
No.	Stage	Preq	(µH)	(pF)	Q _o	1–2	2–3	1–3	4–6	(mm)	Remarks
L ₁	FM RF	100M	0.06	1	100	1	_	$2\frac{1}{4}$	_	φ0.5UEW	Within core
L ₂	FM OSC	100M	0.045	-	100		_	$1\frac{3}{4}$	_	φ0.5UEW	Within core
T ₁	FM IFT	10.7M	_	75	100		_	13	2	φ0.16UEW	(M)TY-20580 (S)2153-414-041A


(S): SUMIDA ELECTRIC CO., LTD (M): MITSUMI ELECTRIC CO., LTD

Package Dimensions

SSIP12-P-1.78 Unit: mm

12

Weight: 0.65g (typ.)

9 2002-10-30

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.