TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

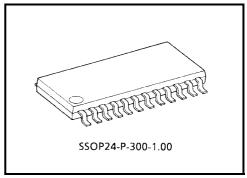
TB62707F

8BIT LATCHES & CONSTANT CURRENT DRIVERS

The TB62707F is specifically designed for LED and LED DISPLAY constant current drivers.

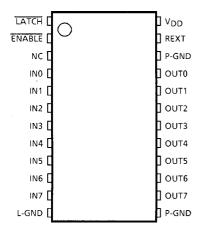
This constant current output is able to set up external resistor (IOUT = 90 mA MAX.).

This IC is monolithic integrated circuit designed to be used together with Bi–CMOS process.

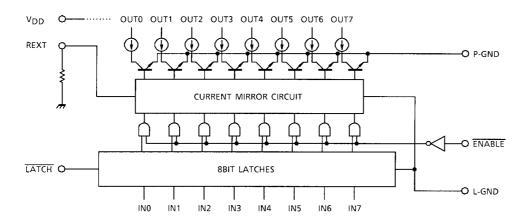

The devices consist of 8bit latches, AND–GATE and Constant Current Drivers.

FEATURES

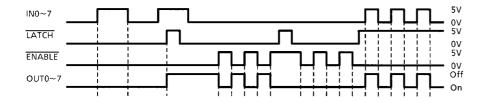
- Constant Current Output: Can set up all output current with one resistor for 5 to 90mA.
- Constant Output Current Matching:


OUTPUT-GND VOLTAGE	CURRENT MATCHING	OUTPUT CURRENT
≥ 0.4 [V]	±6.0 [%]	5~40 mA
≥ 0.7 [V]	±6.0 [%]	40~90 mA

- 5 V CMOS Compatible Input
- Package: SSOP24-P-300



Weight: 0.32 g (typ.)


PIN CONNECTION (Top view)

BLOCK DIAGRAM

TIMING DIAGRAM

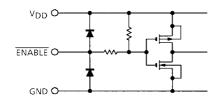
Note: Latches are level sensitive, not rising edge sensitive and not synchronous CLOCK.

Input of LATCH – terminal to "H" level, data passes latches, and input to "L" level, data hold latches.

Input of ENABLE – terminal to "H" level, all output (OUT0~7) do off.

2

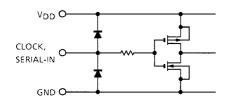
TERMINAL DESCRIPTION

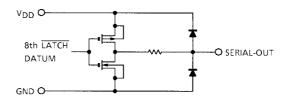

PIN No.	PIN NAME	FUNCTION
1	LATCH	Input terminal of a data strobe. Latches passes data with "H" level input of LATCH -terminal, and hold data with "L" level input.
2	ENABLE	Input terminal of output enable. All outputs (OUT0~7) do off with "H" level input of ENABLE -terminal, and do on with "L" level input.
4~11	IN0~7	Input terminal of a parallel-data for latches.
3	NC	No connection.
12	L-GND	GND terminal for controll logic.
13	P-GND	GND terminal for output constant current drivers.
14~21	OUT0~7	Output terminals.
22	P-GND	GND terminal for output constant current drivers.
23	REXT	Input terminal of connects with a resister for to set up all output current.
24	V_{DD}	5V Supply voltage terminal

TRUTH TABLE

IN0~7	LATCH	ENABLE	OUT0~7
L	L	L	OFF
Н	L	L	OFF
L	Н	L	OFF
Н	Н	L	ON
L		L	OFF
Н		L	ON
Н		Н	OFF

EQUIVALENT CIRCUIT OF INPUTS


1. **ENABLE** terminal


2. **LATCH** terminal

3. CLOCK, SERIAL-IN terminal

4. SERIAL-OUT terminal

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	7.0	V
Input Voltage	V _{IN}	-0.3~V _{DD} + 0.3	٧
Output Current	Io	90.0	mA
Output Voltage	Vo	-0.3~17.0	V
GND Terminal Current	IGND	720	mA
Power Dissipation	PD	780 (Note)	mW
Operating Temperature	T _{opr}	− 40~85	°C
Storage Temperature	T _{stg}	-55~150	°C

