RING (DE)MODULATOR FOR TELEPHONY AND INDUSTRIAL EQUIPMENT

The TAB101 is a monolithic integrated circuit comprising a 4-transistor modulator and demodulator circuit. The circuit being made on a single crystal ensures a great similarity in characteristics of the transistors and optimal tracking of their parameters with temperature variations. Consequently, the TAB101 gives a better balancing and therefore less carrier leakage than a conventional circuit. The use of transistors instead of diodes provides a better isolation between input and output circuits.

QUICK REFERENCE DATA					
Collector cut-off current V _{CB} = 5 V; T _{amb} = 25 °C	I_{CBO}	<	100	nA	
Base-emitter voltage differences between transistors 1, 2, 3, 4	$ V_{\mathrm{BE1}}-V_{\mathrm{BE2}} $	<	5	mV	
$V_{CB} = 5 V; -I_E = 150 \mu A$	$ V_{\rm BE3}-V_{\rm BE4} $	<	5	mV	
Common_base current gain differences between transistors 1, 2, 3, 4	\mid h $_{\mathrm{FB1}}$ -h $_{\mathrm{FB2}}\mid$	< 0.008			
$V_{CB} = 5 \text{ V}; -I_E = 150 \mu\text{A}$	h _{FB3} -h _{FB4}	< (800.0		

PACKAGE OUTLINE

Dimensions in mm

XA10; TO-74 (reduced height)

TAB101

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

RATINGS Limiting values in accordance with the Abso	lute Maximu	ım Syster	n (IEC	134)
Voltages (each transistor)				
Collector-base voltage (open emitter)	v_{CBO}	max.	10	V
Emitter-base voltage (open collector)	v_{EBO}	max.	5	V
Collector-substrate voltage	v_{CS}	max.	12	V
Currents (each transistor)				
Collector current	$I_{\mathbf{C}}$	max.	10	mA
Power dissipation (4 transistors)				
Total power dissipation up to T_{amb} = 100 $^{\circ}C$	P_{tot}	max.	100	mW
Temperatures				
Storage temperature	T_{stg}	-35 to	+125	°С
Operating ambient temperature	Tamb	-25 to	+100	oC

TAB101

CHARACTERISTICS (each transistor)		T _{amb} = 25 °C		
Collector cut-off current		typ	5	nA
$I_E = 0$; $V_{CB} = 5 \text{ V}$	ICBO	typ. <	100	nA
Collector-substrate leakage current				
$V_{CS} = 9.5 V$	I_{CS}	typ.	5 100	nA nA
Emitter cut-off current			100	ım,
1 _C = 0; V _{EB} = 1 V	I_{EBO}	typ.	5 100	nA nA
Break down voltages				
$I_{\rm E}$ = 0; $I_{\rm C}$ = 10 μ A	V _{(BR.)CBO}	>	10	V
$I_B = 0; I_C = 10 \ \mu A$	V _(BR) CEO	>	9	V
$-I_S = 10 \mu A$	V(BR)CS	>	12	V
$I_{\rm C}$ = 0; $I_{\rm E}$ = 200 μA	V _{(BR)EBO}	>	5	V
D.C. current gain				
$I_C = 150 \mu A; V_{CE} = 5 V$	${\sf h}_{ m FE}$	< typ.	20 75	
Spot noise figure at f = 1 kHz	æ	5) P*	, 0	
$-I_E$ = 150 μ A; V_{CB} = 5 V				
$R_S = 1 \text{ k}\Omega$; Bandwidth: 200 Hz		typ.	6	dB
Base-emitter voltage difference				
between transistors TR1 and TR2 at				3.7
$-I_{E1} = -I_{E2} = 150 \mu A$; $V_{CB1} = V_{CB2} = 5 V$	$ V_{\mathrm{BE}1}-V_{\mathrm{BE}2} $	typ.	2 5	mV mV
between transistors TR3 and TR4 at				
$-I_{E3} = -I_{E4} = 150 \mu A; V_{CB3} = V_{CB4} = 5 V$	$ V_{\mathrm{BE3}}-V_{\mathrm{BE4}} $	typ.	2 5	mV mV
Current amplification factor difference			3	III V
between transistors TR1 and TR2 at				
$-I_{E1} = -I_{E2} = 150 \ \mu\text{A}; \ V_{CB1} = V_{CB2} = 5 \ V$	h _{FB1} -h _{FB2}		0.002	
between transistors TR3 and TR4 at	·	•	0.000	
$-1_{E3} = -1_{E4} = 150 \ \mu\text{A}; \ V_{CB3} = V_{CB4} = 5 \ V$	h _{FB3} -h _{FB4}	<i>J</i> 1	0.002 0.008	

APPLICATION INFORMATION

Telephony carriers ring modulator

Performance at Tamb = 25 °C

Conversion gain at $f_a = 1 \text{ kHz}$,

 $V_i = 0.4 \text{ V; } f_p = 34 \text{ kHz}$

 G_{c} typ. -0.75 dB

Carrier leakage power in R_0 at $f_p = 34$ kHz

 $P_{\mbox{oc}}$ typ. . 3 nW