Note: On PCB (50 × 50 × 1.6 mm Cu 30% Glass Epoxy PCB)

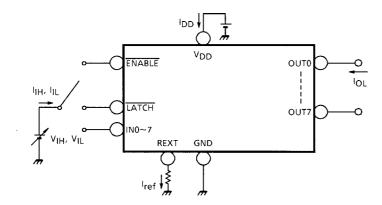
Ambient temperature delated above 25°C in the proportion of 6.66 mW / °C

RECOMMENDED OPERATING CONDITION (Ta = -40~85°C unless otherwise noted)

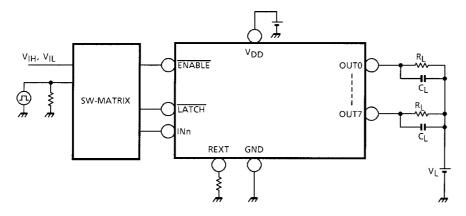
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage	V_{DD}	_	4.5	5.0	5.5	V
Output Voltage	V _O	_	_	_	15.0	V
	lout	DC 1 circuit	5.0	_	88	mA
Output Current	I _{OH}	SERIAL-OUT	_	_	1.0	mA
	I _{OL}	SERIAL-OUT	_	_	-1.0	mA
Input Voltage	V _{IH}	_	0.7 V _{DD}	_	V _{DD} +0.3	V
	V _{IL}	_	-0.3	_	0.3 V _{DD}	V
LATCH Pulse Width	t _{w LAT}		100	_	_	ns
LATOTT Fuise Width	t _w LAT		100	_	_	115
INPUT Pulse Width	t _{w IN}		4500	_	_	20
INPOT Puise Widin	t _w IN	\\ = 4.5\\	4500	_	_	ns
ENABLE Pulse Width	t _{w EN}	V _{DD} = 4.5 V	4500	_	_	20
ENABLE Pulse Width	t _w EN		4500	_	_	ns
Set-Up Time for LATCH	t _{setup (L)}		100	_	_	ns
Hold Time for LATCH	t _{hold (L)}		100	_	_	ns
Power Dissipation	PD	ON PCB, Ta = 85°C	_	_	0.60	W

ELECTRICAL CHARACTERISTICS ($V_{DD} = 5.0 \text{ V}$, Ta = 25°C unless otherwise noted)

CHARACTE	RISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN	TYP.	MAX	UNIT	
Input Voltage	"H" Level	V _{IH}	_	_		0.7 V _{DD}	_	V _{DD}	٧	
input voltage	"L" Level	V _{IL}	_			GND	_	0.3 V _{DD}		
Output Leakage Curre	ent	I _{OH}	_	V _{OH} = 15.0 V		_	_	10	μA	
Output Voltage	SERIAL-OUT	V_{OL}	_	I _{OL} = 1.0 mA		_	_	0.4	V	
Output voltage	SERIAL OUT	V _{OH}	_	I _{OL} = −1.0 mA		4.6	_	_	V	
Output Current 1		I _{OL1}	_	V _{CE} = 0.7 V	R _{EXT} = 620 Ω	35.7	42.0	48.3	mA	
Output Guirent 1		I _{OL2}	_	V _{CE} = 0.4 V	(Include skew)	68.0	80.0	92.0	mA	
	Current Skew	Δ l _{OL1}	_	I _O = 40 mA, V _{CE} = 0.4 V	R _{EXT} = 620 Ω	_	±1.5	±6.0	%	
Output Current 2 Current Skew		I _{OL3}	_	V _{CE} = 1.0 V	R_{EXT} = 330 Ω (Include skew)	64.2	75.5	86.8	mA	
		I _{OL4}	_	V _{CE} = 0.7 V		63.8	75.0	86.2	mA	
		Δ l _{OL2}	_	I _O = 75 mA V _{CE} = 0.7 V	R _{EXT} = 330 Ω	_	±1.5	±6.0	%	
Supply Voltage Regul	ation	% / V _{DD}	_	R _{EXT} = 470 Ω, Ta = -40~85°C		_	+5.0	_	% / V	
Reference Voltage		V_{ref}	_	_		_	1.26	_	V	
Supply Current "OFF"		I _{DD (off)} 1	_	R _{EXT} = OPEN <u>, OUT0~7</u> = off V _{DD} = 4.5 V, ENABLE = "H"		_	0.6	1.2		
		I _{DD (off) 2}	_	R_{EXT} = 500 Ω , $OUT0\sim7$ = off V_{DD} = 4.5 V , $ENABLE$ = "H"		6.0	8.0	10.0	mA	
		I _{DD} (off) 3	_		OUT0~7 = off ENABLE = "H"	12.0	15.0	18.0		
Supply Current "ON"		I _{DD} (on) 1	_	$R_{EXT} = 500 \Omega,$ $V_{DD} = 4.5 V,$	OUT0~7 = on ENABLE = "L"	8.0	13.0	20.0	1	
		I _{DD (on) 2}	_	$R_{EXT} = 280 \Omega,$ $V_{DD} = 4.5 V,$, <u>OUT0~7</u> = on ENABLE = "L"	18.0	25.0	35.0	mA	


5 2003-05-14

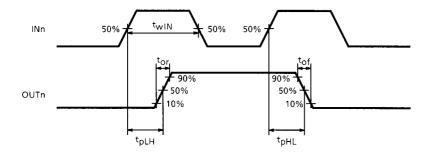
SWITCHING CHARACTERISTICS (Ta = 25°C, unless otherwise noted)


CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	CONDITION	MIN	TYP.	MAX	UNIT
	IN-OUTn		_		_	600	1200	ns
Propagation Delay Time ("L" to "H")	LATCH -OUTn	t_{pLH}			_	600	1200	
	ENABLE -OUTn				_	600	1200	
	IN-OUTn				-	300	1200	ns
Propagation Delay Time ("H" to "L")	LATCH -OUTn	t _{pHL}	_	V _{DD} = 5.0 V V _{CE} = 0.4 V	_	300	1200	
,	ENABLE -OUTn			V _{IH} = VDD V _{IL} = GND	_	300	1200	
	IN	t _{w IN} , ĪN	_	$R_{EXT} = 500 \Omega$	-	2000	3500	ns
Pulse Width	LATCH	t _{w LAT} , LAT	_	I_{OUT} = 40 Ma V_{L} = 3.0 V R_{L} = 65 Ω C_{L} = 10.5 pF	-	25	50	
	ENABLE	t _{w ENA} , EN			-	2000	3500	
Set-up Time for	L-H	t _{setup} LAT	_		_	25	50	ns
LATCH & CLOCK	H-L		_		-	25	50	
Hold Time for LATCH & CLOCK	L-H	t _{hold} LAT	_		-	0	30	20
	H-L		_		-	0	30	ns
Output Rise Time		t _{or}	_		200	1000	1200	ns
Output Fall Time		t _{of}	_		200	1000	1200	ns

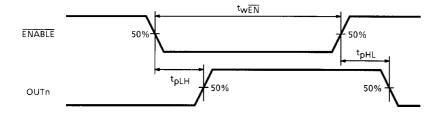
6 2003-05-14

DC CHARACTERISTICS TEST CIRCUIT

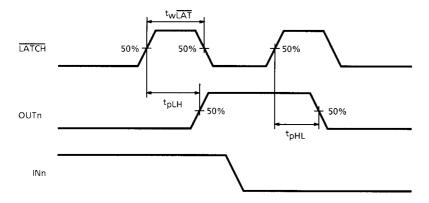
AC CHARACTERISTICS TEST CIRCUIT

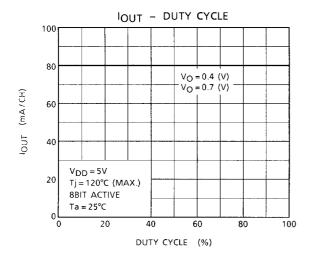

PRECAUTIONS for USING

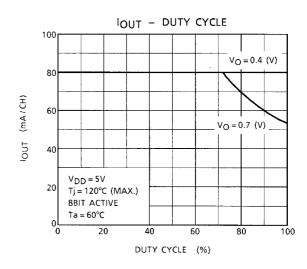
Utmost care is necessary in the design of the output line, VCC (VDD) and GND (L-GND, P-GND) line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

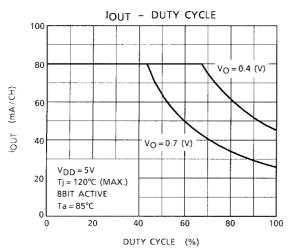

7

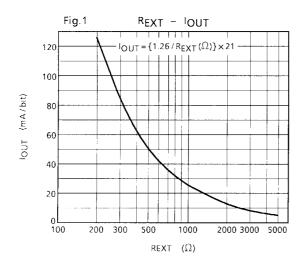
TIMING WAVEFORM


1. INn-OUTn


2. ENABLE -OUTn




3. LATCH-OUTn


8

LED DRIVER TB6270X SERIES APPLICATION NOTE

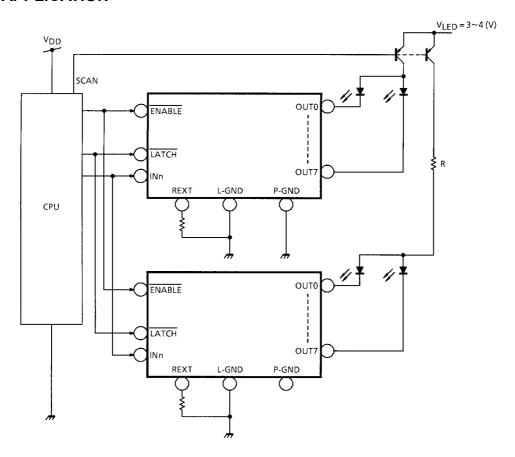
[1] Output current (IOUT)

IOUT is set by the enternal resistor (R-EXT) as shown in Fig.1.

[2] Total supply voltage (VLED)

This device can operate 0.4~0.7V (VO).

When a higher voltage is input to the devide, the excess voltage is consumed inside the device, that leads to power dissipation.


In order to minimize power dissipation and loss, we would like to recommended to set the total supply voltage as shown below.

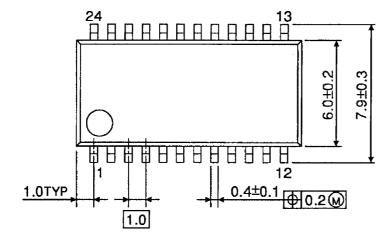
VLED (Total supply voltage)

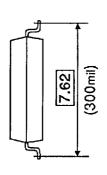
= V_{CE} (Tr V_{sat}) + V_f (LED Forward voltage) + V_O (IC supply voltage)

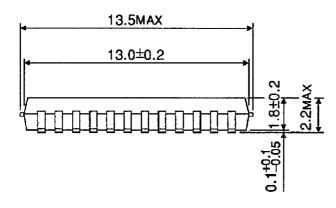
When the total supply is too high considering the power dissipation of this devide, an additional R can decrease the supply voltage (VO).

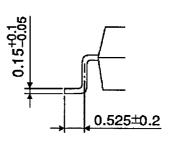
APPLICATION

[3] Pattern layout


This device owns only one ground pin that means signal ground pin and power ground pin are common.


If ground pattern layout contains large inductance and impedance and the voltage between ground and $\overline{\text{LATCH}}$, CLOCK terminals exceeds 2.5V by switching noise in operation, this device may miss-operate. So we would life you to pay attention to pattern layout to minimize inductance.


Unit: mm


Package Dimensions

SSOP24-P-300-1.00

Weight: 0.32 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.